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endowed with a partial order (see also [1, 21]). Takahashi and Tamura [25] proved

some weak convergence theorems for a pair of nonexpansive mappings in a Banach

space by using the iteration process considered by Das and Debata [11]. Taka-

hashi and Shimoji [24] introduced an iteration process, given by finite nonexpansive

mappings, which generalizes Das and Debata’s iteration, and then proved weak

convergence theorems for finite nonexpansive mappings in a Banach space.

In this paper, we prove weak convergence theorems for finite noncommutative

monotone nonexpansive mappings in uniformly convex Banach spaces endowed with

a partial order.

2. Preliminaries and notations

Throughout this paper, we assume that E is a real Banach space with norm ∥ · ∥
and endowed with a partial order ⪯ compatible with the linear structure of E, that

is,

x ⪯ y implies x+ z ⪯ y + z,

x ⪯ y implies λx ⪯ λy

for every x, y, z ∈ E and λ ≥ 0. We will say that this Banach space (E, ∥ · ∥,⪯) is
an ordered Banach space. As usual we adopt the convention x ⪰ y if and only if

y ⪯ x. It follows that all order intervals [x,→) = {z ∈ E : x ⪯ z} and (←, y] =

{z ∈ E : z ∈ E : z ⪯ y} are convex. Moreover, we assume that each order intervals

[x,→) and (←, y] are closed. Recall that an order interval is any of the subsets

[a,→) = {x ∈ X; a ⪯ x} or (←, a] = {x ∈ X;x ⪯ a}. for any a ∈ E. As a direct

consequence of this, the subset

[a, b] = {x ∈ X; a ⪯ x ⪯ b} = [a,→) ∩ (←, b]

is also closed and convex for each a, b ∈ E.

Let E be a real Banach space with norm ∥ · ∥ and endowed with a partial order

⪯ compatible with the linear structure of E. We will say that this Banach space

(E, ∥ · ∥,⪯) is an ordered Banach space. Let C be a nonempty subset of E. A

mapping T : C → C is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C. A mapping T : C → C is called monotone if

Tx ⪯ Ty

for each x, y ∈ C such that x ⪯ y. For a mapping T : C → C, we denote by F (T )

the set of fixed points of T , i.e., F (T ) = {z ∈ C : Tz = z}.
We denote by E∗ the topological dual space of E. We denote by N and Z+ the

set of all positive integers and the set of all nonnegative integers, respectively. We

also denote by R and R+ the set of all real numbers and the set of all nonnegative

real numbers, respectively. We write xn → x (or lim
n→∞

xn = x) to indicate that the

sequence {xn} of vectors in E converges strongly to x. We also write xn ⇀ x (or

w- limn→∞ xn = x) to indicate that the sequence {xn} of vectors in E converges
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weakly to x. We also denote by ⟨y, x∗⟩ the value of x∗ ∈ E∗ at y ∈ E. For a subset

A of E, coA and coA mean the convex hull of A and the closure of convex hull of

A, respectively.

A Banach space E is said to be strictly convex if

∥x+ y∥
2

< 1

for x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. In a strictly convex Banach space, we

have that if

∥x∥ = ∥y∥ = ∥ (1− λ)x+ λy∥
for x, y ∈ E and λ ∈ (0, 1) , then x = y. For every ε with 0 ≤ ε ≤ 2, we define the

modulus δ(ε) of convexity of E by

δ (ε) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δ (ε) > 0 for every ε > 0. If E

is uniformly convex, then for r, ε with r ≥ ε > 0, we have δ
(
ε
r

)
> 0 and∥∥∥∥x+ y

2

∥∥∥∥ ≤ r
(
1− δ

(ε
r

))
for every x, y ∈ E with ∥x∥ ≤ r, ∥y∥ ≤ r and ∥x − y∥ ≥ ε. It is well-known that a

uniformly convex Banach space is reflexive and strictly convex.

The following theorem was proved in [9].

Theorem 2.1 ([9]). Let C be a nonempty bounded closed convex subset of a uni-

formly convex Banach space E and let T be a nonexpansive mapping of C into itself.

Let {xn} be a sequence in C such that it converges weakly to an element u in C and

{xn − Txn} converges strongly to 0. Then, u is a fixed point of T .

Lemma 2.2 ([20]). Let E be a uniformly convex Banach space. Let b, c be real

numbers with 0 < b ≤ c < 1. Let {tn} be a real sequence such that b ≤ tn ≤ c for

n = 1, 2, . . . and let a ≥ 0. Suppose that {xn} and {yn} are sequences of E such that

lim n→∞ ∥xn∥ ≤ a, lim n→∞ ∥yn∥ ≤ a and limn→∞ ∥tnxn + (1 − tn)yn∥ = a. Then,

limn→∞ ∥xn − yn∥ = 0.

3. Lemmas

Let C be a nonempty convex subset of a Banach space E. Let T1, T2, . . . , Tr be

finite mappings of C into itself and let α1, α2, . . . , αr be real numbers such that

0 ≤ αi ≤ 1 for every i = 1, 2, . . . , r. Then, we define a mapping W of C into itself

as follows (see [22, 24]):

U1 = α1T1 + (1− α1)I,

U2 = α2T2U1 + (1− α2)I,

...(3.1)

Ur−1 = αr−1Tr−1Ur−2 + (1− αr−1)I,
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W = Ur = αrTrUr−1 + (1− αr)I.

Such a mapping W is called the W -mapping generated by T1, T2, . . . , Tr and α1,

α2, . . . , αr (see also [2]). Let αn1, αn2, . . . , αnr(n = 1, 2, . . .) be real numbers such

that 0 ≤ αni ≤ 1 for every i = 1, 2, . . . , r. Let Wn(n = 1, 2, . . .) be the W -mappings

generated by T1, T2, . . . , Tr and αn1, αn2, . . . , αnr. Now consider the following itera-

tion process:

x1 ∈ C, xn+1 = Wnxn for every n = 1, 2, . . . .

The following lemma is obvious from the definition of (3.1).

Lemma 3.1 ([2]). Let C be a nonempty closed convex subset of a Banach space E.

Let T1, T2, . . . , Tr be nonexpansive mappings of C into itself and let α1, α2, . . . , αr

be real numbers such that 0 ≤ αi ≤ 1 for every i = 1, 2, . . . , r. Let U1, U2, . . . , Ur−1

and W be the mappings defined by (3.1). Then, U1, U2, . . . , Ur−1 and W are also

nonexpansive.

The following lemma was proved in [2].

Lemma 3.2 ([2]). Let C be a nonempty closed convex subset of a strictly convex

Banach space E. Let T1, T2, . . . , Tr be nonexpansive mappings of C into itself such

that
⋂r

i=1 F (Ti) ̸= ∅ and let α1, α2, . . . , αr be real numbers such that 0 < αi < 1 for

every i = 1, 2, . . . , r − 1 and 0 < αr ≤ 1. Let W be the W -mapping of C into itself

generated by T1, T2, . . . , Tr and α1, α2, . . . , αr. Then, F (W ) =
⋂r

i=1 F (Ti).

In this section, we study approximate fixed point sequences and monotone se-

quences. Let C be a nonempty subset of an ordered Banach space E and let T be

a mapping of C into itself. A sequence {xn} in C is said to be an approximate fixed

point sequence of a mapping T of C into itself if

lim
n→∞

∥xn − Txn∥ = 0

(see also [15, 23]). Let T1, T2, . . . , Tr be mappings of C into itself. A sequence

{xn} in C is said to be an approximate common fixed point sequence of mappings

T1, T2, . . . , Tr of C if for every k = 1, 2, . . . , r,

lim
n→∞

∥xn − Tkxn∥ = 0.

A sequence {xn} in E is said to be monotone if

x1 ⪯ x2 ⪯ x3 ⪯ · · ·

(see also [12]).

Lemma 3.3. Let E be an ordered Banach space, let C be a nonempty closed convex

subset of E, and let T1, T2, . . . , Tr be monotone mappings of C into itself such that⋂r
i=1 F (Ti) is nonempty. Let αn,1, . . . , αn,r (n = 1, 2, . . .) be real numbers such that

0 < αn,i ≤ 1 for every i = 1, 2, ..., r. Let Wn(n = 1, 2, . . .) be W -mappings generated

by T1, T2, . . . , Tr and αn,1, . . . , αn,r. Then, Un,1, Un,2, . . . , Un,r−1, Un,r = Wn (n =

1, 2, . . .) and T2Un,1, T3Un,2,. . . , TrUn,r−1 (n = 1, 2, . . .) are also monotone.
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Proof. We shall prove that Un,1, Un,2, . . . , Un,r−1,Wn = Un,r (n = 1, 2, . . .) are

monotone by mathematical induction. Let n be an arbitrary positive integer. Let

x, y ∈ C with x ⪰ y. Since T1 is monotone and a partial order is compatible with

the linear structure of E, we obtain that

Un,1x = αn,1T1x+ (1− αn,1)x

⪰ αn,1T1y + (1− αn,1)x

⪰ αn,1T1y + (1− αn,1)y = Un,1y

Thus, Un,1 is monotone. Let k = 1, 2, . . . , r − 1 and suppose Un,kx ⪰ Un,ky. We

shall prove that Un,k+1x ⪰ Un,k+1y. We remark that n is an arbitrary positive

integer. Since Ti(i = 1, 2, . . . , r) is also monotone and from the the assumption of

mathematical induction, it follows that Tk+1Un,kx ⪰ Tk+1Un,ky. Hence, we have

Tk+1Un,k is also monotone. Then, since a partial order is compatible with the linear

structure of E, we have

Un,k+1x = αn,k+1Tk+1Un,kx+ (1− αn,k+1)x

⪰ αn,k+1Tk+1Un,ky + (1− αn,k+1)x

⪰ αn,k+1Tk+1Un,ky + (1− αn,k+1)y = Un,k+1y

Thus, Un,k+1 is monotone. Therefore, we obtain that Un,1, Un,2, . . . , Un,r−1 and

Un,r = Wn are also monotone by mathematical induction. Then, since T1, T2, . . . , Tr

are monotone, we have that T2Un,1, T3Un,2, . . . , TrUn,r−1 are also monotone. □

Lemma 3.4. Let E be an ordered Banach space, let C be a nonempty closed convex

subset of E, and let T1, T2, . . . , Tr be monotone nonexpansive mappings of C into

itself such that
⋂r

i=1 F (Ti) is nonempty. Let αn,1, . . . , αn,r (n = 1, 2, . . .) be real

numbers such that 0 < αn,i ≤ 1 (n = 1, 2, . . .) for every i = 1, 2, ..., r. Fix x ∈ C

such that Tkx ⪰ x (k = 1, 2, . . . , r). Let Wn(n = 1, 2, . . .) be W -mappings generated

by T1, T2, . . . , Tr and αn,1, . . . , αn,r. Then,

(3.2) Un,1x ⪰ x, Un,2x ⪰ x, . . . , Un,r−1x ⪰ x, Wnx ⪰ x.

Proof. We note that for c1, c2 ∈ C such that c1 ⪰ c2,

c1 ⪰ αc1 + (1− α)c2 ⪰ c2

for each α ∈ [0, 1]. This is true because all order intervals are convex and a partial

order is compatible with the linear structure of E.

Fix x ∈ C such that Tkx ⪰ x (k = 1, 2, . . . , r). Let n ∈ N. We shall prove

(3.3) Un,mx ⪰ x (m = 1, 2, . . . , r)

by mathematical induction. First, we shall prove Un,1x ⪰ x. Since a partial order

is compatible with the linear structure of E, by the assumption of T1, we have that

Un,1x = αn,1T1x+ (1− αn,1)x

⪰ αn,1x+ (1− αn,1)x = x.(3.4)
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So, (3.3 ) is true for m = 1. Let m = k ∈ {1, 2, . . . , r − 1} and suppose that

Un,kx ⪰ x.

Then, since Tk+1 is monotone, from the assumption of mathematical induction and

the assumption of Tk+1, we have

Un,k+1x = αn,k+1Tk+1Un,kx+ (1− αn,k+1)x

⪰ αn,k+1Tk+1x+ (1− αn,k+1)x

⪰ αn,k+1x+ (1− αn,k+1)x = x.

So, (3.3) is true for m = k + 1. Therefore, we obtain

(3.5) Un,mx ⪰ x (m = 1, 2, . . . , r)

by mathematical induction. □

As in the proof of Lemma 3.4, we have the following lemma.

Lemma 3.5. Let E be an ordered Banach space, let C be a nonempty closed convex

subset of E, and let T1, T2, . . . , Tr be monotone nonexpansive mappings of C into

itself such that
⋂r

i=1 F (Ti) is nonempty. Let αn,1, . . . , αn,r (n = 1, 2, . . .) be real

numbers such that 0 < αn,i ≤ 1 (n = 1, 2, . . .) for every i = 1, 2, ..., r. Assume that

Tkx ⪰ x (k = 1, 2, . . . , r) for every x ∈ C. Let Wn(n = 1, 2, . . .) be W -mappings

generated by T1, T2, . . . , Tr and αn,1, . . . , αn,r. Then,

(3.6) Un,1x ⪰ x, Un,2x ⪰ x, . . . , Un,r−1x ⪰ x, Wnx ⪰ x for every x ∈ C.

The following lemma was essentially proved in [24]. For the sake of completeness,

we prove it (see also [2]).

Lemma 3.6. Let E be an ordered uniformly convex Banach space, let C be a

nonempty closed convex subset of E, and let T1, T2, . . . , Tr be finite monotone non-

expansive mappings of C into itself such that
⋂r

i=1 F (Ti) is nonempty. Let a, b be

real numbers with 0 < a ≤ b < 1. Let αn,1, . . . , αn,r (n = 1, 2, . . .) be real numbers

such that a ≤ αn,i ≤ b for every i = 1, 2, ..., r. Let Wn(n = 1, 2, . . .) be W -mappings

generated by T1, T2, . . . , Tr and αn,1, . . . , αn,r. Suppose x1 ∈ C and {xn} is given by

xn+1 = Wnxn

for every n = 1, 2, . . .. Then, the sequence {xn} is an approximate common fixed

point sequence of T1, T2, . . . , Tr, i.e., for each k = 1, 2, . . . , r,

lim
n→∞

∥Tkxn − xn∥ = 0.

Proof. For x1 ∈ C and f ∈
⋂r

i=1 F (Ti) ̸= ∅, put r = ∥x1 − f∥ and set

X = {u ∈ E : ∥u− f∥ ≤ r} ∩ C.

Then, X is a nonempty bounded closed convex subset of C which is Tk-invariant for

every k = 1, 2, . . . , r and contains x1. So, without loss of generality, we may assume

that C is bounded.
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Let x1 ∈ C and w ∈
⋂r

i=1 F (Ti). By the definition of {xn}∞n=1, we have,

∥xn+1 − w∥ = ∥Un,rxn − w∥
= ∥αn,r(TrUn,r−1xn − w) + (1− αn,r)(xn − w)∥
≤ αn,r∥Un,r−1xn − w∥+ (1− αn,r)∥xn − w∥
≤ αn,rαn,r−1∥Un,r−2xn − w∥+ (1− αn,rαn,r−1)∥xn − w∥
≤ αn,rαn,r−1αn,r−2∥Un,r−3xn − w∥+ (1− αn,rαn,r−1αn,r−2)∥xn − w∥
...

≤ αn,rαn,r−1αn,r−2 · · ·αn,2∥Un,1xn − w∥
+ (1− αn,rαn,r−1αn,r−2 · · ·αn,2)∥xn − w∥

= αn,rαn,r−1αn,r−2 · · ·αn,2∥αn,1T1(xn − w) + (1− αn,1)(xn − w)∥
+ (1− αn,rαn,r−1αn,r−2 · · ·αn,2)∥xn − w∥

≤ ∥xn − w∥

and hence limn→∞ ∥xn − w∥ exists. Put c = limn→∞ ∥xn − w∥ and fix k with

1 ≤ k ≤ r − 1. Then, we have

lim
n→∞

∥Un,kxn − w∥ ≤ lim
n→∞

∥xn − w∥ = c.

Further, since

∥xn − w∥ ≤ ∥Un,kxn − w∥+ ∥xn − w∥ − ∥xn+1 − w∥
αn,rαn,r−1αn,r−2 · · ·αn,k+1

we have,

c ≤ lim
n→∞

∥Un,kxn − w∥

and hence limn→∞ ∥Un,kxn − w∥ = c. Therefore, we have

lim
n→∞

∥αn,kTkUn,k−1xn + (1− αn,k)xn − w∥ = c.

for all k = 1, 2, . . . r, where Un,0 = I. By Lemma 2.2, we have

lim
n→∞

∥TkUn,k−1xn − xn∥ = 0.

If k = 1, we have

lim
n→∞

∥T1xn − xn∥ = 0.

For any k with 2 ≤ k ≤ r, from

∥Tkxn − xn∥ ≤ ∥Tkxn − TkUn,k−1xn∥+ ∥TkUn,k−1xn − xn∥
≤ ∥xn − Un,k−1xn∥+ ∥TkUn,k−1xn − xn∥
= αn,k−1∥xn − TkUn,k−2xn∥+ ∥TkUn,k−1xn − xn∥,

we have limn→∞ ∥Tkxn − xn∥ = 0. □
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Lemma 3.7. Let E be an ordered uniformly convex Banach space, let C be a

nonempty closed convex subset of E, and let T1, T2, . . . , Tr be finite monotone non-

expansive mappings of C into itself such that
⋂r

i=1 F (Ti) is nonempty. Assume

that Tkx ⪰ x(k = 1, 2, . . . , r) for every x ∈ C. Let αn,1, . . . , αn,r (n = 1, 2, . . .)

be real numbers such that 0 < αn,i ≤ 1 (n = 1, 2, . . .) for every i = 1, 2, ..., r.

Let Wn(n = 1, 2, . . .) be W -mappings generated by T1, T2, . . . , Tr and αn,1, . . . , αn,r.

Suppose x1 ∈ C and {xn} is given by

xn+1 = Wnxn

for every n = 1, 2, . . .. Then, the sequence {xn} is monotone.

Proof. As in the proof of Lemma 3.6, without loss of generality, we may assume

that C is bounded. Let n ∈ N. Since Tku ⪰ u (k = 1, 2, . . . , r) for every u ∈ C, we

have

xn+1 = Wnxn = Un,rxn = αn,rTrUn,r−1xn + (1− αn,r)xn

⪰ αn,rUn,r−1xn + (1− αn,r)xn

= αn,r{αn,r−1Tr−1Un,r−2xn + (1− αn,r−1)xn}+ (1− αn,r)xn

⪰ αn,rαn,r−1Un,r−2xn + (1− αn,rαn,r−1)xn

...

⪰ αn,rαn,r−1 . . . αn,2Un,1xn + (1− αn,rαn,r−1 . . . αn,2)xn

= αn,rαn,r−1 . . . αn,1T1xn + (1− αn,rαn,r−1 . . . αn,1)xn

⪰ αn,rαn,r−1 . . . αn,1xn + (1− αn,rαn,r−1 . . . αn,1)xn = xn.

Hence, we have that {xn} is monotone. □
Lemma 3.8. Let E be an ordered uniformly convex Banach space, let C be a

nonempty closed convex subset of E, and let T1, T2, . . . , Tr be finite monotone nonex-

pansive mappings of C into itself such that
⋂r

i=1 F (Ti) is nonempty. Fix u ∈ C such

that Tku ⪰ u(k = 1, 2, . . . , r). Let α1, . . . , αr be real numbers such that 0 < αi ≤ 1

for every i = 1, 2, ..., r. Let W be a W -mapping generated by T1, T2, . . . , Tr and

α1, . . . , αr. Suppose x1 = u ∈ C and {xn} is given by

xn+1 = Wnx1

for every n ∈ N. Then, the sequence {xn} is monotone.

Proof. As in the proof of Lemma 3.6, without loss of generality, we may assume

that C is bounded. We shall prove that

(3.7) xn+1 ⪰ xn (n = 1, 2, . . .)

by mathematical induction. By Lemma 3.4, we have

x2 = Wx1 ⪰ x1.

Thus, (3.7) is true for n = 1. Let k ∈ N and suppose

xk+1 ⪰ xk.
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Since TrUr−1 is monotone, it follows from the assumption of mathematical induction

that

xk+2 = W k+1x1 = Wxk+1 = Urxk+1

= αrTrUr−1xk+1 + (1− αr)xk+1

⪰ αrTrUr−1xk + (1− αr)xk+1

⪰ αrTrUr−1xk + (1− αr)xk = xk+1,

where U0 = I. So, by mathematical induction, we obtain that xn+1 ⪰ xn for every

n = 1, 2, . . . . □

4. Main results

Theorem 4.1. Let E be an ordered uniformly convex Banach space, let C be

a nonempty closed convex subset of E, and let T1, T2, . . . , Tr be finite monotone

nonexpansive mappings of C into itself such that
⋂r

i=1 F (Ti) is nonempty. As-

sume that Tkx ⪰ x (k = 1, 2, . . . , r) for every x ∈ C. Let a, b be real numbers

with 0 < a ≤ b < 1. Let αn,1, . . . , αn,r(n = 1, 2, . . .) be real numbers such that

a ≤ αn,i ≤ b for every i = 1, 2, ..., r. Let Wn(n = 1, 2, . . .) be W -mappings generated

by T1, T2, . . . , Tr and αn,1, . . . , αn,r,

Un,1 = αn,1T1 + (1− αn,1)I,

Un,2 = αn,2T2Un,1 + (1− αn,2)l,

...

Un,r−1 = αn,r−1Tr−1Un,r−2 + (1− αn,r−1)I

W = Un,r = αn,rTrUn,r−1 + (1− αn,r)I.

Suppose x1 ∈ C and {xn} is given by

xn+1 = Wnxn

for every n = 1, 2, . . .. Then, the sequence {xn} converges weakly to a common fixed

point of T1, T2, . . . , Tr.

Proof. Since E is reflexive, {xn}must contain a subsequence which converges weakly

to a point in C. Let z1, z2 be two weak cluster-points of {xn}. Then, there exists

two subsequences {xni} and {xnj} of {xn} such that xni ⇀ z1 and xnj ⇀ z2,

respectively. It follows from Lemmas 3.6 that for every k = 1, 2, . . . , r,

lim
i→∞
∥xni − Tkxni∥ = 0 and lim

j→∞
∥xnj − Tkxnj∥ = 0.

It follows from Theorem 2.1 that z1, z2 ∈
⋂r

i=1 F (Ti) ̸= ∅. Next, we show z1 = z2
(see also [12]). Fix k ≥ 1. By Lemma 3.7, we obtain that {xn} is monotone. Then,

since the order interval [xk,→) is weakly closed, we conclude that zi ∈ [xk,→)

for i = 1, 2. So, we see that zi is an upper bound for {xn} for i = 1, 2. Then, we

also obtain that {xn} ⊂ (←, zi] for i = 1, 2. It follows from the same reason that
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zj ∈ (←, zi] for i, j = 1, 2. So, we have z1 = z2. Therefore, we obtain that {xn}
converges weakly to a point of

⋂r
i=1 F (Ti) ̸= ∅. □

By Theorem 4.1, we have the following theorem.

Theorem 4.2. Let E be an ordered uniformly convex Banach space, let C be a

nonempty closed convex subset of E, and let T1, T2, . . . , Tr be finite monotone nonex-

pansive mappings of C into itself such that
⋂r

i=1 F (Ti) is nonempty. Fix x1 = u ∈ C

such that Tkx1 ⪰ x1 (k = 1, 2, . . . , r). Let a, b be real numbers with 0 < a ≤ b < 1.

Let αn,1, . . . , αn,r(n = 1, 2, . . .) be real numbers such that a ≤ αn,i ≤ b for every

i = 1, 2, ..., r. Let W be a W -mapping generated by T1, T2, . . . , Tr and α1, . . . , αr.

Suppose x1 = u ∈ C and {xn} is given by

xn+1 = Wnx1

for every n = 1, 2, . . .. Then, the sequence {xn} converges weakly to a common fixed

point of T1, T2, . . . , Tr.

Proof. We remark that xn+1 = Wnx1 = Wxn. By Lemma 3.8, we have that {xn}
is monotone. By Lemma 3.6, we obtain that for each k = 1, 2, . . . , r,

lim
n→∞

∥Tkxn − xn∥ = 0.

Then, as in the proof of Theorem 4.1, we have that {xn} converges weakly to a

common fixed point of T1, T2, . . . , Tr. □

By Theorem 4.1, we get some convergence theorems (see also [21]).

Theorem 4.3. Let C be a nonempty closed convex subset of an ordered uniformly

convex Banach space E. Let T and S be monotone nonexpansive mappings of C

into itself such that F (T ) ∩ F (S) ̸= ∅. Assume that x ⪯ Tx and x ⪯ Sx for each

x ∈ C. Let a, b be real numbers with 0 < a ≤ b < 1. Let {αn} and {βn} be a

sequence of real numbers such that a < αn < b and a < βn < b for each n = 1, 2, . . .,

respectively. Suppose x1 ∈ C and {xn} is given by

xn+1 = αnS[βnTxn + (1− βn)xn] + (1− αn)xn

for every n = 1, 2, . . .. Then, {xn} converges weakly to a common fixed point of T

and S.

Theorem 4.4. Let C be a nonempty closed convex subset of an ordered uniformly

convex Banach space E. Let T be a monotone nonexpansive mapping of C into

itself such that F (T ) ̸= ∅. Assume that x ⪯ Tx. Let a, b be real numbers with

0 < a ≤ b < 1. Let {αn} be the sequence of real numbers such that a < αn < b for

each n ∈ N. Suppose x1 = x ∈ C and {xn} is given by

xn+1 = αnTxn + (1− αn)xn

for every n = 1, 2, . . .. Then, {xn} converges weakly to a fixed point of T .
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