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In this paper we use the following notations. Assume that (X, ρ) is a complete

metric space. For each point x ∈ X and each number r > 0, set

B(x, r) := {y ∈ X : ρ(x, y) ≤ r}.

For each point x ∈ X and each nonempty set A ⊂ X, put

ρ(x,A) := inf{ρ(x, y) : y ∈ A}.

For each pair of nonempty sets, define

H(A,B) := max{sup{ρ(a,B) : a ∈ A}, sup{ρ(b, A) : b ∈ B}}.

Note that it is possible for H(A,B) to be +∞. We denote by 2X and by CL(X)

the set of all subsets of X and the set of all closed subsets of X, respectively.

2. The first main result

Let ∆ > 0, c ∈ [0, 1) and let T : X → CL(X) \ {∅} satisfy

(2.1) H(T (x), T (y)) ≤ cρ(x, y)

for each x, y ∈ X satisfying ρ(x, y) ≤ ∆. Such a mapping is called a set-valued

uniformly locally strict contraction. We study the existence of fixed points of T ,

that is, points x ∈ X satisfying x ∈ T (x). In the case where T is a single-valued

map, the existence of such fixed points was studied in [20, 22, 28]. In the case where

(2.1) holds for each pair x, y ∈ X, a fixed point exists by Nadler’s seminal theorem

[19, 8, 10, 27].

Fix c0 ∈ (c, 1). It is clear that the following auxiliary result is true.

Lemma 2.1. Assume that x, y ∈ X, ρ(x, y) ≤ ∆ and x0 ∈ T (x). Then there there

exists a point y0 ∈ T (y) such that

ρ(x0, y0) ≤ c0ρ(x, y).

Theorem 2.2. Assume that x0 ∈ X,

(2.2) x1 ∈ T (x0)

and that there exist points y0, . . . , yq ∈ X, where q is a natural number, such that

(2.3) y0 = x0, yq = x1

and

(2.4) ρ(yi, yi+1) ≤ ∆, i = 0, . . . , q − 1.

Let {yi}∞i=q+1 satisfy for each integer i ≥ 1,

(2.5) yi+q ∈ T (yi),

(2.6) ρ(yi+1+q, yi+q) ≤ c0ρ(yi, yi+1).

Then the following assertions hold.
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1. The sequence {yi}∞i=0 is well defined,

∞∑
i=0

ρ(yi, yi+1) ≤ ∆q

∞∑
i=0

ci0 ≤ ∆q(1− c0)
−1,

there exists

y∗ = lim
i→∞

yi,

y∗ ∈ T (y∗) and for each integer p ≥ 1, we have

ypq ∈ T p(x0)

and

ρ(ypq, y∗) ≤ ∆qcp0(1− c0)
−1.

2. Assume that δ ∈ (0,∆], ρ(x0, x1) ≤ δ and q = 1. Then

ρ(x0, y∗) ≤ δ(1− c0)
−1.

Proof. By (2.2)–(2.4), we have

(2.7) yq = x1 ∈ T (x0) = T (y0)

and

(2.8) ρ(y0, y1) ≤ ∆.

Lemma 2.1 and (2.7) imply that there exists a point

(2.9) yq+1 ∈ T (y1)

such that

(2.10) ρ(yq, yq+1) ≤ c0ρ(y0, y1).

Assume that p ≥ q + 1 is an integer and that yi ∈ X, i = q + 1, . . . , p, have been

defined so that for each i ∈ {0, . . . , p− q},

(2.11) yi+q ∈ T (yi)

and for each i ∈ {0, . . . , p− q − 1}, we have

(2.12) ρ(yi+q, yi+q+1) ≤ c0ρ(yi, yi+1).

(In view (2.7), (2.9) and (2.10), our assumption does hold for p = q + 1.) Next, we

define yp+1 ∈ X as follows. In view of (2.11),

(2.13) yp ∈ T (yp−q).

Lemma 2.1 and relations (2.4), (2.12) and (2.13) imply that there exists a point

yp+1 ∈ T (yp−q+1)

such that

ρ(yp, yp+1) ≤ c0ρ(yp−q, yp−q+1).
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Thus the assumption made regarding p also holds for p+1. Therefore the sequence

{yi}∞i=0 is well defined by induction, and (2.11) and (2.12) hold for all integers i ≥ 0.

By (2.12), for each integer p ≥ 1,

(2.14) c0

q−1∑
i=0

ρ(ypq+i, ypq+i+1) ≥
q−1∑
i=0

ρ(y(p+1)q+i, y(p+1)q+i+1).

In view of (2.4) and (2.14), we have

∞∑
i=0

ρ(yi, yi+1) ≤ ∆q
∞∑
i=0

ci0 ≤ ∆q(1− c0)
−1,

the sequence {yi}∞i=0 converges and there exists

(2.15) y∗ = lim
j→∞

yj .

It follows from (2.11) and (2.15) that

y∗ = lim
i→∞

yiq,

y(i+1)q ∈ T (yiq), i = 0, 1, . . .

and

y∗ ∈ T (y∗).

Let p ≥ 1 be an integer. By (2.12),

ρ(ypq, y∗) = lim
m→∞

ρ(ypq, ym)

≤
∞∑

i=pq

ρ(yi, yi+1)

≤
(p+1)q−1∑

i=pq

ρ(yi, yi+1)(

∞∑
i=0

ci0)

≤ cp0∆q(1− c0)
−1.

This completes the proof of Assertion 1.

Now we prove Assertion 2. We have q = 1 by assumption. By Assertion 1, we

have

ρ(x0, y∗) = lim
n→∞

ρ(y0, yn)

≤
∞∑
i=0

ρ(yi, yi+1)

≤ ρ(x0, x1)
∞∑
i=0

ci0

≤ δ(1− c0)
−1.

Thus Assertion 2 is proved. This completes the proof of Theorem 2.2. □
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3. The second main result

.

Assume that ϕ : [0,∞) → [0, 1) is a decreasing function such that

(3.1) ϕ(t) < 1 for each t > 0

and that T : X → 2X \ {∅} satisfies

(3.2) H(T (x), T (y)) ≤ ϕ(ρ(x, y))ρ(x, y)

for each x, y ∈ X satisfying ρ(x, y) ≤ ∆. Such a mapping is called a set-valued

uniformly locally contractive mapping. It is not difficult to see that the following

auxiliary result is true.

Lemma 3.1. Assume that x, y ∈ X, ρ(x, y) ≤ ∆ and x1 ∈ T (x). Then there exists

a point y1 ∈ T (y) such that

ρ(x1, y1) ≤ 2−1(1 + ϕ(ρ(x, y))ρ(x, y)).

Theorem 3.2. Assume that x0 ∈ X,

x1 ∈ T (x0)

and that there exist points y0, . . . , yq ∈ X, where q is a natural number, such that

(3.3) y0 = x0, yq = x1

and

(3.4) ρ(yi, yi+1) ≤ ∆, i = 0, . . . , q − 1.

Then there exists a sequence {xi}∞i=0 ⊂ X such that for each integer i ≥ 0,

xi+1 ∈ T (xi)

and

lim
i→∞

ρ(xi+1, xi) = 0.

Proof. By (3.3) and (3.4), we have

(3.5) yq = x1 ∈ T (x0) = T (y0)

and

(3.6) ρ(y0, y1) ≤ ∆.

Lemma 3.2, and relations (3.5) and (3.6) imply that there exists a point

(3.7) yq+1 ∈ T (y1)

such that

(3.8) ρ(yq, yq+1) ≤ 2−1(1 + ϕ(ρ(y0, y1)))ρ(y0, y1).

Assume now that p ≥ q+1 is an integer and that the points yi ∈ X, i = q+1, . . . , p,

have been defined so that for each i ∈ {0, . . . , p− q}, we have

(3.9) yi+q ∈ T (yi)



144 S. REICH AND A. J. ZASLAVSKI

and for each i ∈ {0, . . . , p− q − 1}, we have

(3.10) ρ(yi+q, yi+q+1) ≤ 2−1(1 + ϕ(ρ(yi, yi+1)))ρ(yi, yi+1).

(In view (3.5), (3.7) and (3.8), our assumption does hold for p = q + 1.) Next, we

define yp+1 ∈ X. In view of (3.9), we have

(3.11) yp ∈ T (yp−q).

Lemma 3.1, and relations (3.4) and (3.9)-(3.11) imply that there exists a point

(3.12) yp+1 ∈ T (yp−q+1)

such that

ρ(yp, yp+1) ≤ 2−1(1 + ϕ(ρ(yp−q, yp−q+1)))ρ(yp−q, yp−q+1).

Thus the assumption made for p also holds for p+1. Therefore the sequence {yi}∞i=0

is well defined by induction, and (3.9) and (3.10) hold for all integers i ≥ 0.

Now let ϵ ∈ (0, 1) be given. It follows from (3.4) and (3.10) that for each integer

n ≥ q + 2,

∆q ≥
q∑

i=1

ρ(yi−1, yi)

≥
q∑

i=1

ρ(yi−1, yi)−
(n+1)q∑
i=nq+1

ρ(yi−1, yi)

=

n−1∑
j=0

(

(j+1)q−1∑
i=jq

ρ(yi−1, yi)−
(j+2)q−1∑
i=(j+1)q

ρ(yi−1, yi))

≥
n−1∑
j=0

(j+1)q−1∑
i=jq

2−1(1− ϕ(ρ(yi, yi+1)))ρ(yi, yi+1)

≥ (2q)−1(1− ϕ(q−1ϵ))ϵCard({j ∈ {0, . . . , nq − 1} : ρ(yi, yi+1) ≥ ϵ/q})

and

Card({j ∈ {0, . . . , nq − 1} : ρ(yi, yi+1) ≥ ϵ/q})

≤ 2q2ϵ−1(1− ϕ(q−1ϵ))∆.

Since the relation above holds for all sufficiently large natural numbers n we conclude

that

Card({j ∈ {0, 1, . . . , } : ρ(yi, yi+1) ≥ ϵ/q})

≤ 2q2ϵ−1(1− ϕ(q−1ϵ))∆.

This implies that there exists a natural number n0 such that for each integer i ≥ n0q,

ρ(yi, yi+1) ≤ ϵ/q.
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When combined with (3.9), this implies that for each integer n ≥ n0,

ρ(ynq, y(n+1)q) ≤
(n+1)q−1∑

i=nq

ρ(yi, yi+1) ≤ ϵ

and

y(n+1)q ∈ T (ynq).

Since ϵ is an abitrary element of (0, 1), this completes the proof of Theorem 3.2. □
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