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EXISTENCE OF FIXED POINTS OF SET-VALUED UNIFORMLY
LOCALLY CONTRACTIVE MAPPINGS

SIMEON REICH* AND ALEXANDER J. ZASLAVSKI

ABSTRACT. In a 1961 paper by E. Rakotch it was shown that a uniformly locally
contractive mapping on a complete metric space has a fixed point. In our recent
work we have shown that for such a mapping, the fixed point problem is well
posed and that inexact iterates of such a mapping converge to its unique fixed
point, uniformly on bounded sets. In the present paper we show the existence
of fixed points for set-valued uniformly locally strict contractions. This result
is an extension of Nadler’s classical theorem. For set-valued uniformly locally
contractive mappings we establish the existence of approximate fixed points.

1. INTRODUCTION

For more than sixty years now, there has been a lot of research activity regarding
the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for
example, [2, 3,9, 10, 11, 14, 15, 16, 17, 18, 21, 24, 25, 26, 27, 31, 32| and references
cited therein. This activity stems from Banach’s classical theorem [1] concerning
the existence of a unique fixed point for a strict contraction. It also concerns the
convergence of (inexact) iterates of a nonexpansive mapping to one of its fixed
points. Since that seminal result, many developments have taken place in this area
including, in particular, studies of feasibility and common fixed points, which find
important applications in engineering, medical and the natural sciences [4, 5, 6, 7,
12, 13, 29, 30, 31, 32].

In his 1961 paper, E. Rakotch [20] showed that a uniformly locally contractive
mapping has a fixed point. This result was later improved in [22]. In our recent
paper [28], we have shown that for a uniformly locally contractive mapping, the fixed
point problem is well posed and that inexact iterates of such a mapping converge to
its unique fixed point, uniformly on bounded sets. In the present paper we establish
the existence of a fixed point for set-valued uniformly locally strict contractions.
This result is an extension of Nadler’s classical theorem [19]. In this connection,
see also [8, 23, 10, 27]. For a set-valued uniformly locally contractive mapping, we
show the existence of approximate fixed points.
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In this paper we use the following notations. Assume that (X, p) is a complete
metric space. For each point x € X and each number r > 0, set

B(z,r)={y € X: p(z,y) <r}.
For each point x € X and each nonempty set A C X, put
p(x, A) :=inf{p(z,y) : y € A}.
For each pair of nonempty sets, define
H(A, B) := max{sup{p(a,B) : a € A}, sup{p(b,A): b€ B}}.

Note that it is possible for H(A, B) to be +00. We denote by 2% and by CL(X)
the set of all subsets of X and the set of all closed subsets of X, respectively.

2. THE FIRST MAIN RESULT

Let A>0,ce[0,1) and let T: X — CL(X) \ {0} satisfy

(2.1) H(T'(z),T(y)) < cp(x,y)

for each z,y € X satisfying p(z,y) < A. Such a mapping is called a set-valued
uniformly locally strict contraction. We study the existence of fixed points of T,
that is, points x € X satisfying z € T'(z). In the case where T is a single-valued
map, the existence of such fixed points was studied in [20, 22, 28]. In the case where
(2.1) holds for each pair z,y € X, a fixed point exists by Nadler’s seminal theorem
[19, 8, 10, 27].

Fix ¢g € (¢,1). It is clear that the following auxiliary result is true.

Lemma 2.1. Assume that z,y € X, p(z,y) < A and o € T'(z). Then there there
exists a point yo € T(y) such that

p(z0,y0) < cop(z,y).

Theorem 2.2. Assume that xo € X,

(2.2) x1 € T(x0)

and that there exist points yo,...,y, € X, where q is a natural number, such that
(2.3) Yo = 0, Yg = T1

and

(2.4) P(YirYit1) <A, i=0,...,¢— 1.

Let {y;}72 41 satisfy for each integer i > 1,

(2.5) Yitq € T(yi),

(2.6) PYit1+q: Yirq) < cop(Yis Yit1)-

Then the following assertions hold.
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1. The sequence {y;}:2, is well defined,

(o] o0
> i yien) < AgY ch < Ag(l— o)t
=0 =0

there exists

Y« = lim y;,

71— 00

Yy« € T'(y«) and for each integer p > 1, we have

Ypq € TP (20)
and

P(Ypg> y+) < Aqe(1—co) ™
2. Assume that § € (0,A], p(zo,x1) < and ¢ =1. Then

p(z0,yx) < 6(1—co) ™t

Proof. By (2.2)—(2.4), we have

(2.7) yq = x1 € T'(x0) = T(y0)
and

(2.8) p(yo, y1) < A.
Lemma 2.1 and (2.7) imply that there exists a point
(2.9) Yo+1 € T'(y1)

such that

(2.10) P(Yq Yg+1) < cop(yo, y1)-

Assume that p > g+ 1 is an integer and that y; € X, i = ¢+ 1,...,p, have been
defined so that for each i € {0,...,p — q},

(2.11) Yitq € T(yi)

and for each i € {0,...,p — ¢ — 1}, we have

(2.12) P(Yitq Yitgr1) < cop(Yi, Yit1)-

(In view (2.7), (2.9) and (2.10), our assumption does hold for p = ¢ + 1.) Next, we
define yp41 € X as follows. In view of (2.11),

(2.13) Yp € T(Yp—q)-
Lemma 2.1 and relations (2.4), (2.12) and (2.13) imply that there exists a point
Yp+1 € T(Yp—g+1)
such that
P(Yp: Yp+1) < cop(Yp—q> Yp—q+1)-
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Thus the assumption made regarding p also holds for p+ 1. Therefore the sequence
{yi}32, is well defined by induction, and (2.11) and (2.12) hold for all integers i > 0.
By (2.12), for each integer p > 1,

q—1 q—1
(2.14) €o Z P(Ypg+is Ypg+it1) = p(y(p+1)q+i7 y(p+1)q+i+1)'
=0 =0

In view of (2.4) and (2.14), we have

Zp (i, yis1) < quco < Ag(l—c),
=0 =0

the sequence {y;}5°, converges and there exists

(2.15) Y« = lim y;.

j—o0
It follows from (2.11) and (2.15) that
Y« = lim yq,
1— 00

Y(i+1)q S T(yiq), 7= 0, 1, ..
and
Y« € T(ys).
Let p > 1 be an integer. By (2.12),

p(ypqa y*) = n}gnoo p(ypw ym)

o
<> i vin)

1=pq
(p+1 q-

Z p(Yi> Yitr1) Z <o)

1=pq
< cpAg(l — o)™

This completes the proof of Assertion 1.
Now we prove Assertion 2. We have ¢ = 1 by assumption. By Assertion 1, we
have

p(w0,y:) = lim_ p(yo, yn)

o0
< Z P(Yis Yit1)
=0

< plao, 1) Y ch
=0
< (5(1 — Co)fl.

Thus Assertion 2 is proved. This completes the proof of Theorem 2.2. O
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3. THE SECOND MAIN RESULT

Assume that ¢ : [0,00) — [0,1) is a decreasing function such that

(3.1) ¢(t) < 1foreacht >0
and that T : X — 2%\ {0} satisfies
(3-2) H(T(x),T(y) < ¢(p(z,y))p(z,y)

for each z,y € X satisfying p(z,y) < A. Such a mapping is called a set-valued
uniformly locally contractive mapping. It is not difficult to see that the following
auxiliary result is true.

Lemma 3.1. Assume that v,y € X, p(z,y) < A and 1 € T(x). Then there ezists
a point y1 € T(y) such that

plai,y1) < 2711+ o(p(e,y)p(z, y))-
Theorem 3.2. Assume that g € X,

x1 € T(xo)
and that there exist points yo,...,yqs € X, where q is a natural number, such that
(3.3) Yo = %o, Ygqg = T1
and
(3.4) p(Yisyit1) <A, i=0,...,q— 1.

Then there exists a sequence {z;};°, C X such that for each integer i > 0,

Tiyr1 € T(JZZ)

and
lim p(@it1,2;) = 0.
11— 00
Proof. By (3.3) and (3.4), we have
(3.5) Yg = 21 € T'(z0) = T(%0)
and
(3.6) p(yo, y1) < A.
Lemma 3.2, and relations (3.5) and (3.6) imply that there exists a point
(3.7) Yg+1 € T(1)
such that
(38) (g Yg+1) < 27 (1+ d(p(y0, y1))) (o, y1).

Assume now that p > ¢+1 is an integer and that the points y; € X, i =q+1,...,p,
have been defined so that for each i € {0,...,p — ¢}, we have

(3.9) Yirg € T(yi)
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and for each i € {0,...,p — g — 1}, we have

(3.10) PWita> Yirar1) < 2711+ d(p(Wi, yi+1))) P (Wi Yit1)-

(In view (3.5), (3.7) and (3.8), our assumption does hold for p = ¢ + 1.) Next, we
define yp+1 € X. In view of (3.9), we have

(3.11) Up € T(Yp—q)-

Lemma 3.1, and relations (3.4) and (3.9)-(3.11) imply that there exists a point
(3.12) Yp+1 € T(Yp—g+1)

such that

P(Yps Yp+1) < 271(1 + ¢(P(Yp—q> Yp—q+1))) P(Yp—g> Yp—q+1)-

Thus the assumption made for p also holds for p+1. Therefore the sequence {y;}°,
is well defined by induction, and (3.9) and (3.10) hold for all integers ¢ > 0.

Now let € € (0,1) be given. It follows from (3.4) and (3.10) that for each integer
n>q+2,

q
Ag> Y p(Yio1,:)

=1
q (n+1)q
> pyiny) — Y plyio1,4i)
i=1 i=ng+1
n—1 (j+1)g—-1 (5+2)g—1
=) ( picvu) = Y. pWi-1,i))
Jj=0  i=jq i=(j+1)q
n—1(j+1)g—1
2 2711 — ¢(p(yi, yi41)))p(i, vit1)

> (2¢) 7' (1 — ¢(qg "€e))eCard({j € {0,...,ng — 1} : p(yi,yis1) > €/q})
and
Card({j € {0,...,nq — 1} : p(yi,yi+1) > €/q})
<2¢%¢ (1 —¢(g o)A,

Since the relation above holds for all sufficiently large natural numbers n we conclude
that

Card({j € {0,1,...,}: p(yi,vit1) > €/q})
<2¢° (1 - olg 'e))A.

This implies that there exists a natural number ng such that for each integer ¢ > ngq,

p(Yi,yis1) < €/q.
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When combined with (3.9), this implies that for each integer n > ny,

and

(n+1)g—1
P(Ungs Yninyg) < D PWiryig1) <€

i=nq

Y(n+1)g S T(ynq)

Since € is an abitrary element of (0, 1), this completes the proof of Theorem 3.2. O
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