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where f is an extended real-valued quasiconvex function on Rn, and A is a convex
subset of Rn. We study dual problems in terms of three types of quasiconjugate
functions, H-quasiconjugate, O-quasiconjugate, and R-quasiconjugate. We intro-
duce three dual problems, and show strong duality theorems. Additionally, we
compare our results with previous ones.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries and previous results. In Section 3, we show duality
theorems for quasiconvex programming in terms of quasiconjugate functions. In
Section 4, we discuss about our results.

2. Preliminaries

Let Rn denote the n-dimensional Euclidean space. The inner product of two
vectors v and x in Rn is denoted by ⟨v, x⟩. The indicator function δA is defined by

δA(x) =

{
0 x ∈ A,
∞ otherwise.

Let f be a function from Rn to R = [−∞,∞]. A function f is said to be convex if
for each x, y ∈ Rn and α ∈ [0, 1],

f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y).

The epigraph of f is defined as

epif = {(x, α) ∈ Rn × R : f(x) ≤ α}.

A function f is convex if and only if epif is convex. The Fenchel conjugate [3, 4] of
f , f∗ : Rn → R, is defined as

f∗(v) = sup
x∈Rn

{⟨v, x⟩ − f(x)}.

A function f is said to be quasiconvex if for each x, y ∈ Rn and α ∈ [0, 1],

f((1− α)x+ αy) ≤ max{f(x), f(y)}.

Define the level sets of f with respect to a binary relation ⋄ on R as

lev(f, ⋄, α) = {x ∈ Rn : f(x) ⋄ α}

for each α ∈ R. It is well known that f is quasiconvex if and only if lev(f,≤, α) is
convex for all α ∈ R.

We define the following families of open half spaces:

H = {lev(v,<, α) : v ∈ Rn, α ∈ R},
H+ = {lev(v,<, α) : v ∈ Rn, α > 0},
H0 = {lev(v,<, 0) : v ∈ Rn},
H− = {lev(v,<, α) : v ∈ Rn, α < 0}.

A subset A of Rn is said to be evenly (H-evenly, O-evenly, and R-evenly) convex
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if it is the intersection of a subfamily of H (H+, H0, H−, respectively). We define
the whole space and the empty set is evenly (H-evenly, O-evenly, and R-evenly,
respectively) convex by convention. A function f is said to be evenly (H-evenly,
O-evenly, and R-evenly) quasiconvex if lev(f,≤, α) is evenly (H-evenly, O-evenly,
and R-evenly, respectively) convex for all α ∈ R.

We show the following two propositions without proof.

Proposition 2.1. Let A be a subset of Rn. Then, the following statements hold:

(i) if A is evenly convex, then A is convex,
(ii) if A is open or closed convex, then A is evenly convex,
(iii) if A is non-empty, then A is H-evenly convex if and only if A is evenly

convex and contains 0,
(iv) if A is O-evenly convex, then for each x ∈ A and t > 0, tx ∈ A,
(v) if A is R-evenly convex, then for each x ∈ A and t ≥ 1, tx ∈ A.

Proposition 2.2. Let f be a function from Rn to R. Then, the following statements
hold:

(i) if f is evenly quasiconvex, then f is quasiconvex,
(ii) if f is lower semicontinuous (lsc) or upper semicontinuous (usc) quasicon-

vex, then f is evenly quasiconvex,
(iii) f is H-evenly quasiconvex if and only if f is evenly quasiconvex and 0 ∈ Rn

is a global minimizer of f in Rn,
(iv) if f is O-evenly quasiconvex or R-evenly quasiconvex, then 0 ∈ Rn is a global

maximizer of f in Rn,
(v) if f is O-evenly quasiconvex, then for each x ∈ Rn and t > 0, f(x) = f(tx),
(vi) if f is R-evenly quasiconvex, then for each x ∈ Rn and t ≥ 1, f(x) ≥ f(tx).

Proposition 2.1 and Proposition 2.2 are elementary but important. Various re-
searchers investigate evenly convex sets and evenly quasiconvex functions precisely,
see [1, 2, 4, 9, 17, 18, 20, 21, 23] and references therein.

In quasiconvex programming, various types of quasiconjugate functions have been
investigated. In [6], Mart́ınez-Legaz introduces Q-conjugate of f as follows:

fQ(v, t) = − inf{f(x) : ⟨v, x⟩ ≥ t}.

In [22], Thach introduces H-quasiconjugate of f as follows:

fH(v) =

{
− inf{f(x) : ⟨v, x⟩ ≥ 1}, v ̸= 0,
− sup{f(x) : x ∈ Rn}, v = 0.

In [11], Passy and Prisman introduce O-quasiconjugate of f as follows:

fO(v) = − inf{f(x) : ⟨v, x⟩ ≥ 0}.

In [22], Thach introduces R-quasiconjugate as follows:

fR(v) = − inf{f(x) : ⟨v, x⟩ ≥ −1}.

Although Q-conjugate and O-quasiconjugate are defined by other names, we denote
fQ and fO for the sake of distinction.
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In this paper, we consider the following quasiconvex programming problem (P ):

(P )

{
minimize f(x),
subject to x ∈ A,

where f is an extended real-valued quasiconvex function on Rn, and A is a convex
subset of Rn. In [19], we define the following dual problem (D) in terms of Q-
conjugate for the primal problem (P ):

(D)

{
minimize fQ(v, t),
subject to (v, t) ∈ −epiδ∗A.

We denote

val(P ) = inf
x∈A

f(x), and val(D) = inf
(v,t)∈−epiδ∗A

fQ(v, t).

In [19], we show the following strong duality theorem.

Theorem 2.3 ([19]). Let f be an usc quasiconvex function from Rn to R, and A a
nonempty convex subset of Rn. Then

val(P ) = −val(D).

Additionally, we introduce the following three dual problems:

(D)1

{
minimize fQ(v, 1),
subject to (v, 1) ∈ −epiδ∗A,

(D)0

{
minimize fQ(v, 0),
subject to (v, 0) ∈ −epiδ∗A,

(D)−1

{
minimize fQ(v,−1),
subject to (v,−1) ∈ −epiδ∗A.

We show the following corollary.

Corollary 2.4 ([19]). Let f be an usc quasiconvex function from Rn to R, and A
a nonempty convex subset of Rn. Then

val(P ) = −min{val(D)1, val(D)0, val(D)−1}.

3. Quasiconjugate duality theorems

In this section, we study dual problems in terms of three types of quasiconjugate
functions, By Corollary 2.4, val(P ) is equal to at least one of val(D)1, val(D)0, and
val(D)−1. We show sufficient conditions for strong duality theorems between the
primal problem and dual problems.

At first, we show a strong duality theorem for (D)1 under H-evenly quasiconvex-
ity.
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Theorem 3.1. Let f be an usc H-evenly quasiconvex function from Rn to R, A a
convex subset of Rn, and x0 ∈ A. Assume that infx∈A f(x) > infx∈Rn f(x). Then

val(P ) = −val(D)1.

Proof. By Corollary 2.4,

val(P ) = −min{val(D)1, val(D)0, val(D)−1} ≥ −val(D)1.

Assume that val(P ) > −val(D)1. Since val(P ) = infx∈A f(x) > infx∈Rn f(x), there
exists α ∈ R such that val(P ) > α > −val(D)1 and val(P ) > α > infx∈Rn f(x).
This shows that lev(f,<, α) is open convex and 0 ∈ lev(f,<, α) since f is usc H-
evenly quasiconvex. By the separation theorem between A and lev(f,<, α), there
exists (v0, t0) ∈ Rn+1 such that for each x ∈ A and z ∈ lev(f,<, α),

⟨v0, x⟩ ≥ t0 > ⟨v0, z⟩ .
Since 0 ∈ lev(f,<, α), t0 > 0. Hence,⟨

v0
t0
, x

⟩
≥ 1 >

⟨
v0
t0
, z

⟩
Let v∗ = v0

t0
, then (v∗, 1) ∈ −epiδ∗A and

−fQ(v∗, 1) = inf{f(y) : ⟨v∗, z⟩ ≥ 1} ≥ α > −val(D)1 ≥ −fQ(v∗, 1).

This is a contradiction. This completes the proof. □
Next, we show a strong duality theorem for (D)0 under O-evenly quasiconvexity.

Theorem 3.2. Let f be an usc O-evenly quasiconvex function from Rn to R, A a
convex subset of Rn, and x0 ∈ A. Then

val(P ) = −val(D)0.

Proof. By Corollary 2.4,

val(P ) = −min{val(D)1, val(D)0, val(D)−1} ≥ −val(D)0.

Assume that val(P ) > −val(D)0. Then, there exists α ∈ R such that val(P ) > α >
−val(D)0. Since (0, 0) ∈ −epiδ∗A,

α > −val(D)0 ≥ −fQ(0, 0) = inf
x∈Rn

f(x).

This shows that lev(f,<, α) is nonempty. Furthermore, lev(f,<, α) is open convex
since f is usc O-evenly convex. By the separation theorem between A and lev(f,<
, α), there exists (v0, t0) ∈ Rn+1 such that for each x ∈ A and z ∈ lev(f,<, α),

⟨v0, x⟩ ≥ t0 > ⟨v0, z⟩
For x0 ∈ A, assume that ⟨v0, x0⟩ < 0. This shows that for each z ∈ lev(f,<, α),

0 > ⟨v0, x0⟩ ≥ t0 > ⟨v0, z⟩ .

Let t = ⟨v0,x0⟩
2⟨v0,z⟩ , then t > 0 and tz ∈ lev(f,<, α) by Proposition 2.1 (iv). However,

⟨v0, tz⟩ =
⟨v0, x0⟩

2
> ⟨v0, x0⟩ .
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This is a contradiction. Hence for each x ∈ A, ⟨v0, x⟩ ≥ 0.
Next, assume that there exists z0 ∈ lev(f,<, α) such that ⟨v0, z0⟩ ≥ 0. If

⟨v0, z0⟩ > 0, then t0 > 0. Since f is O-evenly quasiconvex, tz0 ∈ lev(f,<, α) for
each t > 0. However, for sufficiently large t, ⟨v0, tz0⟩ > t0. This is a contradiction.
If ⟨v0, z0⟩ = 0, there exists z̄ ∈ lev(f,<, α) such that ⟨v0, z̄⟩ > 0 since lev(f,<, α)
is open. By the similar way, we can prove that ⟨v0, tz̄⟩ > t0 for sufficiently large t.
Hence, for each z ∈ lev(f,<, α), ⟨v0, z⟩ < 0.

This shows that (v0, 0) ∈ −epiδ∗A and

−fQ(v0, 0) = inf{f(y) : ⟨v0, z⟩ ≥ 0} ≥ α > −val(D)0 ≥ −fQ(v0, 0).

This is a contradiction. Hence val(P ) = val(D)0. □

Finally, we show a strong duality theorem for R-evenly quasiconvex objective
functions.

Theorem 3.3. Let f be an usc R-evenly quasiconvex function from Rn to R, A a
convex subset of Rn, and x0 ∈ A. Then

val(P ) = −min{val(D)0, val(D)−1}.

Proof. By Corollary 2.4,

val(P ) = −min{val(D)1, val(D)0, val(D)−1} ≥ −min{val(D)0, val(D)−1}.

Assume that val(P ) > −min{val(D)0, val(D)−1}. Then, there exists α ∈ R such
that val(P ) > α > −min{val(D)0, val(D)−1}. Since (0, 0) ∈ −epiδ∗A,

α > −min{val(D)0, val(D)−1} ≥ −fQ(0, 0) = inf
x∈Rn

f(x).

This shows that lev(f,<, α) is nonempty. Furthermore, lev(f,<, α) is open convex
since f is usc R-evenly convex. By the separation theorem between A and lev(f,<
, α), there exists (v0, t0) ∈ Rn+1 such that for each x ∈ A and z ∈ lev(f,<, α),

⟨v0, x⟩ ≥ t0 > ⟨v0, z⟩

If t0 = 0, we can check that val(P ) = −val(D)0. Additionally, if t0 < 0, then
val(P ) = −val(D)−1.

Assume that t0 > 0 and there exists z0 ∈ L(f,<, α) such that ⟨v0, z0⟩ ≥ 0. If
⟨v0, z0⟩ = 0, then there exists z̄ ∈ L(f,<, α) such that ⟨v0, z̄⟩ > 0 since f is usc.
Without loss of generality, we can assume that ⟨v0, z0⟩ > 0. Since f is R-evenly
quasiconvex, tz0 ∈ L(f,<, α) for each t ≥ 1 by Proposition 2.1 (v). However, for
sufficiently large t, ⟨tv0, z0⟩ > t0. This is a contradiction. Hence, for each x ∈ A
and z ∈ lev(f,<, α),

⟨v0, x⟩ ≥ t0 > 0 > ⟨v0, z⟩ .
This shows that (v0, 0) ∈ −epiδ∗A and

−fQ(v0, 0) = inf{f(y) : ⟨v0, z⟩ ≥ 0} ≥ α > −val(D)0 ≥ −fQ(v0, 0).

This is a contradiction. This completes the proof. □
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4. Discussion

In this section, we discuss about our results. In particular, we compare our results
with duality theorems in [22, 23].

4.1. H-quasiconjugate duality. In [22], Thach studies duality theorems in terms
of H-quasiconjugate functions. We consider the following maximization problem:{

maximize f(x),
subject to x ∈ A,

where f is an usc quasiconvex function and A is a compact convex subset of Rn.
Thach introduces the following dual problem:{

minimize fH(v),
subject to v ∈ Rn \ intA0,

where A0 = {v ∈ Rn : ∀x ∈ A, ⟨v, x⟩ ≤ 1}, and intA0 is the interior of A0. Thach
investigates a maximization problem of a quasiconvex function and shows duality
theorems in terms of H-quasiconjugate. On the other hand, in this paper, we study
a minimization problem of a quasiconvex function. In Theorem 3.1, we show strong
duality theorem in terms of H-quasiconjugate.

4.2. R-quasiconjugate duality. In [23], Thach introduces the following dual prob-
lem:

(D)R

{
minimize fR(v),
subject to v ∈ −A0.

Clearly, (D)R = (D)−1. Thach shows the following result, see Theorem 3.2 in [23].

Theorem 4.1 ([23]). val(P ) = −val(D)R and v∗ ∈ Rn is a global minimizer of
(D)R if and only if for each x ∈ A and y ∈ lev(f,<, val(P )),

(4.1) ⟨v∗, x⟩ ≥ −1 > ⟨v∗, y⟩ .

Thach shows a characterization of a global minimizer of (D)R. However, even if
f is R-evenly quasiconvex, the separation inequality (4.1) does not necessarily hold
by Theorem 3.3. We show the following example.

Example 4.2. Let f be the following function on R2:

f(x) =


0, x ∈ S = {(y1, y2) : y1 > 0, y1y2 > 1},
1, x /∈ S, x1 + x2 >

1
2 ,

2, otherwise.

We can check easily that f is usc R-evenly quasiconvex.
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Consider a minimization problem of f on A = {(x1, x2) : x2 ≤ 0}. Then val(P ) =
1, ((0,−1), 0) ∈ −epiδ∗A, and

fO((0,−1)) = −1,

that is, val(P ) = −val(D)0. However, val(P ) ̸= −val(D)−1. Actually, let v =
(v1, v2) ∈ Rn such that ((v1, v2),−1) ∈ −epiδ∗A, then v1 = 0 and v2 ≤ 0. This shows
that

fR(v) = − inf{f(x) : ⟨v, x⟩ ≥ −1} = 0.

Hence,

val(P ) = 1 > 0 = −val(D)−1.

In Theorem 3.1 and Theorem 3.2, we show strong duality theorems for H-evenly
quasiconvex and O-evenly quasiconvex functions. On the other hand, in Theo-
rem 3.3, we need not only R-quasiconjugate but also O-quasiconjugate for R-evenly
quasiconvex functions. In the following theorem, we show a sufficient condition for
val(P ) = −val(D)−1.

Theorem 4.3. Let f be an usc quasiconvex function from Rn to R, A a convex
subset of Rn, and x0 ∈ A. Assume that 0 ∈ intA and infx∈A f(x) > infx∈Rn f(x).
Then

val(P ) = −val(D)−1.

Proof. Let α = val(P ). By the assumption, lev(f,<, α) is nonempty. By the
separation theorem for A and lev(f,<, α), there exists (v0, t0) ∈ Rn+1 such that for
each x ∈ A and z ∈ lev(f,<, α),

⟨v0, x⟩ ≥ t0 > ⟨v0, z⟩ .

Since 0 ∈ intA, t0 < 0. Let v̄ = v0
−t0

, then for each x ∈ A and z ∈ lev(f,<, α),

⟨v̄, x⟩ ≥ −1 > ⟨v̄, z⟩ .

This shows that fQ(v̄,−1) ≤ −α and (v̄,−1) ∈ −epiδ∗A. By Theorem 2.3,

val(P ) = −val(D) ≥ −val(D)−1 ≥ −fQ(v̄,−1) ≥ α.

This completes the proof. □

In Theorem 4.3, we do not assume that f is R-evenly quasiconvex. For R-
evenly quasiconvex objective functions, we may need additional assumptions for
val(P ) = −val(D)−1.

4.3. Conjugate functions in convex and quasiconvex programming. We
show the following table of conjugate functions in convex and quasiconvex pro-
gramming:
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convexity of function conjugate domain of conjugate

convex f∗ Rn

evenly quasiconvex fQ Rn+1

H-evenly quasiconvex fH = fQ(·, 1) Rn

O-evenly quasiconvex fO = fQ(·, 0) Rn

R-evenly quasiconvex fR = fQ(·,−1) Rn

In convex programming, Fenchel conjugate plays an essential role. In quasiconvex
programming, we need extra parameters to obtain duality results, for example t
in fQ(v, t). In this paper, we show duality results for quasiconvex programming
without extra parameters by using fH , fO, and fR. Similar to Fenchel conjugate,
these three quasiconjugate functions are defined on Rn. Additionally, these quasi-
conjugates are closely related to fQ.
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