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APPROXIMATING COMMON FIXED POINTS USING
MARTINEZ-YANES AND XU PROJECTION METHOD AND
MEAN-VALUED ITERATION IN HILBERT SPACES

ATSUMASA KONDO

Dedicated to the late Professor Kazimierz Goebel

ABSTRACT. In this paper, we prove a Nakajo and Takahashi type strong con-
vergence theorem of for finding a common fixed point of nonlinear mappings.
Incorporating the Martinez-Yanes and Xu’s projection method, a result proved
by Hojo, Kondo, and Takahashi in 2018 is further developed, exploiting a mean-
valued iteration. The mappings are of a general type that includes nonexpansive
mappings and other classes of well-known mappings. The shrinking projection
method initiated in Takahashi, Takeuchi, and Kubota’s paper is also studied.

1. INTRODUCTION

In this paper, we denote by H a real Hilbert space with an inner product (-, -).
The norm is defined by ||z| = \/(z, z), where x € H. A set of all fixed points of a
mapping 17" : C — H is represented as follows:

F(T)={zeC:Tx=ux},

where C' is a nonempty subset of H. For a broader discussion on the fixed point
theory, see Goebel and Kirk [5] and Goebel [6]. A nonezpansive mapping T : C — H
is characterized by the condition

(1.1) [Tz — Ty|| < [|lz —y| forall z,y € C.

For two commutative nonexpansive mappings S,T : C' — C', Atsushiba and Taka-
hashi [3] introduced the following iteration:

n—1n—1
(1.2) Tpt1 = anZn + (1 —ay) % Z Z Sk,

k=0 =0
for all n € N, where a,, € [0, 1] is a coefficient of a convex combination and satisfies
certain conditions. They proved a weak convergence theorem for finding a common
fixed point of S and T in the setting of a Banach space. Such a mean-valued
iteration originates from Baillon [4] and Shimizu and Takahashi [29]. For more
recent studies, see [1, 7, 9, 10, 15, 18, 20, 21, 23, 24].
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In 2006, basing on the methods of Ishikawa [12] and Nakajo and Takahashi [28],
Martinez-Yanes and Xu [26] proved the following strong convergence theorem:

Theorem 1.1 ([26]). Let C' be a nonempty, closed, and convex subset of H and let
T :C — C be a nonexpansive mapping such that F (T) # 0. Let {\,} and {a,} be
sequences of real numbers in the interval [0, 1] such that A, = 1 and 0 < a, <a <1
for some @ € [0,1). Define a sequence {x,} in C as follows:

(1.3) x1 € C is given,
Zn = AnZn+ (1= Ap) Ty,
Yn = QApTp + (1 - an) Tzna

Cp = {heC:|yn—hl* < llzn — hl?

— (1= an) (lleall® = lzal* = 2z = 20, B))},
Qn = {heC:{x—xz,, v,—h)>0}, and

Tnt1 = FPo,ng.®

for all n € N. Then, {x,} converges strongly to a point = of F (T), where T =
PF(T)[E

In Theorem 1.1, P¢,nq, and Pp(r) are the metric projections from H onto C,,NQy,
and F'(T), respectively. Setting A\, = 1 for all n € N, we have z, = z, and then,
Nakajo and Takahashi’s strong convergence theorem is obtained.

General classes of mappings have been exploited to prove fixed point theorems
and convergence theorems for finding fixed points. Among others, a mapping
T :C — C is called a normally 2-generalized hybrid mapping [22] if there exist
oo, By, a1, 81, @2, B9 € R such that

(1.4) az | 1%z = Ty||* + an [ T2 = Ty|* + oo o — Ty
48, | T2 — y||” + By | T — y|* + By |l —ylI* < 0

for all z,y € C, where the parameters satisfy Zi:o (an+B,) > 0and az + a1 +
ag > 0. If oy =1, By = —1, and the other parameters are 0, then the condition
(1.4) coincides with that of nonexpansive mappings (1.1). Other than nonexpansive
mappings, the class of normally 2-generalized hybrid mappings contains generalized
hybrid mappings; see Kocourek et al. [14]. Nonspreading mappings [16], hybrid
mappings [32], and \-hybrid mappings [2] are also included in the class of normally
2-generalized hybrid mappings because these classes of mappings are contained in
the class of generalized hybrid mappings. Furthermore, normally generalized hybrid
mappings [35] and 2-generalized hybrid mappings [27] are contained in the class
of normally 2-generalized hybrid mappings; see Takahashi and Kondo [22]. For
examples of these types of nonlinear mappings, see, e.g., [10, 11, 15, 17, 20].

In 2018, Hojo et al. [8] proved the following strong convergence theorem for com-
mutative normally 2-generalized hybrid mappings using the mean-valued iteration
(1.2):
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Theorem 1.2 ([8]). Let C be a nonempty, closed, and convexr subset of H. Let
S and T be normally 2-generalized hybrid mappings from C' into itself that satisfy
ST =TS and F (S)NF(T) # 0. Let {a,} be a sequence of real numbers such that
0<a, <a<1 foralln € N. Define a sequence {x,} in C as follows:

(1.5) x1 € C is given,
1 n—1ln—1
Yn = anTy + (1 — ay) 3 kzo lz; SkTlg,,,

Cpn=A{h € C:|lyn = hll < [lzn — hll},
Qn={heC:{(x—x, x,—h) >0}, and
Tn41 = Pcann$

for all n € N. Then, {x,} converges strongly to a point T of F (S) N F (T), where
T = Pp(s)nFr(T)T-

They also proved various types of weak and strong convergence theorems, in-
cluding a strong convergence theorem based on the shrinking projection method by
Takahashi et al. [33].

In this paper, we develop the theorems in Hojo et al. [8], incorporating Martinez-
Yanes and Xu’s method (1.3). A general type of iteration than (1.5) is employed for
finding a common fixed point of commutative nonlinear mappings. The mappings
are of a general type that includes normally 2-generalized hybrid mappings and are
not assumed to be continuous. In Section 2, we introduce background knowledge. In
Section 3, we prove a main theorem that generalizes Theorem 1.2. As a recent paper
Kondo [20] also used Martinez-Yanes and Xu'’s projection method with a mean-
valued iteration, a comparative consideration is also provided in this section. In
Section 4, the shrinking projection method that is initiated in Takahashi, Takeuchi,
and Kubota’s paper [33] is addressed.

2. PRELIMINARIES

In this section, we present basic information and results. For more details, see
Takahashi [30, 31]. Let z,y, z be elements of a real Hilbert space H, let d € R, and
let C' be a nonempty, closed, and convex subset of H. It can be ascertained that a
set

(2.1) D= {heC: ly — Bl < ||z — A% + (2, h>+d}

is closed and convex; see Lemma 1.3 in Martinez-Yanes and Xu [26]. Following
convention, we use Po to denote a metric projection from H onto C; that is,
|t — Pox|| < |Jz — hl| for any x € H. In other words, the metric projection Pc
maps x € H to the element Pox of C' that is closest to x. Metric projections are
nonexpansive. The closest point T of C' from z is characterized as follows:

Lemma 2.1. Let C be a nonempty and convex subset of H. Let x € H and T € C.
Then, the following three conditions are equivalent:
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(a) ||z — || < ||z — h|| for all h € C,
(b) (x =7, T—h) >0 for all h € C,
(©) llz —Z|* + |z — h||* < ||z — h||* for all h € C.

Weak and strong convergence of a sequence {x,} in H to a point z (€ H) are
denoted by z, — z and z, — =z, respectively. Strong convergence x, — x is
characterized by the following condition: for any subsequence {x,,} of {z,}, there
exists a subsequence {2y, } of {xy,} such that z,,;, — . A closed and convex set C
in H is weakly closed; that is, {z,,} C C and z,, = x imply = € C.

A mapping T : C — H with F (T) # 0 is called quasi-nonexpansive if

[Tz —ql| < ||z — q|

forall x € C and q € F(T), where C' is a nonempty subset of H. Itoh and Takahashi
[13] demonstrated that the set of fixed points of a quasi-nonexpansive mapping is
closed and convex. Kondo and Takahashi [22] showed that a normally 2-generalized
hybrid mapping (1.4) with a fixed point is quasi-nonexpansive.

Lemma 2.2 ([22]). Let T : C — C be a normally 2-generalized hybrid mapping with
F(T) # 0, where C is a nonempty subset of H. Then, T is quasi-nonexpansive.

Hojo et al. [8] proved the following:

Lemma 2.3 ([8]). Let S,T : C — C be normally 2-generalized hybrid mappings
with ST =TS and F (S)NF(T) # 0, where C is a nonempty, closed, and convex
subset of H. For a bounded sequence {z,} in C, define

n—1n—1

(2.2) Zy=—3"3 §Mls, (e 0)

n2

k=0 =0
for each n € N. Suppose that Z,; — v € H, where {an} is a subsequence of {Z,}.
Then, v e F(S)NF(T).

In the next section, we use commutative quasi-nonexpansive mappings S and T'
that satisfy

(2.3) Zy, ~v=v e F(S)NF(T),

where Z, is defined by (2.2) and the assumptions in Lemma 2.3 are maintained.
Letting S = I in Lemma 2.3, we have

(2.4) Zn, = v=v€F(T),

where Z,, = %Z?:_ol T'z, (€ C) and I is the identity mapping. In Kondo [18, 20,
21, 23], the condition (2.4) was employed.

From Lemmas 2.2 and 2.3, two commutative normally 2-generalized hybrid map-
pings with a common fixed point are quasi-nonexpansive and satisfy the condition
(2.3). The mappings addressed in this paper are of this type. As explained in
Introduction, nonexpansive mappings, generalized hybrid mappings, normally gen-
eralized hybrid mappings, and 2-generalized hybrid mappings are special cases of
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normally 2-generalized hybrid mappings. Therefore, these classes of nonlinear map-
pings are targeted in this paper.

In the main theorems of this paper, we assume that commutative quasi-nonexpansive
mappings that satisfy (2.3) have a common fixed point. The next theorem presents
a set of sufficient conditions for that assumption to be fulfilled:

Theorem 2.4 ([7]; see also [9]). Let C' be a nonempty, closed, and convex subset of
H and let S,T : C — C be normally 2-generalized hybrid mappings such that ST =
TS. Assume that there exists an element z € C' such that {S*T'z : k,1 € NU {0}}
is bounded. Then, F'(S)NF (T) is nonempty.

Note that if C' is bounded, then so is {S*T'x : k,1 € NU {0}} for all z € C.

3. NAKAJO AND TAKAHASHI’S METHOD

In this section, we prove a strong convergence theorem for finding a common
fixed point of commutative quasi-nonexpansive mappings that jointly satisfy the
condition (2.3). We use Martinez-Yanes and Xu’s projection method, which is
based on Nakajo-Takahashi’s projection method. The fundamentals of the proof
were developed by many researchers; see, e.g., [1, 8, 10, 18, 19, 34]. The following
lemma is useful to prove the main theorem.

Lemma 3.1. Let S,T : C — C be quasi-nonexpansive mappings such that F (S) N
F(T) # 0, where C is a nonempty subset of a real Hilbert space H. Then, the
following holds:

n—1n—1

% SOS st

k=0 =0
forallxz € C and g € F(S)NF (T), where n € N.

<llz—ql

Proof. Letx € C,q € F(S)NF (T),and n € N. As S and T are quasi-nonexpansive,
it follows that || S*T'z — q|| < ||z — ¢|| for all k,I € NU{0}. Using this, we obtain

n—1n—1 1 n—1n—
krpl _ kl 2
STl = ZZ T's
k=0 =0
1 . krpl
=3 Z (ST@“—‘J)
1n 1
< LS8 forten |
n’ =0 1=0
1 —1n-1
<SS el
k=0 1=0
= |l —qll-

This ends the proof. 0
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Setting S = I in Lemma 3.1, we have
1 n—1
l
52 Te—q
1=0

for all x € C' and g € F (T), where I is the identity mapping defined on C'.

(3.1) < [lz — 4l

Theorem 3.2. Let C' be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S and T be quasi-nonerpansive mappings from C into itself that
satisfy ST =TS, F (S)NF (T) # 0, and the condition (2.3). Let {\n}, {1}, {vn},
{¢,}, {nn}, and {6,} be sequences of real numbers in the interval [0,1] such that
A+ iy +Vn +C + 0, + 0, =1 foralln € N and N\, — 1. Let {an} be a sequence
of real numbers such that

(3.2) 0<a,<a<l

for alln € N, where a € [0,1). Define a sequence {x,,} in C as follows:

1 € C is given,
Zn = AnZn+ p,Sn +vpTay,
1 n—1 1 n—1 1 n—1n—1
+CnEZSkxn+nnﬁ ZTlmn—i—Hnﬁ ZSlexn,
k=0 1=0 k=0 =0
1 n—1n—1
Yo = anwnt (1= an) — SN sk,
k=0 =0

Co = {heCxyn—hl* < llzn — b
— (1= an) (lal® = lzal> = 2 (@0 = 20, W)},
Qn = {heC:(x—x,, ©,—h) >0}, and
Tny1 = Pe,n.x

for all n € N. Then, {x,} converges strongly to a point T of F'(S)NF (T), where
T = Pp(s)nr(T)7-

Proof. Let us assume that z, € C is given for a moment. As S and T are quasi-
nonexpansive mappings, it follows from (3.1) and Lemma 3.1 that

1 n—1 1 n—1
(3.3) H" > Sk, —q| < lzn —qll, - > Tz, —q|| < |lzn —qll, and
k=0 =0
1 n—1n—1
3> SM T — g < [l —dl
k=0 =0

foralln € Nand g € F(S)N F(T). We show that

(3-4) Izn = qll < llzn — 4l
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foralln € Nand g € F/(S)N F(T). Indeed, as S and T are quasi-nonexpansive,

n—1
llzn — qll = || Az + p, STn + v Ty + (,,— ZS Tp + Ny — ZTl$n
k: 0 lO
n—1n-1
ZSlexn—q
k 0 1=0

1
A (0 — @) + p, (S0, — q) + v (T, — ¢ +Cn<n25kxn—)
1n71 n—1n—1
I krpl
n<ﬁlngxn—q>+9n< ZZZSTSL‘n—q>|

k=0 1=0
1n—1
k
~> Stan—q
k=0

< Anllen =gl + pn 1520 — gl + va [[T2n — gl + G,

1n—1 n—1n—1
ST+ 0] 25 303 ST g
=0 k=0 =0

< A llwn = qll + p |20 — qll + v |20 — qll + G ll2n — gll + 1 (|20 — 4]
+ 0 |l — q|
= |lzn —qll,

which indicates that (3.4) holds true.
Define

n—1n—1

Zo= LYY s,

k=0 =0
As C'is convex, {Z,} is in C. Using this notation, we can write

Yn = AnTp + (1 - an) Zn € C.
From Lemma 3.1, we have
(3.5) 1Zn = qll < [lzn — 4l

for all n € Nand g € F(S)NF (T).

We verify that the sequence {x,} is properly defined. The set @, is closed and
convex in C for all n € N. Also, (), is closed and convex in C for all n € N once
Tny Yn, 2n, and w, € C are given. Indeed, it holds that

lym = B> < = bl = (1 = an) (Izall® = 1zall” = 2 @0 = 20, )
> lyn — B* < ||z — h|)?
+2(1 = an) (@0 = 20 b) = (1= @n) (lzall” = l120?)

Hence, from (2.1), C,, is closed and convex.
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Observe that
F(S)NF(T)cCcC,NQy, foralneN.

To check this, we use a mathematical induction. (i) As Q1 = C, F (S)NF (T) C Q.
Let g € F(S)NF (T). From (3.5), it follows that

lyr — qll* = larzy + (1 — a1) Z1 — gf?
= a1 (21— ) + (1 —a1) (Z1 — @)
<ayllz =g’ + (1 —a1) |21 — gl
<allzr — g’ + (1 —a1) |21 — q?

= o1 —alP” + (1 = a1) (Jlz1 = al* = a1 — all)

= llzr = gl = (1 = ap) (Jlaa]* = ) = 21 = 21, @)
Therefore, ¢ € C, and we can conclude that F'(S) N F (T) C C;. (ii) Assume that
F(S)NF(T) C Cr N Qy,

where k € N. As F(S)NF(T) # 0 is assumed, C; N Q. # 0 follows. As Cy N
Q1 is a nonempty, closed, and convex subset of C'(C H), the metric projection
Po,ng, from H onto Cj N @y, is defined. Consequently, x,1 is defined as zj41 =
Pc,ng,x. Furthermore, zii1, Zit1, ypt+1 (€ C), Cri1, and Qi1 (C C) are also
defined properly. We show that

F(S)NF(T) C Cry1N Q1.

Choose g € F (S)NF (T) arbitrarily. In a same way as (3.6), ¢ € Ci4+1 can be proved
and therefore, we omit it here. As 11 = Po,ng,x and ¢ € F (S)NF (T) C CrNQy,
from Lemma 2.1-(b), it holds that

(3.6)

(r — k11, The1 —q) > 0.
This shows that ¢ € Qxy1. Hence, F (S)NF (T) C Cry1 N Qx41 as claimed. We
have demonstrated that F' (S)NF (T) C C,,NQ,, for all n € N. From the hypothesis
that F (S)NF (T) # 0, C,, NQ,, is nonempty for all n € N. Therefore, the sequence
{z,,} is defined inductively.
From the definition of @y, it follows that x,, = Pg, x for all n € N. Consequently,
we have

(3.7) [z = za| < |z — 4l

for all g € F (S)NF (T') and n € N. Indeed, as z,, = Py, x and ¢ € F (S)NF (T) C
CnNQy C Qn, the inequality (3.7) holds true. From (3.7), {z,} is bounded. From
(3.4), {zn} is also bounded.

Let us show that

(3.8) o = @all < o = @

for all n € N. Indeed, from z,, = Pg,z and z,+1 = Pc,ng,r € Qn, we obtain
(3.8), which means that the sequence {||z — z,||} is monotone increasing. As {z,}
is bounded, so is {||z — xy||}. Thus, {||z — x,||} is convergent in R.
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Next, we prove that
(3.9) Tp — Tpy1 — 0.
As z,, = Py, x and n41 = Pc,nQ, T € Qn, from Lemma 2.1-(c), it follows that
|z = @nll? + |20 — @i < M|z = @nia ||

As {||lx — x|} is convergent, we have (3.9) as claimed.
It holds that { Sz, } is bounded. Indeed, let ¢ € F'(S). As S is quasi-nonexpansive,

[Szn| < [1Szn — qll + llql|
< |len — gl + llqll -

As {x,} is bounded, so is {Sx,}. Similarly, {T'z,} is also bounded.
As {z,,} is bounded, we have from (3.3) that

1 n—1 1 n—1 1 n—1n—1
{EZS’“%}, {EZT%”}’ and {ﬁZZSkT%”}
k=0 1=0 k=0 =0
are also bounded. Using these boundaries, we can demonstrate that

(3.10) Zn — Tp — 0.

In fact, as A\, — 1, it follows that u,,, vn, (., Ny, 0n — 0. Using this, we obtain

[
1 n—1 1 n—1
= | Anxn + p, S, +vpyTx, +(,— Z Skxn + 1, — Z Tla:n
n k=0 " =0
1 n—1n—1
krnl
+9n$225’ T %, — xn
k=0 [=0
< (L= ) [[znll + py (|52l + va | T2, |
1 n—1 1 n—1 1 n—1n—1
k l krnl
+Cp EZS Tn || + Ny EZTQUH + 0n EZZS Tan
k=0 1=0 k=0 1=0
— 0.
As {z,,} and {z,} are bounded, it holds from (3.10) that
2 2
(3.11) [zn]l™ = ll2nll” = 0.
We can verify (3.11) as follows:
2 2
[zl = [[2nl1"] = (2l + llzal) [zl = zn]]

< ([lznll + lzall) ll2n = 20l = 0.

Thus, (3.11) holds true as claimed.
We demonstrate that

(3.12) Yn — Tpt1 — O.
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In fact, as 41 = Pc,ng, v € Cy, we have the following:

lyn = 21 ll® < Nz — 2|

= (1= an) (zll® = lzll® = 2420 = 20, @a41)).-
From (3.9)-(3.11), we obtain (3.12). From (3.9) and (3.12), it holds true that
(3.13) Tn — Yn — 0.
Next, observe that

(3.14) Tn — Zn — 0.
It holds that

20 = ynll = [l2n — [anzn + (1 = an) Zulll = (1 = an) [[2n — Znll -

It follows from (3.2) and (3.13) that x, — Z, — 0 as claimed.

Our aim is to show that z,, — = (: PF(S)QF(T)m). Let {zn,} be a subsequence of
{zn}. We prove that there exists a subsequence {xy, } of {y,} such that z,, — Z.
As {ay,} is bounded, there are a subsequence {zy,} of {z,,} and an element v of
H such that x,;, — v. From (3.14), Z,, — v. As S and T satisfy the condition
(2.3), we have v € F (S)N F (T).

We prove that {z,,} converges strongly to v. As v € F (S)NF (T), from (3.7),
we obtain

i, = vl* = lom, = 2”4 2 an; = 2 = 0) 4 = o

S HI*UH2+2<$HJ,—:E, J}*U>+||LL‘*U||2
:2Hx—vH2+2<xnj—a:, z—v).

From z;,; — v, it holds that

| zn, —sz §2||x—v||2+2<$nj—m, z—v)
=2z —v|*+2(w -1z, z—v)=0.

Therefore, r,; — v, as claimed.

As a final step, we show that v (: lim; 00 xnj) =7 (: PF(S)QF(T)x). As T =
Pps)nr(ryr and v € F(S) N F(T), it suffices to demonstrate that [z —v| <
|l —Z|. Asx € F(S)NF(T), from (3.7), we have

|2 — 2, || < |z — 2|

forall j € N. As x,,, — v, it is true that ||z —v|| < ||z — Z||. Thus, we obtain v = 2.
We have proved that for any subsequence {x,} of {z,}, there exists a subsequence
{@n,;} of {x,} such that z,, = Z (=wv). Therefore, x,, — Z. This completes the
proof. O

We present the following corollary for an illustration because Theorem 3.2 seems
to be a bit complicated.
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Corollary 3.3. Let C be a nonempty, closed, and convex subset of H. Let S
and T be quasi-nonerpansive mappings from C into itself that satisfy ST = TS,
F(S)NF(T) # 0, and the condition (2.3). Let {\,}, {p,}, and {v,} be sequences
of real numbers in the interval [0,1] such that Ay, + p,, + v, = 1 for alln € N and
An — 1. Let {an} be a sequence of real numbers such that 0 < a, <a < 1 for all
n € N, where a € [0,1). Define a sequence {x,} in C as follows:

1 € C is given,

Zn = AnZn+ w,STn + vaTay,

1 n—1n—1
Yo = anwn+ (1= an) — >N skrta,

k=0 =0
Cn = {heC:|yn—hl* <z, —h|?
— (1= an) (lleall® = 1zal® = 2 (@0 = 20, W)},
Qn = {heC:{(x—x,, ©,—h)>0}, and
Tny1 = Po,ng,r

for alln € N. Then, {x,} converges strongly to a point T of F'(S)N F (T), where
T = Pp(s)nr(T)T-

Some remarks concerning Theorem 3.2 are provided below. First, a condition
required on the parameters are only A\, — 1 except for (3.2) as Martinez-Yanes and
Xu [26]. Second, set A\, =1 for all n € N in Theorem 3.2 (or Corollary 3.3) and let
S and T be normally 2-generalized hybrid mappings. This special case corresponds
to Theorem 5.1 in Hojo et al. [18], which is reproduced in this paper as Theorem
1.2. Thus, Theorem 3.2 is a generalization of Theorem 1.2. Third, as nonexpansive
mappings, generalized hybrid mappings, normally generalized hybrid mappings, and
2-generalized hybrid mappings are all special cases of normally 2-generalized hybrid
mappings, Theorem 3.2 is effective for these classes of mappings.

Fourth, as you can see from the proof of Theorem 3.2, the condition ST =TS
is not used explicitly in the proof. The condition ST = T'S is only necessary for
the condition (2.3) to hold, which is assumed. Therefore, as long as we assumed
the condition (2.3), there was no need to actually assume the condition ST = T'S.
However, in view of the importance of the condition ST = T'S for this theorem to
hold, the author decided to make an explicit assumption.

Fifth, the following theorem, which was proved by Alizadeh and Moradlou [1], is
derived from Theorem 3.2:

Corollary 3.4 ([1]). Let C be a nonempty, closed, and convex subset of H. Let T
be a 2-generalized hybrid mapping from C' into itself such that F (T) # 0. Let {\,}
and {an} be sequences of real numbers in the interval [0, 1] such that A\, — 1 and
0<ap, <a<1foralneN, wherea € [0,1). Define a sequence {z,} in C as
follows:

x1 € C is given,
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Zn = AnZn+ (1= X)) Ty,
1 n—1

Yn = anZn+ (1 —ay) - Zlen,
1=0

Co = {heC:llyn Al < lzn — b
= (1= an) (leal® = Izal* = 2 (20 = 20, B))},
Qn = {heC:{x—x,, ©,—h)>0}, and
Tny1 = Po,n@.T

for all n € N. Then, {x,} converges strongly to a point T of F(T), where T =
Pryz.
Proof. Set S = I and p, = (,, =1, = 0, = 0 in Theorem 3.2, where I is the
identity mapping defined on C. Then, the desired result follows. O

Note that Alizadeh and Moradlou [1] dealt with an m-generalized hybrid map-
ping. As a final remark concerning Theorem 3.2, let us make a comparison to a
recent result in Kondo [20]:

Theorem 3.5 ([20]). Let C' be a nonempty, closed, and convex subset of H. Let
S and T be quasi-nonexpansive and mappings from C' into itself such that F (S) N
F(T) # 0 with the condition (2.4). Let {\n}, {pn}, {vn}, {&,}, and {6,} be
sequences of real numbers in the interval [0,1] such that Ay, + p,, +vn +&, +0n, =1
for allm € N and A, — 1. Let {\}, {u,}, {vi,}, {€.}, and {6),} be sequences
of real numbers in [0,1] such that X, + pl, + vi, + &, + 60, =1 for alln € N and
X, = 1. Let {an}, {bn}, and {c,} be sequences of real numbers in [0, 1] such that
an +by+cp, =1 foralln €N,

(3.15) lim a,b, >0, and lim ay,c, > 0.

n—oo n—0o0

Define a sequence {x,} in C as follows:

1 € C is given,

n—1

Z Tlxn,
=0

1 1
Zn = AnZp+ pu,STn +vaTa, + §n5 Z Skxn + Gnﬁ
k=0

1 k 1 !
wy, = )\;lxnjtu;an—l—u;lTxn—l—f%EZS xn"‘e;LEZTl‘m

1 n—1 1 n—1
Yn = anmn‘i‘bnﬁzskzn‘i‘cnﬁlewm
k=0 =0
Co = {h et llyn = bl < llz, — b
~ba (Jl2al” = llznll* = 2 (@0 = 20, b))

~n (lzll® = lwal® = 2 (@ — wa, 1))},
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Qn = {heC:{(zx—x,, x,—h)>0}, and
Tnt1 = Po,nQ.7
for alln € N. Then, {x,} converges strongly to a point T of F'(S)N F (T), where
T = Pp(s)nr(T)T-

One difference between Theorem 3.2 and 3.5 is in the conditions (3.2) and (3.15)
on the coefficients ay, by, ¢, of a convex combination. The condition (3.2) allows
the case where a, = 0 for all n. Also, for Theorem 3.2, the assumption ST = TS
for mappings is required while it is dispensable for Theorem 3.5.

4. SHRINKING PROJECTION METHOD

In this section, we develop the shrinking projection method introduced by Taka-
hashi, Takeuchi, and Kubota [33], incorporating the Martinez-Yanes and Xu method
(1.3) and mean-valued iteration (1.2). The basic skeleton of the proof has been pol-
ished by many researchers; see, for instance, [8, 10, 18, 19, 25, 34].

The main theorem in this section can be proved under a more relaxed condition
on mappings than in the previous section. Recall the setting of Lemma 2.3: Let C
be a nonempty, closed, and convex subset of H, let S,T : C — C with ST =TS
and F (S)NF(T) # 0, and let {z,} be a bounded sequence in C. Define

Consider the following condition:
(4.1) Zn; wv=ve€ F(S)NF(T),

where {Z,, } is a subsequence of {Z,}. Mappings S and T with the condition (2.3)
satisfy (4.1). Therefore, from Lemma 2.3, commutative two normally 2-generalized
hybrid mappings S and T' with a common fixed point satisfy this condition (4.1).
In the main theorem of this section, we focus on commutative quasi-nonexpansive
mappings with the condition (4.1).

Theorem 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H. Let S and T be quasi-nonerpansive mappings from C' into itself that
satisfy ST =TS, F (S)NF (T) # 0, and the condition (4.1). Let {\n}, {ttn}, {vn},
{¢,.}, {n,}, and {6,} be sequences of real numbers in the interval [0,1] such that
An Aty FVn+ (10, +0n =1 for alln € N and N\, — 1. Let {ay,} be a sequence of
real numbers such that 0 < a,, <@ <1 for alln € N, where @ € [0,1). Let {u,} be
a sequence in H such that u, — u (€ H). Define a sequence {x,} in C as follows:

z1 € C is given,
Cci = C,
Zn = ApZn+ ppStn +vpTx,

1 n—1 1 n—1 1 n—1ln—1
+Cng ZSkxn +77nEZTll“n +0”ﬁ ZSlea:n,
k=0 =0 k=0 =0
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n—1ln—1

1
Yn = QpTp+ (1 - an) ﬁ Z Z SkTZZ"’
k=0 =0
Cur1 = {h€Cn:llyn—hl* < |lzn — bl
= (= an) (llzal® = 20l = 2 {20 = 20, )}, and

Tn+1 = Po, . Unt1
for all n € N. Then, {x,} converges strongly to a point w of F'(S)NF (T), where
u = Pp(s)nr(T)U-
Proof. Define

n—1n—1

Z, = %ZZS’“TZ% eC.

k=0 =0
Then, we can write y, = apx, + (1 — a,) Z, € C. It holds that

1 n—1 1 n—1
(4.2) EZSkwn—q < lzn —dll, HZTlen_q < llzn —qll,
k=0 =0
1 n—1ln—1
(4.3) | s Y STy —ql| <llwn —all, 1Z0—all < llzn —qll, and
k=0 =0
(4.4) lzn — gl < llzn — 4l

for all n € N and ¢ € F (S)N F (T). The inequalities (4.2) and (4.3) follow from
(3.1) and Lemma 3.1. The inequality (4.4) can be proved in the same way as (3.4).
We check that C}, is a closed and convex subset of C' and

F(S)NF(T) C Cy

for all n € N using a mathematical induction. (i) For n = 1, the results follow from
Cy = C. (ii) Assume that C} is closed and convex and

F(S)NF(T) C Cy,

where k € N. As F (S)NF (T) # 0 is assumed, the assumption F' (S)NF (T) C C
implies that Cj # 0. Hence, the metric projection Pg, is defined. Furthermore,
Tky 2k, Lk, Yk, and Cpy1 are also defined properly. It holds that Cjyq is closed
and convex from the induction assumption that C} is closed and convex and (2.1).
Observe that
F(S)NF(T) C Ciy1.
Let ¢ € F/(S)NF (T'). Using (4.3) yields
Iy —all* = llagze + (1 — ax) Ze — ql?
= |k (zx —q) + (1 — ax) (Zx — q)
ag |lor —gl” + (1 — ax) |2 — q|)?
ag |lor — gl” + (1 — ax) |21 — g
ok — al + (1 = @) (Jlz% = al* = llz — al”)

2
I

IN N
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= low =l = (1 = an) (a2 = llaul® = 2 (ox — 21, )

From this, we obtain ¢ € Cy41. Thus, it follows that F (S) N F (T) C Cit1 as
claimed. We have demonstrated that C,, is a closed and convex subset of C and
F(S)NnF(T) C C, for all n € N. From the hypothesis F (S) N F (T) # 0, it holds
true that C), # () for all n € N. Hence, the sequence {z,} is defined inductively.

Define @,, = Po,u. As u, € C,, C Cp—1 C --- C C1 = C, {u,} is a sequence in
C. We prove that

(4.5) [ = | < [lu — gl

for all ¢ € F(S)N F(T) and n € N. This follows from @, = Pg,u and ¢ €
F(S)NnF(T) C C,. From (4.5), {uy} is bounded.
Observe that

(4.6) [ =8| < flu = Tng]

for all n € N. As w, = Pg,u and Uy41 = Pg,,,u € Chy1 C Cp, we have the

inequality (4.6) as claimed. This implies that {|lu —u,||} is monotone increasing.
As {@,} is bounded, so is {||u — u,||}. Hence, {||u —@,||} is convergent in R.

We show that the sequence {u,} is convergent in C; in other words, there exists
u € C such that
(4.7) Uy, — .

For that aim, it is sufficient to demonstrate that {@,} is a Cauchy sequence in C.
Let m,n € N with m > n. As u, = Pc,u and u,, = Pc,,u € C,, C C,, from
Lemma 2.1-(c), it follows

= | + [T = T * < Jfe = |

As {||lu —w,||} is convergent, we have u, — U, — 0 as m,n — oco. This means
that {u,} is a Cauchy sequence in C. Consequently, there exists w € C such that
Up — U.

Next, let us prove that {z,,} has the same limit point with {@,}, namely,
(4.8) Ty, — 1.

As the metric projection is nonexpansive, we have from the assumption u,, — u and
(4.7) that

[ =Tl < l[an = @l + [[wn —
= || Po,un — Po,ull + [[n — 1]
< un —ull + [[an —all =0,
which means that (4.8) holds true as claimed. Thus, {z,} is bounded. From (4.4),

{zn} is also bounded. Furthermore, {Sx,} is also bounded. This can be verified as
follows: Let ¢ € F'(S). As S is quasi-nonexpansive,

[Szn | < [1Szn — qll + llqll
< len — qll + llall,
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which indicates that {Sz,} is bounded. Similarly, {Tx,} is also bounded. From
(4.2) and (4.3),

1 n—1 1 n—1 1 n—1ln—1
{EZSkmn}, {EZT%”}, and {EZZS’“TI:C”}
k=0 1=0 k=0 1=0
are also bounded.
Using these facts, we prove that
(4.9) 2y — xp — 0.
From the assumption A, — 1, it holds that u,,vy,(,, N, 0n — 0. Hence, we can

prove (4.9) as follows:

|2 — nl

n—1 n—1

1 1
AT + STy + v Ty, + Cnﬁ kz_o Sk, + I ; Tz,

1 n—1n—1
kil

+9nﬁZZS T %, — xn,

k=0 1=0
< (A=) [[wnll + gy St + vn (| T2y |

1 n—1 1 n—1 1 n—1n—1

k l kil
o || = D S || 0 || =Y T +0n || > > STy

k=0 =0 k=0 1=0

— 0.

As {z,,} and {z,} are bounded, using (4.9), we can verify that
(4.10) lzall* — ll2* — 0.
Indeed,

lzal® = llzall*| = (lzall + Nzl Haall = 11zl
We demonstrate that
(4.11) Yn — Tpa1 — O.
Indeed, as z, 41 = Po, 1 Unt1 € Cpy1, we obtain
lyn = 2l <z — 24
— (1= an) (lzall” = 20l = 2 (@n = 20, Tns1))-

From (4.8), x;, — xp4+1 — 0. From (4.9) and (4.10), (4.11) holds true as claimed. As
Ty — Tpt1 — 0 and y, — xp41 — 0, we obtain

(4.12) Ty, — Yn — 0.
Next, observe that
(4.13) Ty — Zp — 0.
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It holds that
[0 = ynll = |20 — [an@n + (1 — an) Z]||
=1 —ap) [|zn — Zyl| -
As 0 < a, < a < 1, we have from (4.12) that z, — Z, — 0 as claimed. From
(4.8) and (4.13), we have that Z,, — u. As S and T jointly satisfy (4.1), we obtain
ue F(S)NF(T).
From (4.8), it is sufficient to show that

(= Jm @, = Jm 2, ) =@ (= Presinru).

Asu e F(S)NF(T) and U = Pp(s)np(1)u, it is sufficient to show that
Ju =3l < Jlu—a].

Using (4.5) for ¢ =u € F (S) N F (T), we have ||lu —y,|| < ||u—1u] for all n € N.
From (4.7), |lu —@|| < ||lu—@|. This implies that @ = u. From (4.8), we obtain
Tn — . This completes the proof. O

Setting A, = 1 in Theorem 4.1, we obtain the following result, which was proved
in Hojo et al. [8]:

Corollary 4.2 ([8]). Let C be a nonempty, closed, and convexr subset of H. Let
S and T be quasi-nonexpansive mappings from C' into itself that satisfy ST =TS,
F(S)NF(T) # 0, and the condition (4.1). Let {a,} be a sequence of real numbers
such that 0 < a, <a <1 for alln € N, where a € [0,1). Let {u,} be a sequence in
H such that u, — u(€ H). Define a sequence {x,} in C as follows:

x1 € C is given,

Cy=0C,
1 n—1n—1
Yn = anZn + (1 — ay) s Z Z S*Tle,,,
k=0 1=0

Crny1={h € Cp: |lyn — h|| < |lzn —R|}, and
Tn4+1 = PC'n+1un+1

for alln € N. Then, {x,} converges strongly to a point w of F'(S)NF (T), where
u = Pp(s)nr(r)u-

Notice again remarks presented after Theorem 3.2 in the previous section. A cor-
responding result in Kondo [20] which closely relates with Theorem 4.1 is Theorem
4.1 in that paper.
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