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ON A FRACTIONAL PARABOLIC PROBLEMS WITH
VARIABLE EXPONENT

SALIFOU KORBEOGO, FREDERIC D. Y. ZONGO, AND AROUNA OUEDRAOGO

ABSTRACT. In this paper, we discuss the existence and uniqueness of weak solu-
tion to the following parabolic p(.)-Laplacian,
up 4+ (=A)pyu+ lu|?=2y = ME in Qr==Qx(0,7),
{ u =0 in (RY\ Q) x (0,7),
u(.,0) =up(.) inRY,
where @ € RV, N > 2 is a bounded smooth domain, F € C* (2 xR, R) and locally
Lipschitz uniformly in ¢ while \ is a positive parameter and ¢ is a continuous
function on Q.
The functional setting involves Lebesgue and Sobolev spaces with variable
exponent. We use the semi-group approach and some a-priori estimates to obtain
our results.

1. INTRODUCTION

We study the parabolic problem involving fractional p(.)-Laplacian,

up + (—A);(‘)u + u|10=2y = )\‘3—5 in Qr :=Q x (0,7),
(Pr){ wu =0 in (RV\ Q) x (0,7),
u(.,0) =up(.) in RV,

where s € (0,1), p and ¢ are two continuous functions p : Q x Q — (0,00) and
q: Q2 — (0,00). We assume that p is symmetric i.e p(z,y) = p(y, x),
l<p~ = min p(z,y) <plr,y) <pT = max p(z,y) < oo
(z,y)€QXQ (z,y)€QXxQ
and

1 < ¢ =ming(z) < g(z) < ¢" = maxg(z) < oo.
€l z€e

Fractional parabolic problems with variable exponent are recent topic in partial
differential equations, first introduced by Kaufmann et al. in [13]. The authors
extended the Sobolev spaces with variable exponent to the fractional ones via com-
pact embedding theorem. For more details about fractional Sobolev spaces with
variable exponents, refer to [7].

The operator (—A);(.)u is defined by

ulz) —u PO)=2(y(z) — u
B R U i U I
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where P.V. is a commonly used abbreviation for the principal value. It is a fractional
version of the p(x)-Laplacian operator given by div(|Vu|P(*)=2Vu), associated with
the variable exponent Sobolev space W1P(®)(Q).

Problems with variable exponents have gained considerable attention as they
arise in various scientific fields, including physics, finance, biology, and geophysics
(see [1], [6], and [11] for more details).

Recently, M. Hsini et al. proved in [12], the existence and uniqueness of the
following stationary problem using Ekeland’s variational principle:

(—A)3 yu(@) + [u(@) "0 2u(z) = A% (z,u) nQ,
(1.1) { m X :08 in 0€).

In [4], T. Boudjeriou used sub-differential approach to prove existence of a local
solution to the following evolution problem involving fractional p(z)-laplacian:

ug + (—A);(_)u = |u|tO~24 in Q,t >0,
u =0 in RV\ Q,¢ >0,

u(.,0) = ug(.) in Q.

In [16] J. Giacomoni et al. have studied the following quasilinear parabolic prob-
lem with p(x)-Laplacian:

ur — Apyu = f(z,u) in Qr = (0,T) x €,

u=20 on Xp = (0,7) x 09,

u(0,z) = up(z) in Q,
where they have proven the existence and uniqueness of the weak solution, and
discussed the global behaviour of solutions. Our aim is to extend the works made
in [12, 16, 4]. Indeed, we take a source term A%—Z, which is not the case in [4]. We
also study the parabolic version instead of elliptic one, which has been studied in
[12]. Moreover, our operator (fractional p(z)-laplacian) is more general that the
p(z)-Laplacian, which was used in [16]. We study problem (Pr) under the following
assumptions:

(Hy) F:Q xR — R is homogeneous of degree r, that is,
F(z,tu) = '@ F(z,u) for all t>0,2 € Q,u € R.

(H2) %—f(m,tﬂ < CV(z)[t|"®=2¢, for all (x,t) € Q x R, where C is a positive
constant, V € L'¥)(Q), I,r € C(Q) are such that for all z € Q, we have
N N
1<r(x) <plz,z)< < < I(z) and p(z,z) < q(x) < p*(x) := #ﬁ’(i?w)
(H3) There exists an Q9 CC Q with |Qy| > 0 such that F(z,t) > 0 for all
(l’,t) € Qp x R*.

(H4) There exists a € R such that x +— %—f(m, a) € L1O(Q) (1 < q(.) < +o0).
Note that assumptions (Hy), (H2), and (Hg) have been used in reference [12] to
establish the existence of a weak solution to problem (1.1), which is the stationary
version of our problem (Pr). We also need assumption (Hy), inspired by assumption
(f2) from reference [16], for the proof of existence of solution to the approximate
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problem. To prove the existence of weak solutions, we follow a semi-group approach,
involving a semi-discretization in time method, that provides the existence of mild
solutions. To establish our results, we use some former contributions about the
validity of a strong comparison principle (see [16]) and the regularity of solutions.

The rest of the paper is organized as follows: In section 2, we recall some basic
proprieties of Lebesgue and Sobolev spaces with variable exponent and in section
3, we state and prove our main results on the existence, uniqueness, regularity of
solutions to (PT') and on the global behaviour of solutions.

2. PRELIMINARY
To begin, we define the norm space and its open convex subset as follows:
Cy) = {u € Co(2) : 3¢ > 0 such that |u(z)| < cd(z), Vo € Q} .
where d(z) := dist(z,00), and

v e u(x)
Cds(ﬂ) = {u € Cyq) xuelsfz () > 0}.

We consider the function space

L1(@Q) = {u (measurable) : Q2 — R:3A>0: /
Q

q(.)
dr < oo p.

Lq(')(Q) is separable, uniformly convex Banach space with variable exponent en-
dowed with the norm:
q(.)
de <1;,.

‘U|Lq(,)(Q) = inf {)\ >0: /
Q
(L‘I(')(Q), | |1a()) is generalized Lebesgue space.

Holder type inequality : if ¢(.),¢'(.) € (1,+00) are such that ﬁ + q,l(.) =1 and
if u € L90)(Q) and v € LI)(Q), then

1 1
< - + lulg()lvlg (-

q—

u(x)

x
A

/Qu(x)v(x)dzx

Lemma 2.1 (see [12]). If (u,), u € LIO(Q) and g™ < oo, then we have the following
relations:

' _ +
(i [ulg(y > 1= Julf ) < /Q [ul*Vde < fulf,.
. + -

(iii) |un, — ulqy — 0 if and only if / |ty — u|?dz — 0.
Q
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Proposition 2.2 (see [9]). Let v and g be measurable functions such that v €
L®(RN) and 1 < v(.)q(.) < oo for any x € RN, Let u € LIO(RN), u # 0. Then

v(.) v vt
min (’“H( o) [el )q(>) < [l ]g() = max <‘“|w<.>q<.)’ ’“'vc)q(.))'

If k is a positive integer, we define the variable exponent Sobolev space as follows:
What)(Q) = {u e L1O(Q) : D € LIO(Q), for all |a| < k} ,

. .. dloly, .
where @ = (o, ...,ay) is a multi-index, D% = ————, endowed with the

glal glow
ullgoy = D [D%ulg)-
lell<k

We denote by Wg’q(')(ﬂ) the closure of C$°(Q2) in W*9()(0Q).
As in [12], for 0 < s < 1, we consider the variable exponent Sobolev fractional
space as follows:

W = Wsyq(-)yp(-)(Q)

)
) fe i@ y)I”
_{u.Q—>R.f€L //)\p Tz —y |n+sp)dacdy<ooV)\>O}

’p
[ulsp() = 1nf{)\ >0 // AP( )|x_ ‘nJrsp )da:dy <1

be the variable exponent Gagliardo seminorm. W is a Banach space with the norm

norm

Let

lullw = [ulspe) + lulq)-
Lemma 2.3 (see Lemma 1.2 in [12]).
(1) If 1 < [u]sp() < 00, then

w(z) — u(y) PO
2y (o < [ ey < (g
(i) If [u ]Sp( <1, then
u(z) —u ()
2 (oot < [ ey < (g

We denote by Wy = Wos’q(')’p(')(Q) the closure of Cg°(Q2) in W, then W is a
Banach space with the norm ||ul|w, = [u]s (-

Lemma 2.4 (see Lemma 1.3 of [12]). Let Q C RY be a smooth bounded domain
and s € (0,1). Let q, p be continuous variable exponents with s.p(x,y) < N for
(z,y) € Q x Q and q(z) > p(z,x) for x € Q. Assume that v : Q@ — (1,00) is a
continuous function such that

Np(z,x)

pi(x) =+ > y(z) >~ = inf y(z), for z € Q.

— s.p(z, x) zEQ
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Then, there exists a constant C=C(N,s,p,q,Q2) such that for every uw € W, it holds
that

luly(y < Cllullw.

That is, the space W (Q) is continuously embedded in L), Moreover, this embed-
ding is compact. In addition, if u € Wy, the following inequality holds

luly(y < Cllullwyg-

Proposition 2.5. For any u,v € W we have:

)PV (u(z) — u(y)) (v(z) —v(y))
((—A YU, V) /RN /IRN dxdy.

|z — y|[NFsp()

Proposition 2.6 (see Proposition 3.7 of [12]). If w, converges weakly to w in Wy,
then

(i) nhHmOO —u(at, wp) (wy, — w)dx = 0.
(ii) nh_r}noo/ |wp, | wp (wy, — w)dx = 0.

Lemma 2.7 (see[3]). For all u, v € Wy, we define I : Wy — W such that

23 i - [ [ 1) PO | () —uly) (o) ~ o),

T — |N+sp

Then

(i) I is a bounded and strictly monotone operator.
(ii) I satisfies (S4) condition, that is, if u, — u in Wy and
limsup,,_ o [ (un)(un, —u) <0, then u, — u in Wp.
(iii) I is a homeomorphism.

Lemma 2.8. Let t = max(t,0). If u € Wy, then
Ju(z) = u(y) P2 (wh (2) — ut (y) (ulz) - u(y)) > [ut () —u(y)].

Proposition 2.9. Let ¢ : X — R be a continuous differentiable function and
convex, then qbl : X = X' is monotone.

Lemma 2.10 (see [10]). for all u,v € RV,

clu—vfPif p>2,

(2.4) (JulP~?u — [P0, u —v) >
|U_U|2 : <9

‘Turppe W PS2

where ¢ is a positive constant.

To end this section, we define the space V(Qr) by

V(Qr) = {u;u € LX(Qr),u € L®(0, T, WP ()},
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3. MAIN RESULTS
Let us now present the main results of this paper.

Theorem 3.1. Assume that (Hy1), (Hz2), (Hg) and (Hy4) hold, and uy € C’t(Q).
Then, problem (Pr) admits a unique weak solution u, in the sense that u € V(Qr)
such that for every v € C’OO(QT)

[u(z) —u(y)[PY > (u(z) (y))(v(x)—v(y))
/QT utvd:n—l—/ /QXQ dxdydt

‘x _ ‘N—i-sp

(3.1) = oF —(z,u)v(z)de.
Qr ou

Proof. We make the proof of Theorem 3.1 in two subsections. Firstly, we deal with
the existence of weak solutions to the auxilliary problem (S7) and secondly, we
deduce the existence result for problem (Pr).

3.1. Existence results for the auxilliary problem (S7) corresponding to
(Pr). We consider the following evolution problem (S7).

ur + (—A);(.)u =g(z,t) inQr:=Qx(0,T),
(St){ w =0 in (RV\ Q) x (0,7),
u(.,0) =up(.) inRY,

where g € L1(Qr). Considering the initial data ug € Wy N L®(Q), the weak
solution to problem (St) is defined as follows:

Definition 3.2. A function u € V(Qr) is said to be solution of problem (St) if for
every v € C3°(Qr), we have:

[ e+ / [ IO () —u) () =)
Qr QxQ

|x _ y|N+sp(.)
:/ g(z,t)dxdt
T

and u(x,0) = up(x) for a.e. x € Q.

We give below our result of existence and uniqueness of weak solution of the
problem (S7).

Theorem 3.3. Let T > 0, g € Li(Qr) (1 < q(.) < +00) and ug € Wy N
L>(2). Then, there exists a unique solution w to the problem (St). Moreover,
u e C([0,T], Wp).

Proof. To prove Theorem 3.3, we use the method of semi-groups. We begin by
dealing with the following elliptic problem corresponding to (St):

(S) utp(-A)pyu =g inQ,
U = in
0 RN\ Q,
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where 1 > 0 and ge L?)(Q). The following proposition provides a result on the
existence and uniqueness of a weak solution to the elliptic problem (S). It allows for
a generalization of Lemma 4.7 of [10] to the case of a variable exponent.

Proposition 3.4. For any p > 0, problem (S) admits a unique weak solution u in
the sense that u € Wy satisfies

Ju(z) — u(y)[PY 2 (u(z) — uly)) (v(z) —v(y))
/Qu(:L‘)v(:v)akr—i—u/Q/Q 7 — V) dxdy

(3.2) :Amww@m,

for all v € C§°(). Moreover, u € Cy(Q).

Proof. Consider the energy functional J, : Wy — R corresponding to (5), given
by

’P
(3.3) Ju(u) = / )2dx + u/ /Q ]a; — y|N+Sp )dxdy - gudz.

We claim that J, is coercive in Wy. Indeed, based on Sobolev embedding theorem,
we have.

IR o) —u@P

M —
> p—AIUIIIVJV0 = Cllullw, (for[[ullw, > 1).

Hence, we conclude that .J, is coercive. Additionally, J,, is bounded below and
strictly convex in Wy (this is because the function & — ﬁ £[P(®) is C1 and strictly
convex). Therefore, J, possesses a global minimizer w € Wy, which is the unique
solution of problem (S). According to Theorem 4.4 of [10], we deduce that u €
Co(2). 0

Now, we prove that problem (S7) admits a unique mild solution, which is also
a weak solution. Let L € N*, T > 0 and At = Z. As in [10], we define ¢, = nAt,
u™ = u(ty,.). We proceed in four steps to obtain the desired results.
Step 1 Approximation of g.

Let define ga, as

1 [t
gar(z,t) = g"(z) := At/t g(z, 2)dz.
n—1

Using the embedding LP" (Q7) — LPO)(Qr), we deduce that

\gAt’Lq(»(QT) < CHgAtHLLﬁ(QT)'

Now, by Jensen’s inequality:

”gAtHLq+(Q = AtZHg HLq*
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+
- AtZH S e,

tn—1

tn

- Z/tn R
< ol

Therefore

at
|9At|Lq(~)(QT < Clgll L (Qr)’

Thus, gay € LIO(Qr). We also note that ga; is bounded. Since (L‘I(')(Q),\ | raty)
is reflexive, we can extract a subsequence denoted again as ga¢, such that

(3.4) gar —> g in Lt (QT)

Step 2 Time-discretization of (St).

For 1 < n < L, we consider the following iterative scheme u"

= ug and for n > 1,

un_unfl .
+(=A)$ u™ =g" inQ
A . )
(3.5) Uy, is solution of ! 2()
u” =0 in RM\Q.
Note that the sequence (u”) L1<n<, 18 well-defined. Indeed, existence and uniqueness

of u! € Wy N L>®(Q) follows from Proposition 3.4 with g = g'At 4+ u° € LI0)(Q).
Hence by induction we obtain in the same way the existence of (u"), for any n =
2, L.

Now, we define ua; and uay for n=1,--- L and t € [t,_1,t,] as follows:
t—1t
uat(t) =u" and  aa(t) = T;Zl( u —u" )

So, we obtain

Oung
ot

Step 3 A priori estimates for ua; and uag.
Multiplying (3.5) by u™ — u"~! and umming up form n = 1 to L, we get

ZAt/ <—7:n1>2 de + i«—A)Z(.)un,u" T

(3.6)

+ (—A)IS,(.)UAt =ga, in Qr.

By Young inequality we obtain:

L un_un_l 2 L
zljm/ <T> R M

Q
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L 2
At 9 u — !
< - n -
-2 [/gz(g)+( At )]dx’

1

which gives

At L ’U,n — unfl 2 L s n n n—1 At L n\2
7;/9 <T> dx—l_;«_A)p(-)u u =) < S o (97)”
< Cllgla gy
Using the convexity properties of § — %|£|p, Lemma 2.1 and Lemma 2.3 we obtain:

1 P —1p" / |u" () — u"(y) V)
- n — |lu™ < dzd
pt (Hu ”Wo ”u HW0> = Jaxo p(')’x_y|N+sp(.) ray

0 () — = ()P
o Q) glv et W
[ e ()P0 (x) — u(y))
QxQ |z — y|NFsr()
(" — ™)) — (u" — u"Y)(y) drdy.

<

Now we have

At L OUA 2 L 1
t n|p- n— B
Sy /Q ( i ) oY = (I, — 1071, ) < Clolany
1 1

Hence,

aﬁAt . . 2 . .
. A
(3.8) ( 5 )At is bounded in L*(Q7) uniformly in At,

(3.9) (uat) and (@a¢) are bounded in L>(0,T, Wo) N L>=(Qr) uniformly in At.

Furthermore, using (3.8) we deduce that

(3.10) [Sup] luar — daellL2(0) < max [|u™ — unil”[ﬁ(ﬂ) < C(AHY2,
0,7 =L,

Therefore, for At — 07 there exists u and v in L(0,T, Wp) N L*°(Qr) such that
(up to a subsequence)

(3.11) iar —* win L>(0,T, W), uar —* v in L(0,T, Wy),
(3.12) QIR . 9u in L2(QT).

Now, we use (3.10) to deduce that u = v.
Step 4 We pass to the limit to prove that u satisfies (S7).

In the following, oa¢ is a function such that ony — 0 as At — 0. Using the
aforementioned uniform boundedness results and since the embedding Wy — L?(Q2)
is compact, as mentioned in [10], we can apply the Aubin-Simon lemma to deduce
that @ is compact in C ([0,T],L*(Q2)). Using interpolation and Ascoli-Arzela
theorem, we obtain:

(3.13) in; — u e C(0,T], L1Y(Q)),
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and hence, from (3.11) we deduce that

(3.14) uny — u € L®([0,T), LI (Q)).
From (3.4) and (3.14) we get
(3.15) / gat(uar —u) = oag.

Multiplying (3.6) by (ua; — u) and using our above convergence results, we get:
(3.16)

ot 0 ~ T s s
/ / < 5 " a%) (UAt—u)d@’dH/o (= B)p(y = (=B)p(y o tar—updt = o,

which gives

1 ~ T
Q 0

Therefore, by (3.13) we have

T
(3.18) / (=A)pyuat — (=A)p yu, uar — udt = oa.
0
In particular,
T
(3.19) / (FA)juar — (—A)p+u, uar — u)dt = opy
0
and
T
(3.20) / (=A)p-uar — (—A))-u, uar — u)dt = oy
0
It follows that
T
(3.21) / (=A)jruat — (—A)j+u,uar — u)ydt — 0 as oap — 0
0
and
T
(3.22) / (=A)p-uar — (—A))-u, uar — u)dt — 0 as oar — 0.
0

Using inequality (2.4) and Lemma 2.3, we have:
Firstly, if 2 < p(.) < oo, for all x,y € Q we deduce that

+ —
luas — uH{fVO = oat and ||uat — uH{/’VO = OAy.

T Juade) — usily) — u(@) + () e p-
- phes < mas ([l — ullf luse = ;).

then, according to Lemma 2.3, we deduce that

luae(z) — uar(y) — u(z) +u(y) PO
(3.23) / /QXQ ’:L‘ — ’N+sp() = OA¢-
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Secondly, if 1 < p(.) < 2, we deduce:
» For p =p™,

g [uae(z) — uadly) — u(@) + u(y)P"
0= / /QXQ

|z — y‘N+sp+

/ / luat(z) —uae(y) —u(z) + U(y)f
; —u(y)P) 7 e -yt

@ (Jusy(@) — use(y)P* + fu(z)
x (1fusellfy, + <\|uHWO) = oar.

It follows that

(3.24) /T /Q . (@) — wanly) — ul@) +ulP”

|z — y|N+sp+

S

» For p = p~, we also have

r luat(z) —uae(y) — u(@) +uly) P
0 S/0 /QXQ |z —y|N+spm

|’B

/ / \Um(x)—UAt(y)—U(x)JFU(y)JQ
D (Jung() — unry)P + @) —uly)P7) 7 o — e
x (lluadl iy, + <||u|rwo) = o,
Then,
T uar(z) — uar(y) — u(x) +uly) P

Hence, using (3.24) and (3.25) we deduce:

T luai(@) — uai(y) — u(z) + u(y) PO
dxdydt 0.
/ /QxQ |z — y|N+sp() e

Consequently, ua; converges to u in LP()(0, T, Wy), and (—A);(.)um — (—A);(')u.
Hence, by passing to the limit in equation (3.6), we conclude that u is a weak solution
of problem (St).

Now, we proceed to prove the uniqueness of the solution. Let us assume that there
exists another solution of (S7) denoted by v. By selecting an arbitrary to € [0,7]
and using the test function v — v, we obtain:

o 9(u—v °
/0 /Q%(u—v)dxdt + / (=A)pyu = (=A)vu = v)

/to/uw 2 — [0]7020) (u — v) = 0.
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Since (—A);(') are monotone (according to lemma 2.7) this together with w(0) =
v(0), using Proposition 2.9 we get following inequalities:

o 9(u—v)
———(u—v)dzdt < 0.
|| A=
In addition,

B B Cltl) VR A A AN R YRR
o Jo Ot 0 Ot Jq2
) 1

_ _/(u(.,tg) (. to))2dx < 0.
Q

3.26
( 2

It follows that u = v.
Using compact embedding Wy < L90) and the convergence (3.13), we obtain
that the solution to problem (Sr) is in C([0,T], L10)). O

3.2. Existence of solution for Pr. We proceed as in the proof of Theorem 3.3
splitting the proof in several steps.
Step 1 Semi-discretization in time of (Pr).

Let introduce the following iterative scheme (u') defined as

UO = Uup
u™ 4 At((—A);(.)u” + Jun a0 =2yn=ly = gl 4 )\Atg—s(x, u™ 1) in Q
u" =0 in RM\Q.

Assume that (H4) holds, then ?)—5(., u®) € L90)(Q) and since [u°]10) 240 € L90)(Q),
it follows that %—5(.,u0) — [uf)90)=240 € £90)(Q). Thus using Proposition 3.4 with
g = u0(id — |ul2)=2) 4 )\At%—i(.,uo) we get existence of u! € Wy N L>(Q) and
iteratively we get u”.

Let sequence uas and s as previously defined and such that ua; = ug for ¢ < 0,
then (3.6) is satisfied with

gar(z,t) = )\g—i(m, unt(t — At, x)) — Jups(t — At 2) |10 2up,(t — At, z).

Step 2 We pass to the limit to prove that u satisfies (Pr).
_As in the proof of Theorem 3.3 we obtain :
9uas s hounded in L2(Qr) uniformly in At,

ot
uar and ¢ are bounded in L*°(0,T, W) N L*°(Qr) uniformly in At,
ou 0
(3.27) una , fiar —* win L0, T, Wo)NL®(Qr), and gt“ - 0_2: n LXQr)

Also
(3.28) in; — u € C([0,T], LI (Q)) and up; — u € L=([0,T], L9 (Q)).

According to assumption on F(F € C') and since £ — ]ﬁ|§|p(x) € C!, using the
above convergence results, we obtain:

(3.29) luar|®O2uny — (w9020 in L([0, T, L1 ()
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and

(3.30) g—i(x,uAt(t—At,x))%g—i(.,u(.,t)) in  L>([0,T], L1V ()).

It follows that ga:(.,t) — g—i(.,u(.,t)) — |u|?)=2y in L>°(0,T,W,). By Theorem
3.3, it follows that problem (Pr) admits a weak solution.

Taking another weak solution denoted v we proof uniqueness of solution to (Pr).
Indeed, for arbitrary ¢y € [0,7] we have:

1 to S S
= /Q(u(.,tg) — (., t))%dx + /0 (=A)yu— (=A)y v, u—v)dt

2
+ /Oto /Q <\U\Q(')_2u — ]v]q(')_2v> (u — v)dzdt
(3.31) _ /Oto/Q (2—5(.,10 _ ‘Z-f(.,@) (1 — v)dadt.

Since u — (—A);(l)u and u — |u|?0)=2y are monotones, we obtain the following

inequality:

1 to oF oF
3.32) = Lto) —v(., t))%dx < —(,u) — —(. — v)dxdt.
332 5 [t —otiaes [C [ (G0 - 500 - v
Lipschitz condition on %—5, Holder inequality and (H4) give:

1 fo
(3.33) 5/Q<u(.,zt0) (1)) < 0/0 = ol 2t
implies,
2 fo 2

(3.34) = vlisye < C [ llu oyt

Now, Gronwall’s lemma gives u = v. The proof of Theorem 3.1 is then complete. [J

We end this section by investigate the asymptotic behavior of global solution of
(Pr), in particular the convergence to a stationary solution. For this, we study the
following stationary problem (P) corresponding to (Pr).

(—A);(.)u(m) + ‘U(x)‘q(')du(x) = )\%_5(%“) n Q,
(P)q w >0 in €,
u =0 in 0Q2.

According to Theorem 3.4 in [12], for all A > 0, problem (P) admits at least a weak
solution @ in the sense that

JRRCE () P2 ) — afy)) (vle) — o),
QxQ

|z — y’N+Sp(-)

u(x (‘)_2ﬂ$v$ T
+/M\<>\q (2)(z)d

oF
:)\/ —(z,u)v(x)dx,
[ S
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for every v € C§°(Qr).
Note that @ is unique. Indeed, the Euler Lagrange functional (corresponding to
problem (P)) # : Wy — R define by

(3.35) // N )PV dwdy—i—/ ‘“’q(')dx—A/F(x,u)dx
o p(. !x—yl +s”) a q(.) Q

is bounded below and strictly convex (this holds since for any = and y, the function
E— gp (@Y) is strictly convex).

p(w,y
It is easy to see that 1) is coercive and the uniqueness of solution to (P) follows.

The following proposition is inspired by Proposition 4.3 in reference [10]. We
employ embedding LP" (Q) < LP()(€) in order to generalize to the case of a variable
exponent.

Proposition 3.5. Let F' satisfying assumption (Hg) and u € Wy be a weak solution
of (P). Then u € L>®(Q).

Proof. let adapt argument from [10] and use embedding LP'(Q) < LPO(Q) to
conclude.

First we note that due to the homogeneity of the problem (P), it suffices to prove
that

(3.36) Hu+||Loo(Q) < 1 whenever |u+|Lp(.)(Q) < ¢ for some d > 0.

A similar assertion can be established for u~ where u*(z) = max(u(z),0)
and v~ (z) = max(—u(x),0). Therefore u € L>®. For k > 1, set wi(x) =

(u(z) —1— 2_k)+.

We have the following properties about wy(x).

() wi1(z) < wif).
(ii) u(z) < (28! + Dwy(z) for z € {wy(z) > 0}.
(iil) {wpr(z) > 0} C {wg(z) > 27+

Now let Uy, = HwkH Taking v =u — (1 — 2*(’f+1)).

et (@)’
Using lemma 2.8, (i), (ii) above, for ||wg||lw, > 1 we get
p+
Wk
sl e

_ / Wi () — wipa (y) P
QxQ

|z — y|N+szfr

< / u(z) — u()P" > (Wi () — wpa (1)) (ul@) — u(y))
-~ Jaxa

|z — y|N+sszr

OF (z,
S/QXQ\#\MH(%)M

< / (CV () |ulP" " VYwpy1da
{wp 41 (x)>0}
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+_1

P 1
o\ k41 gt

<C [V (z)]»" -1 (2 + 1P Ty [P

{wp41(2)>0} {wp41(2)>0}

pt—1 1
+ L pt + 4 rt

<cetept ([ V()7 / Wl P

{wpy1(z)>0} {wp41(2)>0}
< CtU.
From Holder’s inequality we have
Up1 = / wiildm
{wp41(2)>0}
Nfsp+
N - N spt
< (/ w, > {2 € Q:wppa(x) >0}~
{wp41(2)>0}
' p* (k+1)p* 7 ) B
< Cllwerall?, o (2 Up) ¥ .
Hence,
+

sp

U1 < C'CRUL (20D ) N

Sp+ +

Clck(2k+1 + 1)p+(1+ N )U1+%

k
tkrrl+
cryulte

VASVAN

+
where ¢ > 0 and oo = %.

It follows that klim U, = 0, provides that \|u+||7;;+(Q =Up < Caz 5f+. Then,

—00 )

wi(x) = (u(z) —1)*.

Now, according to embedding LP" () < LPO) () we obtain
|u+|LP<<>(Q) S C‘|U+||Lp+(g)v

which impmlies

1]y ) < 8 with § = C6y.

0

Let recall Theorem 4.4 of [10] that provides the C®(Q) regularity of weak solution
of (P).

Theorem 3.6. Assume that uw € Wy is solution of (P). There exists o =

a(N,Q,p,s) € (0,s] and C = C(N,p,s,Q ||ul|r=(q)), such that u € C*(Q) and
||UHca(§) <C.
Note that A := (=A)7 () With Dirichlet conditions is m-accretif of domain
D(A)={ueWynNL>®Q): Aue L=(Q)}.

Using [10, Theorem 3.10], we show that u(t) — @ as t — 400, where u(t) is the
solution of problem (Pr) and 4 the solution of problem (P).
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