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three-operator splitting algorithm under additional assumptions of strong convex-
ity of the smooth term and smoothness of one of the proximal terms [16, Theorem
3]. For monotone inclusion problems, Davis and Yin showed that the sequence gen-
erated by an accelerated variant of three-operator splitting algorithm converges to
the solution with convergence rate O(1/k2) under the additional assumption that
one of the involved operators is strongly monotone [12, Theorem 3.3]. Note that
the existing accelerated algorithms require to know the strong monotonicity con-
stant of involved operators. However, this constant is typically unknown, and so
the question arises of whether it is possible to design an accelerated variant which
does not require to assume the strong monotonicity of involved operators.

The inertial extrapolation technique has been widely used to improve the speed
of convergence of algorithms without additional assumptions on involved operators.
For instance, the inertial proximal point algorithm [1], the inertial forward-backward
splitting algorithm [20], the inertial Douglas-Rachford splitting algorithm [6, 14],
and the inertial forward-backward-forward splitting algorithm [5, 26]. Here, we are
interested in variants inertial three-operator splitting algorithm. Cui, Tang and
Yang [10] proposed an inertial three-operator splitting algorithm, which combines
the inertial Kraselsnoskĭı-Mann iteration [6] and the three-operator splitting algo-
rithm [12]. Under certain conditions on the inertial parameters, they analyzed the
converngece of their algorithm [23, Theorem 3.1]. However, the trajectories of se-
quences generated by inertial splitting algorithms exhibit undesirable oscillations.
For example, there is an example that the inertial proximal point algorithm loses
the Fejér monotonicity of the sequences with respect to the solution. This further-
more makes the sequence generated by the algorithm can oscillate around the set
of solutions [23, Examples 1 and 2].

Our purpose in this paper is to study the convergence of an alternated inertial
three-operator splitting algorithm for finding a zero of the sum of three maximally
monotone operators where one of them is cocoercive. The idea is to employ the alter-
nated inertial technique [23, 17] to the three-operator splitting algorithm with large
stepsizes [11, 2]. We show that the sequence generated by the proposed algorithm
converges weakly to a solution under mild conditions on the inertial parameters
and the relaxation parameters, which are different from [10]. As a consequence,
it is natural to generalize the convergence analysis of the existing algorithms in
[23, 17, 30] to the proposed alternated inertial three-operator splitting algorithm.
We emphasize that the proposed algorithm gives the Fejér monotonicity when the
iteration counter is even. Furthermore, by introducing suitable product spaces,
structured monotone inclusion problems involving parallel sums and compositions
of maximally monotone operators with linear continuous ones can be considered as
the special instance of the monotone inclusion problem (see [8, 5, 32]). As a conse-
quence, the alternated inertial primal-dual splitting algorithm for solving structured
monotone inclusion problems can be derived from the proposed algorithm. Finally,
we conduct numerical experiments on optimal control problems [24]. Numerical re-
sults demonstrate the advantage of the proposed alternated inertial three-operator
splitting algorithms.
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The paper is organized as follows. Section 2 recalls some basic definitions. Section
3 presents and analyzes our alternated three-operator splitting algorithm. Section
4 derives the alternated inertial primal-dual splitting algorithms from our proposed
algorithm. Section 5 reports numerical experiments results. Section 6 gives conclu-
sions.

2. Preliminaries

This section reviews basic definitions, facts, and notation that will be used
throughout the paper.

H denotes a real Hilbert space with endowed the inner product 〈·, ·〉 and the
norm ‖ · ‖. R and N denote the set of real numbers and the set of positive integers,
respectively. We denote by R++ the set of strictly positive real numbers. For any
{xk} ⊂ H and x ∈ H, xk → x and xk ⇀ x denote the strong and weak convergences
of {xk} to x, respectively. Let x, y ∈ H and let α ∈ R. Then, the following identity
will be used in the paper:

(2.1) ‖(1− α)x+ αy‖2 = (1− α)‖x‖2 + α‖y‖2 − α(1− α)‖x− y‖2

([3, Corollary 2.15]).
For an arbitrary set-valued operator A : H ⇒ H, dom(A) denotes the domain

of A, i.e., dom(A) = {x ∈ H : A(x) 6= ∅}. ran(A) denotes the range of A, i.e.,
ran(A) =

⋃
{A(x) : x ∈ dom(A)}, gr(A) denotes the graph of A, i.e., gr(A) =

{(x, x∗) : x∗ ∈ A(x)}. The set of zero points of A is denoted by A−1(0), i.e.,
A−1(0) = {z ∈ dom(A) : 0 ∈ A(z)}.

A set-valued operator A : H ⇒ H is said to be

(i) monotone if, for all (x, x∗), (y, y∗) ∈ gr(A),

〈x− y, x∗ − y∗〉 ≥ 0;

(ii) maximally monotone if A is monotone and A = B whenever B : H ⇒ H is
a monotone mapping such that gr(A) ⊂ gr(B);

(iii) uniformly monotone with modulus ϕ : [0,∞) → [0,∞] if ϕ increasing, van-
ishes only at 0, and for all (x, x∗), (y, y∗) ∈ gr(A),

〈x− y, x∗ − y∗〉 ≥ ϕ(‖x− y‖).

For operator A : H ⇒ H, and for γ ∈ R++, the resolvent JγA : H ⇒ H of A is
defined by JγA = (I + γA)−1, where I is the identity mapping on H. Moreover, if
A is maximally monotone, then JγA is single-valued and dom(JγA) = H.

For a function f : H → R, dom(f) denotes the domain of f , i.e., dom(f) = {x ∈
H : f(x) ∈ R}. Γ(H) denotes the family of proper, convex and lower semicontin-
uous extended real-valued functions. For a function f ∈ Γ(H), the subdifferential
∂f : H ⇒ H of f at x ∈ H is defined by

(2.2) ∂f(x) = {x∗ ∈ H : f(y) ≥ f(x) + 〈y − x, x∗〉 (∀y ∈ H)}.
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We know that the subdifferential ∂f is maximally monotone ([31, Theorem 4.6.6],
[3, Theorem 20.40]) and its resolvent is given by Jγ∂f = proxγf , where

proxγf (x) = argmin
y∈H

{f(y) + 1

2γ
‖y − x‖2}

denotes the proximal mapping of f . We also know that the subdifferential of a uni-
formly convex function is uniformly monotone [3, Example 22.4 (iii)]. The conjugate
of f is

f∗ : H → f∗(p) = sup{〈p, x〉 − f(x) : x ∈ H}
for all p ∈ H. Moreover, if f ∈ Γ(H), then f∗ ∈ Γ(H), as well, and (∂f)−1 = ∂f∗.
For g ∈ Γ(H), the infimal convolution f□g : H → R of f and g is defined by

f□g(x) = inf
y∈H

{f(y) + g(x− y)}

for all x ∈ H.
Let H and G be real Hilbert spaces and let L : H → G be a nonzero bounded

linear operator with induced norm ‖L‖ = sup{‖Lx‖ : x ∈ H with ‖x‖ ≤ 1}. The
adjoint operator L∗ : G → H of L is defined by 〈Lx, y〉G = 〈x, L∗y〉H for all x ∈ H
and all y ∈ G.

Let C : H → H be a single-valued operator. C is said to be

(i) nonexpansive if for all x, y ∈ H

‖C(x)− C(y)‖ ≤ ‖x− y‖;

(ii) α-averaged with α ∈ (0, 1) if there exists a nonexpansive R : H → H such
that C = (1− α)I + αR;

(iii) β-cocoercive with β ∈ (0,∞) if for all x, y ∈ H,

〈C(x)− C(y), x− y〉 ≥ β‖C(x)− C(y)‖2.

If a function g : H → R is convex and differentiable function with a β−1-Lipschitzian
gradient, then ∇g is β-cocoercive [3, Corollary 18.17]. When C is α-averaged, the
following inequality holds [3, Proposition 4.35]:

(2.3) ‖C(x)− C(y)‖2 ≤ ‖x− y‖2 − 1− α

α
‖(I − C)x− (I − C)y‖2 (∀x, y ∈ H).

The set of fixed points of C is denoted by

Fix(C) = {x ∈ H : C(x) = x}.

Let Ω be a nonempty subset of H and let {xk} be a sequence in H. Then {xk} is
Fejér monotone with respect to Ω if for all x ∈ Ω, ‖xk+1 − x‖ ≤ ‖xk − x‖ (∀k ∈ N).

The next results are crucial for the proof of our main results.

Proposition 2.1. [2, Lemma 3.2] Let A,B : H ⇒ H be two maximally monotone
operators and C : H → H. Let x, x̂ ∈ H and γ > 0, and set u := JγA(x) (resp.
û := JγA(x̂)) and v := JγB(2u − x − γC(u)) (resp. v̂ := JγB(2û − x̂ − γC(û))).
Then, it holds

(2.4) 0 ≤ 〈x− x̂, (u− v)− (û− v̂)〉−‖(u−v)− (û− v̂)‖2−γ〈C(u)− C(û), v − v̂〉.
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Further, if A (resp. B) is uniformly monotone with modulus ϕ, then (8) holds with
0 replaced by γϕ(‖u− û‖ (resp. γϕ(‖v − v̂‖)).

Proposition 2.2. [11, Proposition 2.1 and Corollary 4.2] Let A,B : H ⇒ H be
maximally monotone, let C : H → H be β-cocoercive, and let γ, λ ∈ (0,∞). Define

(2.5) TA,B,C := I − λJγA + λJγB ◦ (2JγA − I − γC ◦ JγA).

Then, the following hold:

(a) Fix(TA,B,C) 6= ∅ if and only if (A+B + C)−1(0) 6= ∅;
(b) JγA(Fix(TA,B,C)) = (A+B + C)−1(0);
(c) if γ ∈ (0, 4β) and λ ∈ (0, 2−γ/(2β)), then TA,B,C is (2λβ)/(4β−γ)-averaged.

3. Alternated inertial three operator splitting algorithm and
convergence results

In this paper, we consider a monotone inclusion problem. This problem is for-
mulated as follows.

Problem 3.1. Let A,B : H ⇒ H be maximally monotone operators and C : H → H
a β-cocoercive mapping for some β > 0. We consider the following inclusion problem

(3.1) find u ∈ H such that 0 ∈ (A+B + C)(u).

We provide an algorithm together with convergence results. We consider the
following iterative algorithm.

Algorithm 3.2. 

wk =

{
zk (if k is even)

zk + α(zk − zk−1) (if k is odd)

uk = JγA(wk)

vk = JγB(2uk − wk − γC(uk))

zk+1 = wk + λ(vk − uk)

where k ≥ 1, z0, z1 ∈ H, α ∈ [0,∞) and λ, γ ∈ (0,∞).

3.1. Convergence Analysis. To establish weak convergence of the sequence gen-
erated by Algorithm 3.2, we need the following assumptions:

Assumption 3.3. Assume that γ, λ and α satisfy the following conditions:

(A1) γ ∈ (0, 4β);
(A2) λ ∈ (0, 2− γ/(2β));
(A3) α ∈ [0, (2− γ/(2β)− λ)/λ).

Remark 3.4.

• Assume that α = 0. Then, Algorithm 3.2 can be considered as the three-
operator splitting algorithm [12] with constant relaxation parameters. The
stepsize γ in [12] is assumed to be in (0, 2βϵ) with ϵ ∈ (0, 1). A generalization
in the direction of large stepsizes can be found in [11, 2]
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• Assume that wk = zk + α(zk − zk−1) for every k ∈ N. Then, Algorithm 3.2
becomes the inertial three-operator splitting algorithm [10] with constant
inertial parameters and constant relaxation parameters. The convergence
of the inertial three-operator splitting algorithm was discussed under the
following conditions:

– γ ∈ (0, 2βϵ), where ϵ ∈ (0, 1);
– α ∈ [0, 1);
– Let λ, σ, δ > 0 such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ δ − α[α(1 + α) + αδ + σ]

δ(1 + α(1 + α) + αδ + σ)
.

These conditions are different from Assumption 3.3. In fact, compared to
(0, 2βϵ), the range of γ in (A1) is large. For given 0 ≤ α < 1, we consider

the upper bound of λ. As addressed in [10], set δ := α2(1+α)+ασ
1−α2 + 1. For

simplicity, we focus on the cases of σ = 0.01 and σ = 0.1. Then we get the
following:

(σ = 0.01) α = 0.1 ⇒ λ < 0.8010 α = 0.3 ⇒ λ < 0.4622

α = 0.6 ⇒ λ < 0.1076 α = 0.9 ⇒ λ < 0.0019

(σ = 0.1) α = 0.1 ⇒ λ < 0.7388 α = 0.3 ⇒ λ < 0.4261

α = 0.6 ⇒ λ < 0.0986 α = 0.9 ⇒ λ < 0.0017

There is trade-off between choosing α and choosing λ.
On the other hand, we consider (A2) and (A3). For simplicity, we focus

on the case γ = β. In this case, (A2) and (A3) become λ ∈ (0, 1.5) and
α ∈ [0, (1.5− λ)/λ). Then we get the following:

λ = 0.1 ⇒ α < 14 λ = 0.3 ⇒ α < 4 λ = 0.6 ⇒ α < 1.5

λ = 0.9 ⇒ α < 0.6667 λ = 1.2 ⇒ α < 0.25 λ = 1.4 ⇒ α < 0.0714

Therefore, our conditions are mild and easily verifiable.
• Algorithm 3.2 is a generalization of the existing alternated inertial algo-
rithms in [23, 17, 30]. For other type of alternated inertial algorithm we
refer to [22].

Theorem 3.5. Assume that (A+B+C)−1(0) 6= ∅ and Assumption 3.3 holds for γ,
λ and α. Let {zk} be the sequence generated by Algorithm 3.2. Then the following
hold:

(i) {z2k} is Fejér monotone with respect to Fix(TA,B,C), where TA,B,C is defined
in (2.5).

(ii) {zk} converges weakly to a point z in Fix(TA,B,C).
(iii) {C(uk)} converges strongly to C(JγA(z)).
(iv) {uk} converges weakly to JγA(z) ∈ (A+B + C)−1(0).
(v) {vk} converges weakly to JγB(2JγA(z)−z−γC(JγA(z))) ∈ (A+B+C)−1(0).
(vi) If either A or B is uniformly monotone, then {uk} and {vk} converge

strongly to the unique point in (A+B + C)−1(0).
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Proof. (i) Let s ∈ Fix(TA,B,C). From the definition of {zk}, we observe that

zk+1 = wk + λ(vk − uk)

= wk + λ(JγB(2uk − wk − γC(uk)− JγA(wk))

= TA,B,C(wk).(3.2)

Using (2.3) and Proposition 2.2 (c), we obtain

‖z2k+2 − s‖2 = ‖TA,B,C(w2k+1)− s‖2

≤ ‖w2k+1 − s‖2 −
1− 2λβ

4β−γ

2λβ
4β−γ

‖w2k+1 − TA,B,C(w2k+1)‖2

= ‖w2k+1 − s‖2 − 1

λ

(
2− γ

2β
− λ

)
‖w2k+1 − TA,B,C(w2k+1)‖2.(3.3)

Using (2.1) and (3.2), we obtain

‖w2k+1 − s‖2 =‖z2k+1 + α(z2k+1 − z2k)− s‖2

=(1 + α)‖z2k+1 − s‖2 − α‖z2k − s‖2 + α(1 + α)‖z2k − z2k+1‖2

=(1 + α)‖z2k+1 − s‖2 − α‖z2k − s‖2

+ α(1 + α)‖w2k − TA,B,C(w2k)‖2.(3.4)

Again, by using Proposition 2.2, we obtain

‖z2k+1 − s‖2 = ‖TA,B,C(w2k)− s‖2

≤ ‖w2k − s‖2 − 1

λ

(
2− γ

2β
− λ

)
‖w2k − TA,B,C(w2k)‖2,

and hence the above estimate together with (3.3) and (3.4) implies

‖z2k+2 − s‖2 ≤‖z2k − s‖2 − 1 + α

λ

(
2− γ

2β
− λ− λα

)
‖w2k − TA,B,C(w2k)‖2

− 1

λ

(
2− γ

2β
− λ

)
‖w2k+1 − TA,B,C(w2k+1)‖2.(3.5)

By using Assumption 3.3, we obtain that {z2k} is Fejér monotone with respect to
Fix(TA,B,C).

(ii) From (3.5), we obtain limk→∞ ‖w2k − TA,B,C(w2k)‖ = limk→∞ ‖w2k+1 −
TA,B,C(w2k+1)‖ = 0 and hence

(3.6) lim
k→∞

‖wk − TA,B,C(wk)‖ = 0.

Since TA,B,C is (2λβ)/(4β − γ)-averaged, TA,B,C is nonexpansive. By (3.6) and [3,
Theorem 5.14], {wk} converges weakly to a point in Fix(TA,B,C). Therefore, by
(3.2) and (3.6), we have that {zk} converges weakly to a point z ∈ Fix(TA,B,C).

(iii) Using the definition of {zk} we have λ(vk−uk) = TA,B,C(wk)−wk. By (3.6),
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we obtain

(3.7) lim
k→∞

‖vk − uk‖ = 0.

Since z ∈ Fix(TA,B,C), we have JγA(z) = JγB(2JγA(z) − z − γC(JγA(z))). By
applying Proposition 2.1 with x := z and x̂ := wk, we obtain the inequality

(3.8) 0 ≤ 〈z − wk, vk − uk〉 − ‖uk − vk‖2 − γ〈C(JγA(z))− C(uk)), JγA(z)− vk〉.

Using the β-cocoercivity of C, we obtain

− γ〈C(JγA(z))− C(uk), JγA(z)− vk〉
= −γ〈C(JγA(z))− C(uk), JγA(z)− uk〉+ γ〈C(JγA(z))− C(uk), vk − uk〉
≤ −γβ‖C(JγA(z))− C(uk)‖2 + γ〈C(JγA(z))− C(uk), vk − uk〉,

which together with (3.8) yields that

γβ‖C(JγA(z))− C(uk)‖2 ≤〈z − wk, vk − uk〉 − ‖uk − vk‖2

+ γ〈C(JγA(z))− C(uk), vk − uk〉.(3.9)

Since {wk} converges weakly, {wk} is bounded [3, Lemma 2.46] and hence {uk} and
{vk} are bounded. From (3.7) and (3.9), we obtain

(3.10) C(uk) → C(JγA(z)) (k → ∞).

(iv) and (v) Since {uk} is bounded, there exists a subsequence {ukj} of {uk},
which converges weakly to u. It follows from (3.7) that

ukj ⇀ u, vkj ⇀ u, C(ukj ) → C(JγA(z)),
1

γ
(wkj − ukj ) ⇀

1

γ
(z − u),

and
1

γ
(2ukj − wkj − γC(ukj )− vkj ) ⇀

1

γ
(u− z − γC(JγA(z))).

By [3, Corollary 26.8], we obtain (u, 1
γ (z − u)) ∈ gr(A) and hence u = JγA(z) ∈

(A+B + C)−1(0). Therefore, JγA(z) is the unique cluster point of {uk} and {vk}.
(vi) Assume that A is uniformly monotone. Using uniform monotonicity in

Lemma 2.2 with x := z and x̂ := wk, we obtain the inequality

ϕ(‖JγA(z)− uk‖) ≤〈z − wk, vk − uk〉 − ‖uk − vk‖2

− γ〈C(JγA(z))− C(uk), JγA(z)− vk〉,(3.11)

where ϕ : [0,∞) → [0,∞] an increasing function that vanishes only at 0 We therefore
deduce from (3.7) and (3.10) that ϕ(‖JγA(z)−uk‖) → 0, which implies that uk → z.
If B is uniformly monotone, then the right-hand side of (3.11) is ϕ(‖JγA(z)− vk‖).
Thus, we conclude using the similar argument as in the case when A is uniformly
monotone. □
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Remark 3.6. Theorem 3.5 leads us to Fejér monotonicity of {z2k} and conver-
gence of {zk}, {C(uk)}, {uk} and {vk}. The inertial parameters and the relaxation
parameters are different from [10].

4. Primal-dual splitting algorithms and convergence results

We will formulate in this section weakly convergent primal-dual splitting algo-
rithms by using the general algorithm in Section 3. To this end, we first consider
the following structured monotone inclusion problem [8, 5, 32].

Problem 4.1. Let m be a strictly positive integer and let I := {1, 2, . . . ,m}. We
consider the following primal inclusion problem

(4.1) find x ∈ H such that 0 ∈ A(x) +
m∑
i=1

L∗
i ((Bi□Di) (Li(x))) + C(x),

and its dual inclusion problem

find v1 ∈ G1, . . . , vm ∈ Gm such that

(∃x ∈ H)

{
−
∑m

i=1 L
∗
i (vi) ∈ A(x) + C(x)

vi ∈ (Bi□Di)(Li(x)) (∀i ∈ I)
(4.2)

where

• H,G1, . . . ,Gm are real Hilbert spaces.
• A : H ⇒ H and Bi : Gi ⇒ Gi (i ∈ I) are maximally monotone operators.
• C : H → H is monotone and β-Lipschitzian operator for some β > 0.
• Di : Gi ⇒ Gi (i ∈ I) is maximal monotone.
• Li : H → G (i ∈ I) is a nonzero bounded linear operator with adjoint L∗

i .

We say that (x, v1, . . . , vm) ∈ H×G1×· · ·×Gm is a primal-dual solution to Problem
4.1 if

(4.3) −
m∑
j=1

L∗
jvj ∈ A(x) + C(x) and vi ∈ (Bi□Di)(Li(x)) i = 1, 2, . . . ,m.

If x is a solution to (4.1), then there exists (v1, . . . , vm) ∈ G1 × · · · × Gm such that
(x, v1, . . . , vm) is a primal-dual solution to Problem 4.1, and if (v1, . . . , vm) is a
solution to (4.2), then there exists x ∈ H such that (x, v1, . . . , vm) is a primal-dual
solution to Problem 4.1. If (x, v1, . . . , vm) is a primal-dual solution to Problem 4.1,
then x is a solution to (4.1) and (v1, . . . , vm) is a solution to (4.2). Various particular
instances of (4.1) and (4.2) when applied to convex optimization problems can be
found in [8, 32].

We consider the Hilbert space G := G1×· · ·×Gm endowed with the inner product
and associated norm defined for u = (u1, . . . , um),v = (v1, . . . , vm) ∈ G as

〈u,v〉G :=
m∑
i=1

〈ui, vi〉Gi
and ‖u‖G :=

√
〈u,u〉G ,
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respectively. Furthermore, we let K = H × G be the Hilbert space endowed with
inner product and associated norm defined for every (x,u), (y,v) ∈ K as

(4.4) 〈(x,u), (y,v)〉K := 〈x, y〉H + 〈u,v〉G and ‖(x,u)‖K :=
√
〈(x,u), (x,u)〉K,

respectively.

4.1. A primal-dual algorithm of forward-backward-type. This subsection
presents an algorithm for solving Problem 4.1 under an additional assumption that

(4.5) Di : Gi ⇒ Gi (i ∈ I) is νi-strongly for some νi ∈ (0,∞).

Consider the sequences generated by the following algorithm:

Algorithm 4.2.

xk =

{
xk (if k is even)

xk + α(xk − xk−1) (if k is odd)

vi,k =

{
vi,k (if k is even)

vi,k + α(vi,k − vi,k−1) (if k is odd)
(∀i ∈ I)

xk+1 = xk + λ

(
JτA

(
xk − τ

(
m∑
i=1

L∗
i vi,k + Cxk

))
− xk

)
vi,k+1 = vi,k + λ

(
JσiB

−1
i

(
vi,k + σi

(
Li(2xk+1 − xk)−D−1

i vi,k
))

− vi,k

)
(∀i ∈ I)

where (x0, v1,0, . . . , vm,0), (x1, v1,1, . . . , vm,1) ∈ H × G1 × · · · × Gm, α ∈ [0,∞],
γ, λ, τ, σ1, . . . , σm ∈ (0,∞).

We derive convergence of Algorithm 4.2.

Theorem 4.3. In Problem 4.1, suppose that (4.5) and

(4.6) 0 ∈ ran

(
A+

m∑
i=1

L∗
i (Bi□Di)Li + C

)
hold. Define

β := min{β, ν1, . . . , νm},

ρ := min
{
τ−1, σ−1

1 , . . . , σ−1
m

}1−

√√√√τ
m∑
i=1

σi‖Li‖2

 ,

and suppose that 2βρ > 1 holds. Let {(xk, v1,k, . . . , vm,k)} ⊂ H × G1 × · · · × Gm

be a sequence generated by Algorithm 4.2 such that λ ∈ (0, 2 − 1/(2βρ)) and α ∈
[0, 1− 1/(2βρ)). Then the following hold:

(i) {(x2k, v1,2k, . . . , vm,2k)} is Fejér monotone with respect to the set of primal-
dual solutions of Problem 4.1.

(ii) There exists a primal-dual solution v = (x, v1, . . . , vm) to Problem 4.1 such
that {(xk, v1,k, . . . , vm,k)} converges weakly to v.

(iii) Suppose that C is uniformly monotone. Then {xk} converges strongly to x.
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(iv) Suppose that D−1
i is uniformly monotone for some i ∈ I. Then {vi,k} con-

verges strongly to vi.

Proof. We consider the following operatorsM : K ⇒ K, S : K → K and V : K → K
as follows:

M : (x,u) 7→ (A(x) +

m∑
i=1

L∗
i (ui), B

−1
1 (u1)− L1(x), . . . , B

−1
m (um)− Lm(x)),(4.7)

S : (x,u) 7→
(
C(x), D−1

1 (u1), . . . , D
−1
m (um)

)
.(4.8)

V : (x,u) 7→

(
1

τ
x−

m∑
i=1

L∗
iui,−L1x+

1

σ1
u1, . . . ,−Lmx+

1

σm
um

)
.(4.9)

Furthermore, consider the Hilbert space KV endowed with inner product and norm
defined for x,y ∈ K as

(4.10) 〈x,y〉KV
:= 〈x,V y〉K and ‖x‖KV

:=
√
〈x,x〉KV

respectively. Then the following hold:

• M and S are maximal monotone on K;
• V −1M and V −1S are maximal monotone on KV ;
• V −1S is βρ-cocoercive on KV ;
•

(x̂, v̂1, . . . , v̂m) ∈ (V −1M + V −1S)−1(0)

⇔ (x̂, v̂1, . . . , v̂m) ∈ (M + S)−1(0)

⇔ (x̂, v̂1, . . . , v̂m) is a primal-dual solution to Problem 4.1;(4.11)

• weak and strong convergence in KV are equivalent with weak and strong
convergence in K;

([8, 32]). Let A : K → K, B : K ⇒ K, and C : K → K be defined by A(x) := 0,
B(x) := V −1M(x), and C(x) := V −1S(x). For every k ∈ N, define

zk := (xk, v1,k, . . . , vm,k),

wk := (xk, v1,k, . . . , vm,k).(4.12)

It follows from (4.7), (4.8), (4.9) and (4.12) that Algorithm 4.2 can be equivalently
written as

(4.13) zk+1 = wk + λ(JB(wk −Cwk)−wk).

Consequently, it has the structure of Algorithm 3.2 in the case when A ≡ 0. Hence,
it is sufficient to check the assumptions in Theorem 3.5 to show our results.

(i) and (ii) Set TA,B,C := JB ◦ (I −C). According to Theorem 3.5, the sequence
{z2k} is Fejér monotone with respect to Fix(TA,B,C). Moreover, {zk} converges
weakly to z in KV and consequently, in K to z ∈ (B +C)−1(0).
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(iii) and (iv) We prove the statement in case C is uniformly monotone, the situ-
ation when D−1

i (i ∈ I) fulfills this condition being similar. By taking into consid-
eration (iii) of Theorem 3.5, we have

(4.14) C(vk)−C(v) → 0 (k → ∞).

On the other hand, (4.14) and the strongly positivity of V [32, page 673] yield
V −1(S(vk) − S(v)) = C(vk) − C(v) → 0 (k → ∞), which implies that S(vk) −
S(v) → 0 (k → ∞). Hence,

(4.15) C(xk) → C(x) and D−1
i (vi,k) → D−1

i (vi) (∀i ∈ I).

There exists an increasing function ϕC : [0,∞) → [0,∞] that vanishes only at 0 such
that

(4.16) ϕC(‖xk − x‖) ≤ 〈xk − x,C(xk)− C(x)〉 ≤ ‖xk − x‖‖C(xk)− C(x)‖.

Because {xk − x} is bounded, it follows from (4.16) that xk → x (k → ∞).
□

Remark 4.4. In the case when C ≡ 0 and, for every i ∈ N

(4.17) Di(v) =

{
Gi (v = 0),

∅ (v 6= 0),

the conclusion of Theorem 4.3 remains valid with condition 2βρ > 1 replaced by

(4.18) τ
m∑
i=1

σi‖Li‖2 < 1

[32, Remark 3.3].

The following convex minimization problem is strongly related to Problem 4.1.

Problem 4.5. Let f ∈ Γ(H) and h : H → R a convex and differentiable function
with a β-Lipschitzian gradient for β > 0. For every i ∈ I, let Gi be a real Hilbert
space, let gi, li ∈ Γ(Gi) such that li is 1/νi-strongly convex for νi > 0. Let Li : H →
Gi be a nonzero bounded linear operator. Consider the primal problem

(4.19) inf
x∈H

{
f(x) +

m∑
i=1

gi□li(Li(x)) + h(x)

}
and the dual problem

(4.20) sup
v1∈G1,...,vm∈Gm

{
−f∗□h∗

(
−

m∑
i=1

L∗
i (vi)

)
−

m∑
i=1

(g∗i (vi) + l∗(vi))

}
.

Define

A := ∂f,Bi := ∂gi, Di := ∂li (i ∈ I) and C := ∇h.

The following result is a direct consequence of Theorem 4.3.
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Corollary 4.6. In Problem 4.5, suppose that

(4.21) 0 ∈ ran

(
∂f +

m∑
i=1

L∗
i (∂gi□∂li)Li +∇h

)
.

Define

β := min{β, ν1, . . . , νm},

ρ := min
{
τ−1, σ−1

1 , . . . , σ−1
m

}1−

√√√√τ

m∑
i=1

σi‖Li‖2


and suppose that 2βρ > 1 holds. Let {(xk, v1,k, . . . , vm,k)} be a sequence generated
by 

xk =

{
xk (if k is even)

xk + α(xk − xk−1) (if k is odd)

vi,k =

{
vi,k (if k is even)

vi,k + α(vi,k − vi,k−1) (if k is odd)
(∀i ∈ I)

xk+1 = xk + λ

(
proxτf

(
xk − τ

(
m∑
i=1

L∗
i vi,k +∇h(xk)

))
− xk

)
vi,k+1 = vi,k + λ

(
proxσig∗i

(vi,k + σi (Li(2xk+1 − xk)))− vi,k

)
(∀i ∈ I),

where (x0, v1,0, . . . , vm,0), (x1, v1,1, . . . , vm,1) ∈ H×G1×· · ·×Gm, λ ∈ (0, 2−1/(2βρ))

and α ∈ [0, 1− 1/(2βρ)). Then the following hold:

(i) {(x2k, v1,2k, . . . , vm,2k)} is Fejér monotone with respect to the set of primal-
dual solutions of Problem 4.5.

(ii) There exists v = (x, v1, . . . , vm) ∈ K such that {(xk, v1,k, . . . , vm,k)} con-
verges weakly to v and x is an optimal solution of the problem (4.19) and
(v1, . . . , vm) is an optimal solution of (4.20).

(iii) Suppose that h is uniformly convex. Then {xk} converges strongly x.
(iv) Suppose that l∗i is uniformly convex for some i ∈ I. Then {vi,k} converges

strongly to vi.

4.2. A primal-dual algorithm of Douglas-Rachford-type. This subsection
presents an algorithm for solving Problem 4.1 under additional assumption that

(4.22) C ≡ 0.

Consider the sequences generated by the following algorithm:
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Algorithm 4.7.

xk =

{
xk (if k is even)

xk + α(xk − xk−1) (if k is odd)

vi,k =

{
vi,k (if k is even)

vi,k + α(vi,k − vi,k−1) (if k is odd)
(∀i ∈ I)

p1,k = JτA

(
xk −

τ

2

m∑
i=1

L∗
i vi,k

)
w1,k = 2p1,k − xk{
p2,i,k = JτB−1

i
(vi,k +

σi
2 Liw1,k)

w2,i,k = 2p2,i,k − vi,k
(∀i ∈ I)

z1,k = w1,k −
τ

2

m∑
i=1

L∗
iw2,i,k

xk+1 = xk + λ(z1,k − p1,k){
z2,i,k = JσiD

−1
i

(
w2,i,k +

σi
2 Li(2z1,k − w1,k)

)
vi,k+1 = vi,k + λ(z2,i,k − p2,i,k)

(∀i ∈ I)

where (x0, v1,0, . . . , vm,0), (x1, v1,1, . . . , vm,1) ∈ H × G1 × · · · × Gm, λ ∈ (0, 2), α ∈
[0, (2− λ)/λ), and τ, σ1, . . . , σm ∈ (0,∞) such that

(4.23) τ
m∑
i=1

σi‖Li‖2 < 4.

Theorem 4.8. In Problem 4.1, suppose that (4.22) and

(4.24) 0 ∈ ran

(
A+

m∑
i=1

L∗
i (Bi□Di)Li

)
hold. Suppose that (4.18) holds. Let {(xk, v1,k, . . . , vm,k)} be a sequence generated
by Algorithm 4.7 such that λ ∈ (0, 2) and α ∈ [0, (2 − λ)/λ). Then the following
hold:

(i) {(x2k, v1,2k, . . . , vm,2k)} is Fejér monotone with respect to Fix(TA,B,C), where
A, B and C are defined in (4.30).

(ii) {(xk, v1,k, . . . , vm,k)} converges weakly to a point x = (x, v1, . . . , vm) in
Fix(TA,B,C).

(iii) {(p1,k, p2,1,k, . . . , p2,m,k)} converges weakly to p = (p1, p2,1, . . . , p2,m), where

p1 = JτA

(
x− τ

2

m∑
i=1

L∗
i vi

)
,

p2,i = JσiB
−1
i

(
vi +

σi
2
Li(2p1 − x)

)
(∀i ∈ I),

and p is a primal-dual solution to Problem 4.1.
(iv) {(z1,k, z2,1,k, . . . , z2,m,k)} converges weakly to p.
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(v) if A and B−1
i (i ∈ I) are uniformly monotone, then {(p1,k, p2,1,k, . . . , p2,m,k)}

and {(z1,k, z2,1,k, . . . , z2,m,k)} converge strongly to the unique primal-dual so-
lution to Problem 4.1.

Proof. We consider the following operatorsM : K ⇒ K, S : K → K and V : K → K
as follows:

M : (x,u) 7→ (A(x) +
1

2

m∑
i=1

L∗
i (ui), B

−1
1 (u1)−

1

2
L1(x), . . . , B

−1
m (um)− 1

2
Lm(x)),

(4.25)

S : (x,u) 7→

(
1

2

m∑
i=1

L∗
i (ui), D

−1
1 (u1)−

1

2
L1(x), . . . , D

−1
m (um)− 1

2
Lm(x)

)
,

(4.26)

V : (x,u) 7→

(
x

τ
− 1

2

m∑
i=1

L∗
i (ui),

1

σ1
u1 −

1

2
L1(x), . . . ,

1

σm
um − 1

2
Lm(x)

)
.

(4.27)

Furthermore, consider the Hilbert space KV endowed with inner product and norm
defined for x,y ∈ K as

(4.28) 〈x,y〉KV
:=
〈
x,V y

〉
K and ‖x‖KV

:=
√
〈x,x〉KV

respectively. Then the following hold [5]:

• M and S are maximal monotone on K;

• V
−1

M and V
−1

S are maximal monotone on KV ;
•

(x̂, v̂1, . . . , v̂m) ∈ (V
−1

M + V
−1

S)−1(0)

⇔ (x̂, v̂1, . . . , v̂m) ∈ (M + S)−1(0)

⇔ (x̂, v̂1, . . . , v̂m) is a primal-dual solution to Problem 4.1;(4.29)

• weak and strong convergence in KV are equivalent with weak and strong
convergence in K;

Let A : K ⇒ K, B : K ⇒ K, and C : K → K be defined by

(4.30) A(x) := V
−1

M(x), B(x) := V
−1

S(x), and C(x) := 0

For every k ∈ N, define

vk := (xk, v1,k, . . . , vm,k),

vk := (xk, v1,k, . . . , vm,k),

yk := (p1,k, . . . , pm,k),

zk := (z1,k, . . . , zm,k).(4.31)
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It follows from (4.25), (4.26), (4.27) and (4.31) that Algorithm 4.7 can equivalently
be written in the form

(4.32)


V (vk − yk) ∈ M(yk)

V (2yk − vk − zk) ∈ S(zk)

vk+1 = vk + λ(zk − yk).

We can verify from (4.32) that

(4.33)


yk = JB(vk),

zk = JA(2yk − vk),

vk+1 = vk + λ(zk − yk).

Consequently, (4.33) has the structure of Algorithm 3.2.
(i), (ii) and (iii) According to Theorem 3.5, the sequence {v2k} is Fejér monotone

with respect to Fix(TA,B,C). Moreover, {zk} converges weakly to z in KV and
consequently, in K to z ∈ (A+B)−1(0).

(v) The uniform monotonicity of A and Bi (∀i ∈ I) implies uniform monotonicity
of A on KV [5, Theorem 2.1 (ii)]. Therefore, the claim follows from Theorem 3.5
(vi).

□

We consider the following convex optimization problems.

Problem 4.9. Let f ∈ Γ(H). For every i ∈ I, let Gi be a real Hilbert space, let
gi, li ∈ Γ(Gi) and Li : H → Gi a nonzero bounded linear operator. Consider the
primal problem

(4.34) inf
x∈H

{
f(x) +

m∑
i=1

(gi□li)(Li(x))

}

and the dual problem

(4.35) sup
v1∈G1,...,vm∈Gm

{
−f∗

(
−

m∑
i=1

L∗
i vi

)
−

m∑
i=1

(g∗i (vi) + l∗i (vi))

}
.

Define

A := ∂f,Bi := ∂gi and Di := ∂li (i ∈ I).

The following result is a direct consequence of Theorem 4.8.

Corollary 4.10. In Problem 4.9, suppose that

(4.36) 0 ∈ ran

(
∂f +

m∑
i=1

L∗
i (∂gi□∂li)Li

)
.
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Let {(xk, v1,k, . . . , vm,k)} be a sequence generated by

xk =

{
xk (if k is even)

xk + α(xk − xk−1) (if k is odd)

vi,k =

{
vi,k (if k is even)

vi,k + α(vi,k − vi,k−1) (if k is odd)
(∀i ∈ I)

p1,k = proxτf

(
xk −

τ

2

m∑
i=1

L∗
i vi,k

)
w1,k = 2p1,k − xk{
p2,i,k = proxτg∗i (vi,k +

σi
2 Liw1,k)

w2,i,k = 2p2,i,k − vi,k
(∀i ∈ I)

z1,k = w1,k −
τ

2

m∑
i=1

L∗
iw2,i,k

xk+1 = xk + λ(z1,k − p1,k){
z2,i,k = proxσil∗i

(
w2,i,k +

σi
2 Li(2z1,k − w1,k)

)
vi,k+1 = vi,k + λ(z2,i,k − p2,i,k)

(∀i ∈ I)

such that (x0, v1,0, . . . , vm,0), (x1, v1,1, . . . , vm,1) ∈ H × G1 × · · · × Gm λ ∈ (0, 2) and
α ∈ [0, (2− λ)/λ). Suppose that (4.18) holds. The following hold:

(i) {(x2k, v1,2k, . . . , vm,2k)} is Fejér monotone with respect to Fix(TA,B,C), where
A, B and C are defined in (4.30) in case A := ∂f , Bi := ∂gi and Di :=
∂li (i ∈ I).

(ii) {(xk, v1,k, . . . , vm,k)} converges weakly to a point x = (x, v1, . . . , vm) in
Fix(TA,B,C).

(iii) {(p1,k, p2,1,k, . . . , p2,m,k)} converges weakly to p, where p = (p1, p2,1, . . . , p2,m),

p1 = proxτf

(
x− τ

2

m∑
i=1

L∗
i vi

)
,

p2,i = proxσig∗i

(
vi +

σi
2
Li(2p1 − x)

)
(∀i ∈ I),

and p is a primal-dual solution to Problem 4.9.
(iv) {(z1,k, z2,1,k, . . . , z2,m,k)} converges weakly to p.
(v) if f and g∗i (i ∈ I) are uniformly convex, then {(p1,k, p2,1,k, . . . , p2,m,k)} and

{(z1,k, z2,1,k, . . . , z2,m,k)} converge strongly to the unique primal-dual solu-
tion to Problem 4.9.

5. Numerical experiments

In this section, we provide numerical experiments and compare our proposed
algorithms with some existing algorithms in the literature. All codes were written
in MATLAB R2022a and performed on a PC Desktop Intel Core i7 4.0GHz, RAM
16.00 GB.
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We consider a linear time-invariant system represented by

(5.1) ẋ(t) = Ax(t) + bu(t), t ≥ 0,

where x(t) ∈ Rd, u(t) ∈ R, A ∈ Rd×d, and b ∈ Rd. x(t) is called state, u(t) is
called control, and (5.1) is called state equation. The state equation can describe
some problems arising in engineering, statistics, etc. Here, we are interested in the
optimal control problem.

Let T > 0 be the final time of control. For the system (5.1), u(t) is said to be
feasible if u(t) steers the state from a given initial state x(0) = ξ to x(T ) = 0, and
satisfies the magnitude constraints ‖u‖∞ ≤ 1, where ‖u‖∞ = supt∈[0,T ] |u(t)|.

5.1. L1-optimal control problem. Now we consider the following L1-optimal
control problem.

Problem 5.1. (L1-optimal control problem) For a given initial state ξ ∈ Rd, find

a feasible control u that minimizes ‖u‖1, where ‖u‖1 =
∫ T
0 |u(t)|dt.

The solution of Problem 5.1 is said to be L1-optimal control. Here, we assume
the existence of the L1-optimal control.

Remark 5.2. Problem 5.1 is known as minimum fuel control, which was widely
studied for rocket control [21, 24].

To solve Problem 5.1, we consider the discretization technique for the time inter-
val [0, T ]. To this end, we discretize [0, T ] into n subintervals [0, T ] = [0, h) ∪ · · · ∪
[(n− 1)h, nh], where h is the discretization step chosen such that T = nh. Here, we
assume that the state x(t) and the control u(t) are constant over each subinterval.
Define xd(l) := x(lh), ud(l) := u(lh), l = 0, 1, . . . , n − 1, xd(n) := x(T ), Ad := eAh

and bd :=
∫ h
0 eAtbdt. Then, for t = 0, h, . . . , nh, the state equation (5.1) is described

as

(5.2) xd(l + 1) = Adxd(l) + bdud(l), l = 0, 1, . . . , n− 1.

Let ξ be the initial state, that is, x(0) = ξ. Define u := (ud(0), ud(1), . . . , ud(n −
1))T ∈ Rn, Φ := (An−1

d bd, A
n−2
d bd, . . . , bd) and ζ := −Adξ. Then the final state

x(T ) can be described as

(5.3) x(T ) = xd(n) = −ζ +Φu.

From the discussion above, Problem 5.1 can be approximated by the following
n-dimensional l1 optimization problem:

Problem 5.3. (l1 optimization problem)

(5.4) min
u∈Rn

{‖u‖l1 + iC1(u) + iC2(Φu)} ,

where C1 = {v ∈ Rn : ‖v‖l∞ ≤ 1}, C2 = {ζ}, ‖x‖l1 is the l1 norm defined by
‖x‖l1 =

∑n
i=1 |xi|, ‖x‖l∞ is the l∞ norm defined by ‖x‖l∞ = maxi∈{1,2,...,n} |xi|,

and iC is the indicator function of a nonempty closed convex set C defined by

iC(x) =

{
0 (x ∈ C)
∞ (otherwise)

.
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Here, we consider a simple example with a 2-dimensional (i.e. d = 2) linear

control system (5.1) with A =

(
1 0
0 0

)
, b =

(
0
1

)
and ξ =

(
1
1

)
[24, Example

7.2]. We set the final time T = 5, and the initial and final states as x(0) =

(
1
1

)
,

x(5) =

(
0
0

)
. Figure 1 shows an approximated L1-optimal control obtained by a

software package cvx1 with MATLAB and an associated optimal state trajectory

{
(
x1(t) x2(t)

)T
: 0 ≤ t ≤ 5}.

Fig. 1. The left figure shows an approximated L1-optimal control.

The right figure shows the state x(t) =
(
x1(t) x2(t)

)T
according to

u(t) in the left figure.

We now consider the case where the number of subintervals is 1, 000 (i.e. n =
1, 000). By setting f := ‖ · ‖l1 , g1 := iC1 , g2 := iC2 , h(x) := 0, L1 := In, L2 := Φ,
l1 = l2 := i{0}, Problem 5.3 is reduced to the from of (4.19). Then the algorithm in
Corollary 4.6 can be implemented. As addressed in [24], proxτf is the soft thresh-
older on {0} and proxσigi = PCi is given by

PC1(u) =


sgn(u1)min{|u1|, 1}
sgn(u2)min{|u2|, 1}

...
sgn(un)min{|un|, 1}

 and PC2(v) = ζ,

and hence the computation in the algorithm is simple. Furthermore, by setting
f := ‖ · ‖l1 , g1 := iC1 , g2 := iC2 , L1 := In, L2 := Φ, l1 = l2 := i{0}, Problem 5.3
is also reduced to the from of (4.34). Then the algorithm in Corollary 4.10 can be
implemented. Now we are ready to apply the proposed algorithms to Problem 5.3.

We give numerical comparisons of the proposed algorithms (Proposed 1 and Pro-
posed 2) in Corollaries 4.6 and 4.10, respectively and other existing algorithms,
namely the algorithms of the primal-dual forward-backward-type (FB) from [7, 4,

1http://cvxr.com/cvx/
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9, 32], the inertial primal-dual forward-backward-type (IFB) from [13], the primal-
dual Douglas-Rachford-type (DR) from [5] and the inertial primal-dual Douglas-
Rachford-type (IDR) from [6]. We also give numerical comparisons of the proposed
algorithms with different choices of inertial parameter α. For the proposed algo-
rithms, we used λ = 1 and set τ = 1, σ1 = 0.5 and σ2 = 0.5, which satisfy (4.18)

and (4.23). We chose 10 random initial points (x
(i)
0 , v

(i)
1,0, v

(i)
2,0) = (x

(i)
1 , v

(i)
1,1, v

(i)
2,1) ∈

Rn × Rn × Rd (i = 1, 2, . . . , 10) and every entry of the initial point is uniformly
generated from [−100, 100]. The computational results are reported in Figures 2
and 3. Figure 2 demonstrates the following functions

(5.5)

D
(i)
k := ‖(x(i)k , v

(i)
1,k, v

(i)
2,k)− (x, v1, v2)‖KV

and

Dk := (1/10)
10∑
i=1

D
(i)
k ,

where (x, v1, v2) denotes the primal-dual solution obtained by cvx, (x
(i)
k , v

(i)
1,k, v

(i)
2,k)

is the sequence generated by (x
(i)
0 , v

(i)
1,0, v

(i)
2,0) and each of Proposed 1, FB and IFB,

and ‖ · ‖KV
is defined in (4.10). The computation results of Proposed 1, FB and

IFB are presented in the left part of Figure 2. The inertial parameter for IFB was
chosen as α ≡ 0.2 according to the theoretic results provided in [13, 6, 14]. One
can observe that Proposed 1 is faster than both FB and IFB. Furthermore, the
right part of Figure 2 shows the computational results of Proposed 1 with different
inertial parameters (α = 0.1, 0.5, 0.9). As we can see, the increase of α implies
a faster approach of the solution. We see from Figure 2 that both the sequence
generated by our algorithm is convergent.

Fig. 2. The computation results of the relation between the dis-
tance to a solution and iteration number. The left figure shows the
numerical comparison of (5.4) with Proposed 1, FB and IFB. The
right figure shows the result of Proposed 1 for the case in which cor-
respond to different choices of α (α = 0.1, 0.5, 0.9).
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Figure 3 demonstrates the following functions

(5.6)

D
(i)
k := ‖(p(i)1,k, p

(i)
2,1,k, p

(i)
2,2,k)− (p1, p2,1, p2,2)‖KV

and

Dk := (1/10)
10∑
i=1

D
(i)
k ,

where (p1, p2,1, p2,2) is the primal-dual solution obtained by cvx, (p
(i)
1,k, p

(i)
2,1,k, p

(i)
2,2,k)

is the sequence generated by (x
(i)
0 , v

(i)
1,0, v

(i)
2,0) and each of Proposed 2, DR and IDR,

and ‖·‖KV
is defined in (4.28). The computation results of Proposed 2, DR and IDR

are presented in the left part of Figure 3. The inertial parameter for IDR was chosen
as α ≡ 0.2 according to the theoretic results provided in [6]. One can observe that
Proposed 2 is faster than both DR and IDR. Furthermore, the right part of Figure
3 shows the computational results of Proposed 2 with different inertial parameters
(α = 0.1, 0.5, 0.9). As we can see, the increase of α implies a faster approach of the
solution. We see from Figure 3 that both the sequence generated by our algorithm
is convergent.

Fig. 3. The computation results of the relation between the dis-
tance to a solution and iteration number. The left figure shows the
numerical comparison of (5.4) with Proposed 2, DR and IDR. The
right figure shows the result of Proposed 2 for the case in which cor-
respond to different choices of α (α = 0.1, 0.5, 0.9).

5.2. L1/L2-optimal control problem. Next we consider the following L1/L2-
optimal control problem.

Problem 5.4. (L1/L2-optimal control problem) Let η > 0 be the weight parameter.
For a given initial state ξ ∈ Rd, find a feasible control u that minimizes η‖u‖1 +
1
2‖u‖

2
2, where ‖u‖22 =

∫ T
0 |u(t)|2dt.

The solution of Problem 5.4 is said to be L1/L2-optimal control. Here, we assume
the existence of the L1/L2-optimal control.
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Remark 5.5. L1/L2-optimal control was first proposed in [25]. L1/L2-optimal con-
trol is desirable for some applications in which the actuators cannot move abruptly
[24].

From the discussion in Subsection 5.1, Problem 5.4 can be approximated by the
following n-dimensional l1/l2 optimization problem:

Problem 5.6. (l1/l2 optimization problem)

(5.7) min
u∈Rn

{
η‖u‖l1 +

1

2
‖u‖2l2 + iC1(u) + iC2(Φu)

}
,

where ‖x‖l2 is the l2 norm defined by ‖x‖l2 =
√∑n

i=1 x
2
i .

We consider the same example in Subsection 5.1 (i.e., A =

(
1 0
0 0

)
, b =

(
0
1

)
,

ξ =

(
1
1

)
, x(0) =

(
1
1

)
and x(5) =

(
0
0

)
) and set η = 1. Figure 4 shows an

approximated L1/L2-optimal control obtained by cvx and an associated optimal

state trajectory {
(
x1(t) x2(t)

)T
: 0 ≤ t ≤ 5}.

Fig. 4. The left figure shows an approximated L1/L2-optimal con-

trol. The right figure shows the state x(t) =
(
x1(t) x2(t)

)T
accord-

ing to u(t) in the left figure.

By setting f := ‖ · ‖l1 , g1 := 1
2‖ · ‖2l2 , g2 := iC1 , g3 := iC2 , L1 := In, L2 := In,

L3 := Φ, Problem 5.6 is reduced to the from of (4.19), and hence Proposed 1 can
be implemented. Note that the proximal mapping of g∗1 is given by proxσ1g∗(x) =

I − σ1prox(1/σ1)g ◦ σ
−1
1 I from the extended Moreau’s decomposition formula. Fur-

thermore, by setting f := ‖ · ‖l1 , g1 := 1
2‖ · ‖2l2 , g2 := iC1 , g3 := iC2 , L1 := In,

L2 := In, L3 := Φ, l1 = l2 = l3 := i{0}, Problem 5.6 is reduced to the from of
(4.34), and hence Proposed 2 can be implemented. Now we are ready to apply the
proposed algorithms to Problem 5.6.

For the proposed algorithms, we used λ = 1 and set τ = 1, σ1 = 0.3, σ2 = 0.3
and σ3 = 0.5 which satisfy (4.18) and (4.23). We chose 10 random initial points



ALTERNATED INERTIAL THREE-OPERATOR SPLITTING ALGORITHM 61

(x
(i)
0 , v

(i)
1,0, v

(i)
2,0, v

(i)
3,0) = (x

(i)
1 , v

(i)
1,1, v

(i)
2,1, v

(i)
3,1) ∈ Rn × Rn × Rn × Rd (i = 1, 2, . . . , 10)

and every entry of the initial point is uniformly generated from [−100, 100]. The
computational results are reported in Figures 5 and 6. Figure 5 demonstrates the
following functions

(5.8)

D
(i)
k := ‖(x(i)k , v

(i)
1,k, v

(i)
2,k, v

(i)
3,k)− (x, v1, v2, v3)‖KV

and

Dk := (1/10)

10∑
i=1

D
(i)
k ,

where (x, v1, v2, v3) is the primal-dual solution obtained by cvx, (x
(i)
k , v

(i)
1,k, v

(i)
2,k, v

(i)
3,k)

is the sequence generated by (x
(i)
0 , v

(i)
1,0, v

(i)
2,0, v

(i)
3,0) and each of Proposed 1, FB and

IFB, and ‖ · ‖KV
is defined in (4.10). The computation results of Proposed 1, FB

and IFB are presented in the left part of Figure 5. The inertial parameter for IFB
was chosen as α ≡ 0.2 according to the theoretic results provided in [13, 6, 14].
One can observe that Proposed 1 is faster than both FB and IFB. Furthermore, the
right part of Figure 5 shows the computational results of Proposed 1 with different
inertial parameters (α = 0.1, 0.5, 0.9). As we can see, the increase of α implies
a faster approach of the solution. We see from Figure 5 that both the sequence
generated by our algorithm is convergent

Fig. 5. The computation results of the relation between the dis-
tance to a solution and iteration number. The left figure shows the
numerical comparison of (5.7) with Proposed 1, FB and IFB. The
right figure shows the result of Proposed 1 for the case in which cor-
respond to different choices of α (α = 0.1, 0.5, 0.9).

Figure 6 demonstrates the following functions

(5.9)

D
(i)
k := ‖(p(i)1,k, p

(i)
2,1,k, p

(i)
2,2,k, p

(i)
2,3,k)− (p1, p2,1, p2,2, p2,3)‖KV

and

Dk := (1/10)
10∑
i=1

D
(i)
k ,

where (p1, p2,1, p2,2, p2,3) is the primal-dual solution obtained by cvx,

(p
(i)
1,k, p

(i)
2,1,k, p

(i)
2,2,k, p

(i)
2,3,k) is the sequence generated by (x

(i)
0 , v

(i)
1,0, v

(i)
2,0, v

(i)
3,0) and each of
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Proposed 2, DR and IDR, and ‖ · ‖KV
is defined in (4.28). The computation results

of Proposed 2, DR and IDR are presented in the left part of Figure 6. The inertial
parameter for IDR was chosen as α ≡ 0.2 according to the theoretic results pro-
vided in [6]. One can observe that adding alternated inertial terms is no guarantee
of improving the algorithm’s efficiency during the early iterations. Furthermore, the
right part of Figure 6 shows the computational results of Proposed 2 with different
inertial parameters (α = 0.1, 0.5, 0.9). As we can see, the increase of α implies a
faster approach of the solution.

Fig. 6. The computation results of the relation between the dis-
tance to a solution and iteration number. The left figure shows the
numerical comparison of (5.7) with Proposed 2, DR and IDR. The
right figure shows the result of Proposed 1 for the case in which cor-
respond to different choices of α (α = 0.1, 0.5, 0.9).

6. Conclusions

In this paper, we have proposed an alternated inertial three-operator splitting
algorithm and studied its convergence properties. The proposed algorithm can be
applied for finding a zero point of the sum of three maximally monotone operators,
where one is cocoercive. In contrast to the existing algorithms for this class of
problems [10], our new algorithm is Fejér monotone and the assumptions on inertial
parameters and relaxation parameters are mild. Moreover, by making use of the
proposed algorithm and primal-dual techniques, we present the weakly convergent
alternated inertial primal-dual splitting algorithm. Numerical experiments have
been illustrated to show the effectiveness of the proposed algorithms.
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[6] R. I. Boţ, E.R. Csetnek and C. Hendrich, Inertial Douglas-Rachford splitting for monotone

inclusion problems, Appl. Math. Comput. 256 (2015), 472–487.

[7] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with ap-

plications to imaging, J. Math. Imaging Vis. 40 (2011), 120–145.

[8] P. L. Combettes and J.-C. Pesquet, Primal-dual splitting algorithm for solving inclusions with

mixtures of composite, Lipschitzian, and parallel-sum type monotone operators, Set-Valued

Var. Anal. 20 (2012), 307–330.

[9] L. Condat, A primal-dual splitting method for convex optimization involving lipschitzian, prox-

imable and linear composite terms, J. Optim. Theory Appl. 158 (2013), 460–479.

[10] F. Cui, Y. Tang and Y. Yang, An inertial three-operator splitting algorithm with applications

to image inpainting, Appl. Set-Valued Anal. Optim. 1 (2019), 113–134.

[11] M. N. Dao and H. M. Phan, An adaptive splitting algorithm for the sum of two generalized

monotone operators and one cocoercive operator, Fixed Point Theory Algorithms Sci. Eng. 16

(2021).

[12] D. Davis and W. Yin, A three-operator splitting scheme and its optimization applications,

Set-valued Var. Anal. 25 (2017), 829–858.
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