



# A NOTE ON COLLECTIVELY FIXED POINT RESULTS AND MINIMAX TYPE INEQUALITIES

# DONAL O'REGAN

Dedicated to Professor K. Goebel with much admiration

ABSTRACT. Using recent collectively fixed point results of the author for multivalued maps we will establish a new analytic alternative. This analytic alternative will then generate a minimax type inequality and as an application we will consider the existence of an equilbrium point for a generalized game.

# 1. INTRODUCTION

In this paper we begin in Section 1 by presenting a variety of new collectively fixed point results of the author [6] for multivalued maps in both the compact, condensing and coercive cases; we refer the reader to [2, 4, 5] for some results in the literature. These collectively fixed point results enable us in Section 2 to obtain an analytic alternative where the appropriate maps are either compact, condensing or coercive. This analytic alternative with an appropriate choice will then generate a minimax type inequality motivated from the inequalities of Ky Fan [3]. As an application we present equilibrium results (the existence of an equilibrium point) for a generalized game (or abstract economy).

Now we describe the class of maps considered. Let Z and W be subsets of Hausdorff topological vector spaces  $Y_1$  and  $Y_2$  and let F a multifunction. We say  $F \in \Phi^*(Z, W)$  [1] if W is convex and there exists a map  $S : Z \to W$  with  $S(x) \subseteq$ F(x) for  $x \in Z$ ,  $S(x) \neq \emptyset$  and has convex values for each  $x \in Z$  and the fibre  $S^{-1}(w) = \{z \in Z : w \in S(z)\}$  is open (in Z) for each  $w \in W$ .

First we recall a result for compact maps [6]. In the below I is an index set.

**Theorem 1.1.** Let  $\{X_i\}_{i\in I}$  be a family of convex sets each in a Hausdorff topological vector space  $E_i$ . For each  $i \in I$  suppose  $F_i : X \equiv \prod_{i\in I} X_i \to X_i$  and in addition there exists a map  $T_i : X \to X_i$  with  $T_i(x) \subseteq F_i(x)$  for  $x \in X$ ,  $T_i(x)$  has convex values for  $x \in X$  and  $T_i^{-1}(w)$  is open (in X) for each  $w \in X_i$ . Also suppose for each  $x \in X$  there exists a  $j \in I$  with  $T_j(x) \neq \emptyset$ . Finally assume for each  $i \in I$  that there exists a convex compact set  $K_i$  with  $F_i(X) \subseteq K_i \subseteq X_i$ . Then there exists a  $x \in X$  and  $a \in I$  with  $x_i \in F_i(x)$  (here  $x_i$  is the projection of x on  $X_i$ ).

Next we recall a result for condensing type maps [6].

**Theorem 1.2.** Let  $\{X_i\}_{i \in I}$  be a family of convex sets each in a Hausdorff topological vector space  $E_i$ . For each  $i \in I$  suppose  $F_i : X \equiv \prod_{i \in I} X_i \to X_i$  and in addition

<sup>2020</sup> Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. Fixed point theory, analytic alternatives, minimax inequalities, games.

### DONAL O'REGAN

there exists a map  $T_i: X \to X_i$  with  $T_i(x) \subseteq F_i(x)$  for  $x \in X$ ,  $T_i(x)$  has convex values for  $x \in X$  and  $T_i^{-1}(w)$  is open (in X) for each  $w \in X_i$ . Also suppose for each  $x \in X$  there exists a  $j \in I$  with  $T_j(x) \neq \emptyset$ . Finally assume there exists a convex compact set K of X with  $F(K) \subseteq K$  where  $F(x) = \prod_{i \in I} F_i(x)$  for  $x \in X$ . Then there exists a  $x \in X$  and a  $i \in I$  with  $x_i \in F_i(x)$ .

Finally we recall a result for coercive type maps [6].

**Theorem 1.3.** Let  $\{X_i\}_{i \in I}$  be a family of convex sets each in a Hausdorff topological vector space  $E_i$ . For each  $i \in I$  suppose  $F_i : X \equiv \prod_{i \in I} X_i \to X_i$  and in addition there exists a map  $T_i : X \to X_i$  with  $T_i(x) \subseteq F_i(x)$  for  $x \in X$ ,  $T_i(x)$  has convex values for  $x \in X$  and  $T_i^{-1}(w)$  is open (in X) for each  $w \in X_i$ . Also suppose for each  $x \in X$  there exists a  $j \in I$  with  $T_j(x) \neq \emptyset$ . Finally assume there is a compact subset K of X and for each  $i \in I$  a convex compact subset  $Y_i$  of  $X_i$  such that for each  $x \in X \setminus K$  there exists a  $j \in I$  with  $T_j(x) \cap Y_j \neq \emptyset$ . Then there exists a  $x \in X$ and  $a i \in I$  with  $x_i \in F_i(x)$ .

### 2. Applications

We begin by presenting an analytic alternative which will then generate our minimax type inequalities.

**Theorem 2.1.** Let I be an index set and  $\{X_i\}_{i\in I}$  be a family of convex sets each in a Hausdorff topological vector space  $E_i$  and let  $X = \prod_{i\in I} X_i$ . For  $i \in I$  let  $f_i, g_i : X \times X_i \to \mathbf{R}$  with  $g_i(x, y) \leq f_i(x, y)$  for all  $(x, y) \in X \times X_i$ , let  $\lambda_i \in \mathbf{R}$  and let

$$F_{i}(x) = \{z_{i} \in X_{i} : f_{i}(x, z_{i}) > \lambda_{i}\} \text{ and } S_{i}(x) = \{z_{i} \in X_{i} : g_{i}(x, z_{i}) > \lambda_{i}\} \text{ for } x \in X.$$

Assume for each  $i \in I$  that  $S_i(x)$  is convex valued for each  $x \in X$  and  $S_i^{-1}(w)$  is open (in X) for each  $w \in X_i$ . In addition suppose either

- (1) for each  $i \in I$  there exists a convex compact set  $K_i$  with  $F_i(X) \subseteq K_i \subseteq X_i$ , or
- (2) there exists a convex compact set K of X with  $F(K) \subseteq K$  where  $F(x) = \prod_{i \in I} F_i(x)$  for  $x \in X$ , or
- (3) there is a compact subset K of X and for each  $i \in I$  a convex compact subset  $Y_i$  of  $X_i$  such that for each  $x \in X \setminus K$  there exists a  $j \in I$  with  $S_j(x) \cap Y_j \neq \emptyset$ ,

hold. Then either

(A1) there exists a  $x \in X$  and a  $i \in I$  with  $x_i \in F_i(x)$  (i.e.  $f_i(x, x_i) > \lambda_i$ ), or

(A2) there exists a  $x \in X$  with  $\sup_{z_i \in X_i} g_i(x, z_i) \leq \lambda_i$  for all  $i \in I$ 

occurs.

34

*Proof.* Note either (a). there exists a  $x \in X$  with  $S_i(x) = \emptyset$  for all  $i \in I$  or (b). for each  $x \in X$  there exists a  $i \in I$  with  $S_i(x) \neq \emptyset$ .

Suppose (a) holds. Then for this x we have  $S_i(x) = \emptyset$  for all  $i \in I$  so for all  $i \in I$  we have  $g_i(x, z_i) \leq \lambda_i$  for  $z_i \in X_i$  (so  $\sup_{z_i \in X_i} g_i(x, z_i) \leq \lambda_i$ ).

Suppose (b) holds. Note  $S_i$  is a selection of  $F_i$  so Theorem 1.1 (if (1) occurs)) or Theorem 1.2 (if (2) occurs) or Theorem 1.3 (if (3) occurs) guarantees a  $x \in X$  and a  $i \in I$  with  $x_i \in F_i(x)$  so  $f_i(x, x_i) > \lambda_i$  (i.e. (A1) occurs).

# **Remark 2.2.** Fix $i \in I$ . If

for each  $x \in X$ ,  $y \mapsto g_i(x, y)$  is quasi-concave on  $X_i$ ,

then  $S_i(x)$  is convex valued for each  $x \in X$ , whereas if

for each  $y \in X_i, x \mapsto g_i(x, y)$  is lower semicontinuous on X,

then  $S_i^{-1}(w)$  is open (in X) for each  $w \in X_i$ .

Next we show how our analytic alternative generates minimax type inequalities.

**Theorem 2.3.** Let I be an index set and  $\{X_i\}_{i\in I}$  be a family of convex sets each in a Hausdorff topological vector space  $E_i$  and let  $X = \prod_{i\in I} X_i$ . For  $i \in I$  let  $f_i, g_i : X \times X_i \to \mathbf{R}$  with  $g_i(x, y) \leq f_i(x, y)$  for all  $(x, y) \in X \times X_i$ . For  $i \in I$  let  $\lambda_i = \sup_{x \in X} [f_i(x, x_i)]$  and let  $J = \{i \in I : \lambda_i = \infty\}$  (note J could be empty). For  $i \in I \setminus J$  let

$$F_{i}(x) = \{z_{i} \in X_{i} : f_{i}(x, z_{i}) > \lambda_{i}\} \text{ and}$$
$$S_{i}(x) = \{z_{i} \in X_{i} : g_{i}(x, z_{i}) > \lambda_{i}\} \text{ for } x \in X^{\star} = \prod_{i \in I \setminus J} X_{i}.$$

Assume for each  $i \in I \setminus J$  that  $S_i(x)$  is convex valued for each  $x \in X^*$  and  $S_i^{-1}(w)$  is open (in  $X^*$ ) for each  $w \in X_i$ . In addition suppose either

- (1) for each  $i \in I \setminus J$  there exists a convex compact set  $K_i$  with  $F_i(X^*) \subseteq K_i \subseteq X_i$ ,
  - or
- (2) there exists a convex compact set K of  $X^*$  with  $F(K) \subseteq K$  where  $F(x) = \prod_{i \in I \setminus J} F_i(x)$  for  $x \in X^*$ , or
- (3) there is a compact subset K of  $X^*$  and for each  $i \in I \setminus J$  a convex compact subset  $Y_i$  of  $X_i$  such that for each  $x \in X^* \setminus K$  there exists a  $j \in I \setminus J$  with  $S_j(x) \cap Y_j \neq \emptyset$ ,

hold. Then there exists a  $y \in X$  with

(2.1) 
$$\sup_{z_i \in X_i} g_i(y, z_i) \le \sup_{x \in X} f_i(x, x_i) \text{ for all } i \in I.$$

*Proof.* If  $i \in J$  then  $\lambda_i = \sup_{x \in X} [f_i(x, x_i)] = \infty$  so trivially

(2.2)  $\sup_{z_i \in X_i} g_i(y, z_i) \le \sup_{x \in X} f_i(x, x_i) \text{ for all } i \in J \text{ and for all } y \in X.$ 

## DONAL O'REGAN

Next let  $i \in I \setminus J$  so from Theorem 2.1 (with I replaced by  $I \setminus J$  and X replaced by  $X^*$ ) either (A1). there exists a  $x \in X^*$  and a  $i \in I \setminus J$  with  $f_i(x, x_i) > \lambda_i$ , or (A2). there exists a  $x \in X^*$  with  $\sup_{z_i \in X_i} g_i(x, z_i) \leq \lambda_i$  for all  $i \in I \setminus J$ . Next we note (A1) cannot occur since if there exists a  $x \in X^*$  and a  $i \in I \setminus J$  with  $f_i(x, x_i) > \lambda_i$ , then this means  $f_i(x, x_i) > \sup_{x \in X} [f_i(x, x_i)]$ , which is a contradiction. Thus there exists a  $y \in X^*$  with  $\sup_{z_i \in X_i} g_i(y, z_i) \leq \lambda_i$  for all  $i \in I \setminus J$  i.e. there exists a  $y \in X^*$  with

(2.3) 
$$\sup_{z_i \in X_i} g_i(y, z_i) \le \sup_{x \in X} f_i(x, x_i) \text{ for all } i \in I \setminus J$$

Now (2.2) and (2.3) guarantee (2.1).

A special case of Theorem 2.3 is if I is the singleton set (see [3]).

**Corollary 2.4.** Let X be a convex set in a Hausdorff topological vector space E. Let  $f, g: X \times X \to \mathbf{R}$  with  $g(x, y) \leq f(x, y)$  for all  $(x, y) \in X \times X$ . Let  $\lambda = \sup_{x \in X} [f(x, x)]$  (if  $\lambda = \infty$  we have trivially (2.4) below) and assume  $\lambda < \infty$ . Let

$$F(x) = \{ z \in X : f(x,z) > \lambda \} \text{ and } S(x) = \{ z \in X : g(x,z) > \lambda \} \text{ for } x \in X.$$

Assume S(x) is convex valued for each  $x \in X$  and  $S^{-1}(w)$  is open (in X) for each  $w \in X$ . In addition suppose either

- (1) there exists a convex compact set K with  $F(X) \subseteq K \subseteq X$ , or
- (2) there exists a convex compact set K of X with  $F(K) \subseteq K$ , or
- (3) there is a compact subset K of X and a convex compact subset Y of X such that for each  $x \in X \setminus K$  we have  $S(x) \cap Y \neq \emptyset$ ,

hold. Then there exists a  $y \in X$  with

(2.4). 
$$\sup_{z \in X} g(y, z) \le \sup_{x \in X} f(x, x).$$

Now we consider an application to games. Let I be a (possible infinite) set of players and each player must select a strategy in a set determined by the strategies chosen by the other players. Here  $X_i$  denotes the set of strategies of the  $i^{th}$  player and each element of  $X = \prod_{i \in I} X_i$  determines an outcome. The payoff to the  $i^{th}$ player is  $h_i$  (which is defined on X). Let  $x^i$  be given in  $X^i$  (the strategies of all the others). For  $x \in X$ ,  $i \in I$ ,  $y_i \in X_i$  we write  $(x^i, y_i)$  as a point in X having the same components as x except the  $i^{th}$  component is replaced by  $y_i$ ; note any  $x \in X$  can be written as  $(x^i, x_i)$  for any  $i \in I$  where  $x^i$  denotes the projection of x onto  $X^i$ . The  $i^{th}$  player chooses  $y_i \in X_i$  so as to obtain  $\sup_{y_i \in X_i} h_i(x^i, y_i)$ . An equilibrium point is a strategy point  $x \in X$  such that for all  $i \in I$  we have

$$x_i \in X_i \text{ and } h_i(x) = \sup_{y_i \in X_i} h_i(x^i, y_i).$$

36

**Theorem 2.5.** Let I be an index set and  $\{X_i\}_{i\in I}$  be a family of convex sets each in a Hausdorff topological vector space  $E_i$ , let  $h_i$   $(i \in I)$  be as described above and let  $X = \prod_{i\in I} X_i$ . For  $i \in I$  let  $f_i : X \times X_i \to \mathbf{R}$  be given by  $f_i(x, y_i) = h_i(x^i, y_i) - h_i(x)$ and let  $g_i(x, y_i) = f_i(x, y_i)$  for all  $x \in X$  and  $y_i \in X_i$ . Also for  $i \in I$  let  $\lambda_i =$  $\sup_{x \in X} [f_i(x, x_i)]$  and let  $J = \{i \in I : \lambda_i = \infty\}$ . For  $i \in I \setminus J$  let

$$F_i(x) = \{ z_i \in X_i : f_i(x, z_i) > \lambda_i \} \text{ for } x \in X^* = \prod_{i \in I \setminus J} X_i.$$

and let  $S_i(x) = F_i(x)$  for  $x \in X^*$ , Assume for each  $i \in I \setminus J$  that  $F_i(x)$  is convex valued for each  $x \in X^*$  and  $F_i^{-1}(w)$  is open (in  $X^*$ ) for each  $w \in X_i$ . In addition suppose either

- (1) for each  $i \in I \setminus J$  there exists a convex compact set  $K_i$  with  $F_i(X^*) \subseteq K_i \subseteq X_i$ ,
- (2) there exists a convex compact set K of  $X^*$  with  $F(K) \subseteq K$  where  $F(x) = \prod_{i \in I \setminus J} F_i(x)$  for  $x \in X^*$ , or
- (3) there is a compact subset K of  $X^*$  and for each  $i \in I \setminus J$  a convex compact subset  $Y_i$  of  $X_i$  such that for each  $x \in X^* \setminus K$  there exists a  $j \in I \setminus J$  with  $S_j(x) \cap Y_j \neq \emptyset$ ,

hold. Then there exists an equilibrium point i.e. there exists a  $x \in X$  such that for all  $i \in I$  we have

$$x_i \in X_i$$
 and  $h_i(x) = \sup_{y_i \in X_i} h_i(x^i, y_i)$ 

*Proof.* From Theorem 2.3 we deduce that there exists a  $z \in X$  with

$$\sup_{y_i \in X_i} f_i(z, y_i) \le \sup_{x \in X} f_i(x, x_i) \text{ for all } i \in I$$

i.e.

or

$$\sup_{y_i \in X_i} [h_i(z^i, y_i) - h_i(z)] \le \sup_{x \in X} [h_i(x^i, x_i) - h_i(x)] = 0 \text{ for all } i \in I.$$

Thus  $\sup_{y_i \in X_i} h_i(z^i, y_i) \leq h_i(z)$  for all  $i \in I$ . However on the other hand note for  $i \in I$  that  $h_i(z) = h_i(z^i, z_i) \leq \sup_{y_i \in X_i} h_i(z^i, y_i)$  so combining gives  $h_i(z) = \sup_{y_i \in X_i} h_i(z^i, y_i)$ .

### CONCLUSION

In this paper using the fixed point results in [6] we presented a new analytic alternative, a new minimax inequality and a new equilibrium result for a generalized game. In the future we hope to extend Theorem's 1.1–1.3 for more general classes of maps than the  $\Phi^*$  type maps considered here. As a result the theory in Section 2 would extend immediately for these new classes of maps.

### DONAL O'REGAN

#### References

- H. Ben-El-Mechaiekh, P. Deguire and A. Granas, Points fixes et coincidences pour les applications multivoques II (Applications de type Φ and Φ<sup>\*</sup>), C.R. Acad. Sc. 295 (1982), 381–384.
- [2] P. Deguire and M. Lassonde, Familles sélectantes, Topological methods in nonlinear analysis, 5 (1995), 261–269.
- [3] K. Fan, A minimax inequality and its applications, Inequalities III (O. Shisha, ed.), Academic Press, New York, 1972, pp. 103–113.
- [4] E. Marchi and J. E. Martinez-Legaz, A generalization of Fan-Brouwder's fixed point theorem and its applications, Topol. Methods Nonlinear Anal. 2 (1993), 277–291.
- [5] D. O'Regan, Collectively fixed point theory in the compact and coercive cases, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Mathematica 30 (2022), 193–207.
- [6] D. O'Regan, Continuous selections and collectively fixed point theory with applications to generalized games, Aequationes Mathematicae, 97 (2023), 619–628.

Manuscript received 5 January 2023 revised 5 September 2023

DONAL O'REGAN

School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland *E-mail address*: donal.oregan@nuigalway.ie

38