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n VARIABLE LOGARITHMIC MEAN
AND n VARIABLE IDENTRIC MEAN

KENJIRO YANAGI

ABSTRACT. It is well known that the Hermite-Hadamard inequality refines the
definition of convexity of function f(z) defined on [a,b] by using the integral of
f(z) from a to b. There are many generalizations or refinements of the Hermite-
Hadamard inequality. In this article, we give an n variable Hermite-Hadamard
inequality and apply to give the definition of n variable logarithmic mean and n
variable identric mean.

1. INTRODUCTION

A function f : [a,b] C R — R is said to be convex on [a, ] if the inequality
(11) NEaIAW fx)+ f(y)
. 2 - 2

holds for all ,y € [a,b]. If inequality (1.1) reverses, then f is said to be concave
on [a,b]. Let f:]a,b] C R — R be a convex function on an interval [a.b]. Then

b
(“57) =52, [ 1o

(1.2) = /lf((l — t)a + th)dt
0
) ; (o)

This double inequality is known in the literature as the Hermite-Hadamard integral
inequality for convex functions. It has many applications in more different areas
of pure and applied mathematics. In Section 2, we try to obtain an n variable
Hermite-Hadamard inequality. As applications, we give the definitions of n variable
logarithmic mean and n variable operator logarithmic mean. In Section 3, we state
other definitions of n variable logarithmic mean and n variable identric mean which
have been given by [10, 11]. Finally in Section 4, we compare our 3 variable loga-
rithmic mean and 3 variable identric mean with other 3 variable logarithmic mean
and 3 variable identric mean.

2. HERMITE-HADAMARD INEQUALITY

We need the following result.
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Lemma 2.1 ([15]). Let x1,x9,...,2, € R or z1,29,...,2, € X, where X is a
linear space. Then

- 1
Zmi:in—l (.%i—l—l'j).
=1

1<j
Proof.
R S P AR
i=1 =1 j=1 i=1 j=1
1 n
= 5 22@—%2(@—1—&:])
i=1 17
1 n
= - x,+2— Z(azz—i-a:j)—l—Z(xl—i-x])
i= 1<) 1>)
1
= - $l+*Z($i+l‘J)
i=1 i<
Then
1 n
<1—> x; = —Z(mﬁ—x])
n i=1 1<j
That is

We have the following n variable Hermite-Hadamard inequality.

Theorem 2.2 ([15]). Let f(x) be a convex function on R and let x1,x2,...,z, € R.
Then

(55) = (g
i=1 1<j

2 :El-i-a:j
n(n—l

= f

1<j

< Zf<xz+xj>

z<]

n—l Z/ F((1 = )2 + tay)dt

z<]

IN
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2 f(xi) + f(x5)
) 2 2

n(n—1

- 1_1)Z(f(wi)+f(xj))

1<j

1<j

Proof. The first equality is given by Lemma 2.1. The first inequality is given by the
convexity of f(z). From the second inequality to the third inequality are given by
(1.2). And the last equality is given by Lemma 2.1. O

When f(z) = e*, we have the following corollary.
Corollary 2.3. Let f(xz) = e®. We suppose that x; # x; for i # j. Then

1 2 et —e%i
- -
exp{n ;xl} “nn-1) Z T —xj

1<J

n
1Z N
— e,
n -

=1

IA

By putting e*' = y;, €% = y;, we obtain

n 1/n 9
Yi—Yj
’ <
<}:[1 %) “nn-1) Z logy; — logy;

1<J

1 n
n;yz

IN

Then we define n variable logarithmic mean as follows:

Definition 2.4. Let x1,z2...,2, € R and let x; # x; for i # j. Then n variable
logarithmic mean is defined by

2 Ti— T
) U B
" n(n—1) ; log z; — log z;

We also define n variable operator logarithmic mean as follows:

Definition 2.5. Let Ay, Ao, ..., A, be positive bounded linear operators on Hilbert
space. Then n variable operator logarithmic mean is defined by

2
————— ) AiA;,
n(n—1) ; J

where AilA; = [\ Aty Ajde and A, Aj = AP (AT A A7) AL,
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When f(xz) = —logz, we have the following corollary.

Corollary 2.6. Let f(x) = —logxz. We suppose that x; # x; for i # j. Then

1 & 2 z;logx; xjlogw; 1 «
Slog Y s B S { B #1ps -] s

xj—xi xj—aci

v

1 & 2 z;logx; x;logx;
1 2 exp )Z{Zgl—i_]g]_l}

n n(n—1 T; — T Ti— T;
; ( i< i J J i

2 1 o o
= exp m Z log (ewi J (]jjJ )

n 1/n
o)
=1

Then we define n variable identric mean as follows:

Definition 2.7. Let x1,22...,2, € R and let z; # x; for i # j. Then n variable
identric mean is defined by

2 1 5 4
(1) - - - T;—x x z;
I,/ =exp n(n —1) E log (exi J;pja >

1<j

3. n VARIABLE LOGARITHMIC MEAN AND n VARIABLE IDENTRIC MEAN

As another extension to n variable Hermite-Hadamard inequality, the following
theorem has been given by [10, 11].

Theorem 3.1. Let f(x) be a convex function on R and let x1, 9, ... ,x, € R. Then

! (igazz> < (n— 1)!/An1 f <§tlm1) dty - dt, 1

1

where Ap_1 = {(t1,to, ... tn_1) E R ity + -+ t, 1 < 1,t; > 0} and t, =
n—1
1=>0 t.

When f(x) = e®, we have the following corollary.
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Corollary 3.2. Let f(x) =e*. Then

1 n n
exp{ — Z:CZ <(n-— 1)!/ exp Ztixi dt1---dtp_1
i An—1 i=1
1 n
< LS eptant
i=1

By putting e*' = y;, €% = y;, we obtain

1 n n
exp {n Zlogyi} <(n-1)! /A exp {2:16Z logyz} dty---dt,_1
i=1 n—1 i=1

1 n
< n Z exp{logy;}.
i=1

Then we have

(1)

IA

n
(’I’L — 1)‘/ exp Zti log Y; dtl s dtnfl
An-1 i=1
1 n
2
n -
=1

IN

Then we define n variable logarithmic mean as follows:

Definition 3.3. Let x;, xo,

..., Ty € R. Then n variable logarithmic mean is defined
by

L? = (n—l)!/ [z ) dty---dtn
An-1 \j=1

n
T
= (n—1)! .
; H;'L:l,j;éi(log z; — log ;)

When f(z) = —logz, we have the following corollary.
Corollary 3.4. Let f(z) = —logx. Then

1 n n 1 n
—log (nZ%) < —(n-— 1)!/A log (Z ti:vi) dt1---dtp_1 < _EZIngi'
i=1 n-1 i=1 i=1

Then we have

n n n 1/n
1
- g T; > exp {(n — 1)!/ log < g tia:i> dty - ~-dtn_1} > (Hw,) .
n - A _ : .
i=1 n—1 =1 i=1

Then n variable identric mean is defined as follows:
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Definition 3.5. Let z;,z9,...,z, € R. Then n variable identric mean is defined

by
IT(Lz) = exp {(TL — 1)'/ log (Z tiﬂii> dtl e dtn_l} .
An-1 i=1

4. THE COMPARISON BETWEEN TWO TYPES OF 3 VARIABLE LOGARITHMIC MEAN
AND 3 VARIABLE IDENTRIC MEAN

When n = 3, Lgl) and L(32) are represented in the followings.

1 |x1—2 T1— X To — X
Lz(),l):* 112_‘_13:34_2963
3 logé logz—; logﬁ

and

e a XT
Li(f) =2 {log;”;iogg + logiffogi; + logﬁfogig’}'
We compare L{" with L”). When a1 = 1000, 75 = 1001, 23 = 1002, we have
Y =1000.999- -, L{ = 1002,
Then L < L. When 21 = 1000, 25 = 1010, 23 = 2000, we have
L{) =1298.918---, L) =1281.339.-- .

Then Lgl) > ng)‘ We can’t compare between Lgl) and LgQ).
When n = 3, I?El) and I§2) are represented in the followings.

(1) ]' 1 2oy —wg—23 o 2zg—z1—23 3 2x3—x1—T9
(41) I3 = g('{rl )3(901—562)(901—983) (.1?2 )S(wg—acl)(xg—xg,) (xg )S(xg—:cl)(ac3—gg2)
and

(2) _ _3 xr1 _Mﬁ T2 —Mﬁ z3 —ﬁ
(4,2) ]3 —62(561) 1231(3;2) 1223(:1;3) 2—x3)(z3—21) |

We compare between Iél) and I:gz).

Theorem 4.1. If 0 < 1 < x93 < 3, then I:gl) < I?EQ).
Proof. By taking the logarithm for (4.1) and (4.2).
log I:gl)

1 1 1 1 1
= = + x1logxy + + zologzy ¢ .
3 Tr1 — T2 Tr1 — I3 ro — I o — I3

1 1 1
+= + xzlogxs p — 1
3 xr3 — I XT3 — T2

log I§2)

and

I 1 4
= 1 1og 1
(01 —w) (w1 —ag) 0

T2

(z2 — x1) (22 — 73)

9 log xa
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+ 3 x3logx _3
(23 — 1) (23 — 72) ° Py
Then
3
T+ 29 + x3 x; log x; 1
logI(Q) — log it = - —.
s ’ 3 ; Hj:l,j;éi(mi —z;) 2

We put 21 = z, x5 = ax,x3 = bx, where x > 0,1 < a < b. Then we have

log I§2) — log I?El)

_ 1+a+b blogbd _ aloga 1
B 3 b-1)b-a) (a—1)b—a) 2
_ l4+a+bfblogb aloga  3(b—a)
3b—a) |b—1 a—1 2(1+4+a+b)J’
Now we put
F(ayb):blogb_aloga_ 3(b—a) '
b—1 a—-1 20+a+b)
Then
oF (logb+1)(b—1) —blogb 3 1+ 2a
—(a,b) = - =
0b (b—1)2 2(1+a+10b)?
and
Ja _
0 b) = 30— a) <0.

9200 Y = T rat by

Since %—g(a, b) is a decreasing function of a,

oF oF b2 +4b—5— (4b+ 2)logb

- (a,b) > =—(b,b) =
ap (2:0) > 5 (0:0) 2(b— 1226+ 1)
We put k(b) = b? + 4b — 5 — (4b + 2) logb. Then
b+ 2
k’(b):2b+4—4logb—bT+

=2(b—b! —2logh)
=201 (b — 1 — 2blogh).

Furthermore we put £(b) = b> — 1 — 2blogb. Since £ (b) = 2(b — 1 — logh) > 0 and
(1) = 0, we get £(b) > 0. Then k'(b) > 0. By k(1) = 0, k(b) > 0. Since

OF OF
%(a, b) > %(b, b) > O,
F(a,b) is a increasing function of b. That is F(a,b) > F(a,a) = 0. We prove the
result. O
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