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FUZZY ASSOCIATION RULE CLASSIFICATION MODEL ON
FRFS AND CFFP-GROWTH ALGORITHMS

WEI-HSUAN LEE, CHIEN-HUA WANG, CHIA-HSUAN YEH, AND CHIN-TZONG PANG*

ABSTRACT. Classification mining is to draw relative patterns from each class
forming certain connections. In reality, data mining is all about a more pro-
ficient measurement and better storage capacity when it comes to processing
enormous amount of data. This paper is targeted at introducing concepts of
attribution reduction and later establishing new fuzzy data mining technologies.
The attribution reduction through the fuzzy rough feature selection algorithm,
as a preprocessing role, obtains reduced sets of attributes from a large amount of
data by selecting relevant attributes in which human interventions are not nec-
essary. Then, the proposed classified fuzzy FP-growth algorithm acts to manage
classification data by means of providing a new tree structure for the facilitat-
ing construction of patterns and restricting the numbers of linguistic terms and
combinations for efficiency. Results of this paper indicate that the reduced data
sets have beneficial effects on the efficiency during mining processes. The new
tree structure and the restriction involve lower computation without comprising
the classification accuracy. These findings may have implications for the fields of
attribute reduction and fuzzy data mining.

1. INTRODUCTION

In computerized period, what matters to the industrial field is the art of decision-
making in the database management. Choosing rational and consequential informa-
tion from extremely large data is what lies beneath data mining [17]. Bearing this
in mind, it behooves one to combine association discovery and classification mining
in which the former is to find frequent patterns among data whereas the latter is
for these patterns to draw linkages with class labels [48].

When processing massive data, it appears that whole sizes of data are a matter of
great importance. To operate effectively in this scenario is to utilize data reduction
at a nascent stage so that the reduced representation of original data is served for
data analysis and in turn similar results are gained [44]. Feature selection (FS) is
on point in cases like these that one is able to use the selected features in reduced
data with less computation time and less storage space. When compared with the
outcome gained from the original data, F'S generates identical results [31].

Rough set theory (RST), one approach of FS, benefits the possibility of maintain-
ing the underlying semantics of reduced features. By collecting a minimal subset
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from the original features, RST analyzes data arbitrarily that human intervention
is optional [41, 43, 10, 52]. It is this very reason that RST has been exploited in
application domains such as classification, clustering, to name a few [13, 29, 20].
Enhanced in hybridization with fuzzy logic, RST is later perceived as fuzzy rough
feature selection (FRFS) method. The FRFS better represents continuous data, a
mixture of qualitative and quantitative data that we face in the mechanism of cog-
nitive process. It is thus believed to be a promising alternative in the classification
mining [32, 53].

Apriori algorithm, used in data mining, earns a reputation of obstructing associ-
ation discovery and classification mining [17, 48]. Han et al. [19] came up with an
associative mining method, called Frequent-Pattern growth (FP-growth), to tune
this situation. Fuzzy FP growth (FFP-growth) method deals with cognitive uncer-
tainty of blurriness and obscurity. In discerning users’ perceived interpretation and
subjective inception of ideas, FFP is brought into play and spotted in references
[37, 38, 21, 49, 50, 22, 34, 35, 12]. Li et al. furthermore suggested classification
on multiple association rules (CMAR) to deal with classification problems [36]. As
we move along, FFP-growth does reach certain accuracy in the association-based
classification yet with foretold weakness [11, 39, 7].

On one hand, during constructing the FP-tree structure, some methods [36, 7]
simply attach class labels to the last nodes of the paths or within the nodes. If
these nodes have many class labels, what pattern candidates a certain class label
has is unsure of. On the other hand, it is difficult for computation time to bring
about combinatorial explosive number of pattern candidates when the given support
threshold is slight. While these pattern candidates become the antecedences of
rules, it is massive for human users to absorb such a large number of rules, which
concern conditions in information storage, retrieval, purging and connection with
complicated fuzzy rules. Evaluating the options, we adjust the classified FFP-
tree (CFFP-tree) structure and yield the suitable number of linguistic terms and
combination quantities of pattern candidates.

In this paper, we present a new procedure considering both FRFS and classified
FFP-growth algorithms for classification mining [33]. First, the FRFS algorithm can
filter essential patterns (attributes) to reduce the attribute quantities of the original
data set. We modified the QUICKREDUCT heuristic within the FRFS algorithm
for efficiency. Second, a new classified FFP-growth (CFFP-growth) algorithm was
posited to search for strong associations between frequent patterns and class labels.
By adjusting the CFFP-tree structure, it is effortless to see the pattern candidates
for each class from the top of the tree to the bottom and the paths belonged to
different class labels from the bottom of the tree to the top. Then, we suggest
different number of linguistic terms and pattern candidates of data sets by exper-
imental results to improve on the performance and prevent too many meaningless
rules before rule pruning. The details of our procedure are described in [33].

In order to access the performance of the proposed algorithms, 10 real-world data
sets with the ranges of variables from 6 to 60 and the ranges of objects from 101 to
10992 are used for the following experiments. First, the experimental results are the
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parameters of the CFFP-growth algorithm. Second, we have shown the results that
the reduction proportions of attributes in each data set. With regard to the CFFP-
growth algorithm, we have compared the reduced data sets by the FRFS algorithm
with the original ones to prove that the data sets only with relevant attributes have
finer performance. In addition, from the comparison with an Apriori-based method,
we have shown the results that the efficiency of the CFFP-growth algorithm is clearly
superior to the Apriori algorithm. Finally, we have compared the performance of
our study with that of another method.

2. PRELIMINARIES

For a better understanding, this section introduces some necessary background
information, including the fuzzy rough sets for attribute reduction and the fuzzy
association rules for classification.

The rough set theory (RST) proposed by Pawlark [41, 42] serves as a mathemati-
cal approach for discovering relationships in data. The idea assumes that knowledge
is based on the ability of classifying objects. Thus, in this approach, knowledge is
necessarily connected with the variety of classification patterns related with specific
parts of the real or abstract world. The benefits of RST is that it can analyze di-
rectly from data itself without additional artificial interventions such as thresholds
or expert knowledge.

As most data sets contain quantitative attributes, it is natural to perform the
standard fuzzification techniques. Fuzzification not only enables linguistic terms to
be associated with attribute values but allows the membership degrees of attribute
values to more than one fuzzy grid. To deal with linguistic variables, the grid par-
tition method [26, 27, 25, 28] can divide quantitative variables into fuzzy sets with
membership functions. Common membership functions are triangular or trapezoid
membership functions. In this paper, symmetric triangle-shaped linguistic variables
and the grid partition method are used for simplicity. We assume that a quanti-
tative variable a is partitioned into K fuzzy sets {Aq1,, Aatss .- Aaix s Aoy, 18
the ith fuzzy grid (linguistic term) and is defined by the triangular membership
function [23]

(2.1) o, (8) = max{1 — [t — ] /4", 0},
where

xiK:mi—i—(ma—mi)(i—l)/(K—l), 1=1,2,...,K,
y" = (ma —my) /(K - 1),
and m, and m; are the maximum and minimum values of the domain interval of

Agl,- xZK is the top where the membership degree is equal to 1 and y* is the spread
of the membership function of A, ;.
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In the data set, we utilize grid partition method to transform quantitative at-
tributes into fuzzy grids. A quantitative attribute a is represented as:

(Ma,ll(tp) + fa,ls (tp) NI Ha,lx (tp))
Aa7l1 Aa7l2 Aa,lK

(2.2)

using the triangular membership function defined by (2.1), where A, is the ith
fuzzy grid of K linguistic terms defined in the attribute a of pth transaction data t.

However, the complexity becomes excessively high while calculating the Cartesian
product of fuzzy tolerance classes for large attribute data sets. And it is undesirable
from a theoretical viewpoint while the fuzzy lower approximation might not be a
subset of the fuzzy upper approximation in some situations. Instead of using the
fuzzy partition method to determine fuzzy tolerance classes, another technique,
proposed by Jensen and Shen [32], applies the fuzzy similarity relation as the fuzzy
tolerance relation. The concepts would be illustrated in terms of the following
notions [32].

A fuzzy similarity relation R is used to measure the appropriate equality of un-
certain objects, instead of using a crisp equivalence relation to represent objects’
indiscernibility. The definition [45, 14] assume that R is at least a fuzzy tolerance
relation, which is reflexive and symmetric. For a nominal attribute a, we use the
classical way of discerning objects, that is, Ry(z,y) = 1 if a(z) = a(y). Or we can
define, for any subset B of A, the fuzzy B-indiscernibility relation by

(2.3) Rp(z,y) = T{Ru(z,y)}, ‘a€cB

where T is a T-norm and R, (z,y) is the degree of similarity between id x and y for
attribute a. If qualitative attributes are discrete only in the process, then we can
recover the traditional concept of B-indiscernibility relation.

For the lower and upper approximations, a fuzzy tolerance relation R is used to
approximate a fuzzy set A in X

(2.4) RA(y) = inf 3(R(z,y), A(z)), yeX
(2.5) RA(y) = Slel)% T(R(x,y), A(x)), Yye X

where J is a fuzzy implicator and ¥ is a t-norm.
Using fuzzy B-indiscernibility relations, the fuzzy B-positive region are defined
by, for y in X,

(2.6) POS3p(y) = (U @Mm) (y)-

zeX
The resultant degree of dependency is calculated as
POSg|
2.7 by = ‘7

If v = 1, the subset B can be a reduct that preserves the same dependency
degree as the entire data set.
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Association mining is one of the most common data mining techniques that is
used to explore, analyze knowledge, and discover meaningful patterns [8, 1, 2, 3].
In recent years, numerous studies were carried out on the integration of fuzzy set
concept with the Apriori algorithm to find association rules in the data sets. In
spite of its popularity, the Apriori algorithm is used to generate a huge number
of candidate sets, repeatedly scan a database, and check a large set of candidates
by pattern matching. On the other hand, FP-growth introduced by Han et al.[19]
adopts a divide-and-conquer strategy to compress the database representing fre-
quent items into a FP-tree and retain the itemset association information. Then it
divides such a compressed database into a set of conditional database; each associ-
ated with one frequent item to mine the rules separately [18].

Most studies on the performance of the FP-growth method have shown that it
is efficient and scalable for mining both long and short frequent patterns, and is
about an order of magnitude faster than that of the Apriori algorithm. But there
are still improvements to break through for the classification models. For the FP-
tree structure, the class labels are attached to the last nodes of the paths or within
the nodes. If these nodes have many class labels, it is not so intuitive to under-
stand what pattern candidates a certain class label has. In addition, generating
combinatorial explosive number of pattern candidates will be a challenge for com-
putational efficiency when the given support threshold is small. A classifier thus
may have to handle too many unnecessary rules through these pattern candidates,
which concerns conditions in information storage, retrieval, and purging. Therefore,
our new CFFP-tree structure puts all class labels as the second level nodes under
the root nodes. The related fuzzy grids of tuples can be attached as nodes below
their class labels. Besides, our new CFFP-growth method can choose the number
of pattern candidates according to the experimental results of data sets to decrease
the computational time (see Section 3.2).

3. FRFS AND CFFP-GROWTH ALGORITHMS

In this section, we describe a procedure combined with FRFS and CFFP-growth
algorithms for generating fuzzy associative classification rules. First, a given data
set adopts the FRFS algorithm to reduce attribute quantities. Then, the reduced
data set will be utilized to a CFFP-growth algorithm with the GA process for the
optimization of accuracy during classification. An example of the data set is given in
Table 1 to illustrate the concepts of the proposed procedure. The data set contains
six attributes from a1 to ag, two classes C and C, and eight objects.

3.1. Fuzzy-rough Attribute Reduction. The FRFS algorithm, employs fuzzy
similarity relations to construct approximations, allows several useful ways for at-
tribute reduction, e.g., fuzzy lower approximation, fuzzy boundary region, and fuzzy
discernibility matrix. Considering reduced size, runtime, and resulting classification
accuracies in [32], we utilize the fuzzy lower approximation-based FS to compute
degrees of data dependency for the minimal reducts.
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TABLE 1. The data set
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The first step is to compute fuzzy similarity relations among different values of
a same attribute. This measure can be modeled as a fuzzy tolerance relation R
[45, 14]. For quantitative values, a suitable measure is defined as
(3.1) Ry(z,y) = max {min { (aly) = (a(z) = Ua)), (alz) + 94) ~ aly) } ,0}

Oq Oa

where R, (x,y) is the degree of similarity between id z and y for attribute a, and
o, is the standard deviation of attribute a.

Instead of the classical way of the equality metric for nominal attributes, the
Value Difference Metric (VDM) is proposed to measure the closeness of two values
if they have more similar classifications [46, 51, 15].

In distinguishing a subset of attributes, (2.3) gives a proper measure to eval-
uate. Fuzzy lower and upper approximations employ the fuzzy B-indiscernibility
relation defined as (2.4) and (2.5), respectively. The fuzzy connectives chosen for
this paper are the minimum t-norm ¥(x,y) = min{z,y}, for all z,y € [0,1], and
the Lukasiewicz fuzzy implicator J(x,y) = min{1,1 — x + y}, for all =,y € [0, 1].

Although (2.6) provides the most faithful way in defining the fuzzy positive region,
the computational complexity is high. For easier computation, the definition of the
positive region in [14] is replaced by

(3.2) POSg(y) = (RpRay)(y),

which results in smaller positive regions. Then, an increasing [0, 1]-valued measure
can be defined to implement a corresponding notion of fuzzy decision reducts. Also,
a normalized extension of the resulting degree of dependency in [14] is calculated as

, _ |[POSB|
7B = 1POSA|
In the example of the data set in Table 1, the degrees of dependency of attributes
in Table 1 are as the follows by (3.3).

Yy, = 0.41, Yy, = 0.55,
7(’13 = 0.23, Yy, = 0.13,
'71/15 = 0.07, '7;6 = 0.30.

(3.3)
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A fuzzy-rough attribute reduction can be seen that a subset of attributes with
the maximum dependency degree have the same classified ability as the entire data
set. Different from the original search algorithm proposed by Chouchoulas and Shen
[13], a modified QUICKREDUCT heuristic [30] for a quick search of the dependency
degrees of attributes in the descending order is presented in Fig. 1.

Input: C, a set of the attributes with the dependency degrees in
the descending order; D, a set of the classes.

Output: R, a subset of attributes.

R « the first attribute of C;

! = '] a -
Yhes = the dependency degree of R

v =10

/ prev

foreachxe C-R
ify;f'._l{.rl'(@} > y;ea'r[ﬂ}l
R« RU{x}):

Y};m = )’;-.‘{QD}:

return R

Fic. 1. The modified fuzzy-rough QUICKREDUCT heuristic.

Following the example in Table 1, attribute ao is selected to be the reductive
candidate because it has the largest degree of dependency, The algorithm shows that
the remaining attributes are listed in the descending order by dependency degree
and combined to the reductive candidate using (2.3). The following dependency
degrees of combined attributes are

/ _ / _
'}/{a%al} = 080, 7{(12,(11,(16} = 087,
1.

/ —
Vas,a1,a6,a3} =

Since the attribute {ai, a2, as,ag} has the maximum dependency degree, these
attributes are considered to own the same ability to classify as the original one and
the algorithm terminates. The data set can now be reduced to these attributes as
Table 2.

Next, the reduced data set is to illustrate the proposed CFFP algorithm.

3.2. Classified Fuzzy FP-growth Algorithm. The purpose of CFFP-growth
algorithm is to better the performance and reach efficiency by adjusting the CFFP-
tree structure and restricting the combination number of patterns. The following
describes the details of the algorithm.
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TABLE 2. The reduced data set

ID|a; as a3 ag | Class

112 4 1 0 Cy

210 3 5 4 Cy

314 0 3 0 4

412 2 7 10| C

511 2 0 5 4

614 0 6 2 (&

710 2 0 O Cy

8|1 3 3 7 Cy
Membership

function
A
1.0 | '
05

11 VNumber

Fi1a. 2. The membership functions.

In the previous subsection, the reduced attributes have the same classification
ability as the original ones after the reduction procedure. Then, we may ascertain
the relationship between the concepts of reduced attributes and class labels to gen-
erate fuzzy associative classification rules. To lower computational complexity, we
use grid partition method to transform quantitative values into fuzzy grids. For
example, the grid partition method as (2.1) and the given membership functions in
Fig. 2 would be used to transform values to fuzzy grids (as (2.2)). Then, the data
set table in Table 2 can be replaced as a fuzzy grid table.

Then, we compute fuzzy supports of fuzzy grids to verify frequent fuzzy grids.
Let A,;, be a fuzzy grid for attribute a in the training data. A frequent fuzzy grid
is a fuzzy grid if its fuzzy support is higher than or equal to the minimum support.
If the fuzzy support F'S(A,,) satisfies this condition, fuzzy grid A, can be viewed
as a frequent fuzzy grid to retain to the next process. By following the example, if
the value of the minimum support is 0.31, the fuzzy grids that meet the minimum
support are ai.Small, as.Small, as.Middle, and ag.Middle. These fuzzy grids can
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be regarded as the frequent fuzzy grids. Based on these frequent fuzzy grids, we
rebuild a new fuzzy grid table as Table 3.

TABLE 3. The new fuzzy grid table

ID | Fuzzy Grid Class
0.80 040
1 a1.Small’ as.Small 02
D) 0.60 0.80 0.60 C
az.Small’ a3.Middle’ ag.Middle 2
3 0.40 0.40 C
a1.Small’ az.Middle 1
4 0.80 0.80 0.80 0.20 C
a1.Small’ ay.Small’ as.Middle’ ag.Middle 1
5 1.00 0.80 0.80 C
a1.Small’ as.Small’ ag.Middle 1
6 0.40 1.00 0.20 C
a1.Small’ az.Middle’ ag.Middle 1
7 0.80 C
az.Small 2
3 1.00 0.60 0.40 0.80 C
a1.Small’ ay.Small’ as.Middle’ ag.Middle 2

Next, we begin to proceed with the CFFP-growth method. First, we set a node
ROOQOT of a CFFP-tree and put all the class labels as the second level nodes. Second,
we scan the new fuzzy grids table to get the nodes of fuzzy grids and put them under
the nodes of belonged class labels. Then, we link the nodes of fuzzy grids with one
another based on the same class label and the same tuple. In this example, let us
construct a CFFP-tree through the new fuzzy grid table in Table 3. We first set
a node ROOT and link the class nodes C'; and C5 in the second level separately.
Then we scan the tuples from the first one in Table 3. The first tuple has two fuzzy
grids, ay.Small, as.Small, and the belonged class “Cy”. So, these two fuzzy grids
can be the nodes of the CFFP-tree under the class node “Cy”. Linking these nodes
and the class node becomes a path of the first tuple. The other tuples repeat the
step so the CFFP-tree are shown in Fig 3.

The difference of the CFFP-tree from other tree structures is that from top to
bottom; it is easy to see the pattern candidates for each class. And from bottom to
top, it explores the paths that belongs to different class labels. Then, we can scan
the CFFP-tree to obtain the potential frequent patterns.

Based on the CFFP-tree, we construct a table with paths, a group of combina-
tions of fuzzy grids as pattern candidates, and class labels belonged. And then we
generate rules with pattern candidates as the antecedences of rules and class labels
as the consequences. In terms of every path of CFFP-tree in Fig 3, we generate
pattern candidates and class labels belonged listed in Table 4. Take the path {C} :
ay.Small,az.Middle, ag.Middle} as an example. {a;.Small, as.Middle, ag.Middle}
belonged to the class node C7 means that we can use these fuzzy grids to generate
pattern candidates of class Cj.

One can find it hard for users to grasp too many generated fuzzy rules and their
relationship with antecedents. For this reason, we only generate the proper number
of pattern candidates as antecedents of fuzzy rules according to the experiment re-
sults of accuracy. If the number of pattern combinations is 3, the pattern candidates
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< <
@ a;.Small a,.Small
(2 e

Fia. 3. The example of CFFP-tree.

of class Cy are
{a1.Small}, {as.Middle}, {ag.Middle}, {a1.Small,as.Middle},
{as.Middle, ag.Middle},{ai.Small, ag.Middle}, and
{a1.Small, ag.Middle, ag.Middle}.
Similar to fuzzy grids, the pattern candidates and class labels are used to calculate
fuzzy supports. The fuzzy value NSC 7(tp) in pattern

AS (Ascl',ASC;, . 7Asc;jﬂ) of class C; is defined as

C; . C; C; C;
N () = min {7 (1), 15 (8), -+ 157 (1) }
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TABLE 4. Pattern candidates

Path Pattern Candidate Class

{C1: {a1.Small}; {as.Middle}; {as.Middle};
ai.Small, {a1.Small, as.Middle}; {as.Middle, ag.Middle}; C
as.Middle, {a1.Small, ag.Middle)}; !
ag.Middle} {a1.Small, as.Middle, ag.Middle}.
{C:: {az.Small}; {a1.Small, az.Small};
a1.Small, {ag.Small, as.Middle}; {as.Small, ag.Middle};
as.Small, {a1.Small, ay.Small,az.Middle}; C1
az.Middle, {a1.Small, ay.Small, ag.Middle};
ag.Middle} {ag.Small, as.Middle, ag.Middle}.
{C:
a1.Small, *
as.Small, =
ag.Middle}

{a1.Small}; {az.Small}; {as.Middle}; {as.Middle};
{Cy: {a1.Small, ay.Small}; {a;.Small, as3.Middle};
a1.Small, {a1.Small, ag.Middle}; {as.Small,az.Middle};
as.Small, {az.Small, ag.Middle}; {as.Middle, ag.Middle}; c
as.Middle, {a1.Small, ay.Small, as.Middle}; 2
ag.Middle} {a1.Small, az.Small, ag.Middle};

{a1.Small, as.Middle, ag.Middle};

{az.Small, as.Middle, ag.Middle}.
{Cy:
as.Small, * Cs
asz.Middle,
ag. Middle}

where Asc,j is the kth fuzzy grid in pattern Ascj of class C;. The t-norm operator in

the fuzzy intersection is the minimum operator. Then, the fuzzy support F'S (Agj )

is calculated as FS(AS7) = Z N$ (tp)| /m.
tpeC;
In considering the number of patterns for each class that can be different, we
redefine the minimum support for class C; [4] as

(3.4) MinimumSupportc; = minSup * fc,

where minSup is minimum support, and fc¢; is the pattern ratio of the class Cj.
The pattern s is a frequent pattern of the class C; if F'S (Ascj) is larger than or
equal to MinimumSupportc;.

Once all frequent patterns have been obtained, the proper fuzzy associative clas-
sification rule R : A; — C; can be generated by the frequent pattern Ascj , setting
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the frequent pattern A, in the antecedence of the rule and corresponding class C;
in the consequence.

The fuzzy confidence value assists to ensure that the rule is the effective fuzzy
associative classification rule, calculated. If FC(As — C}) is larger than or equal

to the minimum confidence, the rule R : Ascj — () is an effective fuzzy associative
classification rule.

To improve the classification abilities of fuzzy rule-based systems and eliminate
redundant rules, we adopt the method proposed by Nozaki et. al. [40] through
incorporating the adaptive rules. To solve the shortcoming of user-specified mini-
mum support and confidence, we introduce the learning process proposed by Hu et
al. [24] incorporates genetic algorithm (GA) [16] to automatically determine these
parameters for specific classification data set.

3.3. Flowchart. In the following, we propose a procedure of the proposed algo-
rithms to form fuzzy associative classification rules.

INPUT: A data set with class labels.

OUTPUT: Fuzzy associative classification rules.

Phase 1. (Section 3.1)Fuzzy-rough Attribute Reduction.

Step 1. Calculate the fuzzy similarity degrees, the lower approximations, positive
regions for every tuple of each attribute.

Step 2. Compute the resulting degrees of dependency for each attribute a.

Step 3. Arrange the attributes in the descending order by the degrees of depen-
dency.

Step 4. Add the first attribute to the reduct candidate, and then sequentially
evaluate the degree of dependency of this candidate with the addition of remaining
attributes.

Step 5. If the reduct candidates produce the maximum dependency value for this
data set, reduce the data set to these attributes only. Else, go to Step 4.

Phase 2. (Section 3.2)Classified Fuzzy FP-growth Algorithm

Step 6. Utilize the grid partition method to transform quantitative attributes
into fuzzy grids.

Step 7. Scan the dataset and construct a table FGTTFS.

Step 8. Generate the initial population with P chromosomes.

Step 9. Select the frequent fuzzy grids to construct a CFFP-tree.

Step 10. Scan the CFFP-tree to generate pattern candidates.

Step 11. Select the frequent fuzzy patterns and generate fuzzy associative classi-
fication rules.

Step 12. Reduce redundant rules and employ adaptive rules to adjust fuzzy
confidences.

Step 13. Evaluate the population.

Step 14. Generate the next population through the process of GA, selection,
crossover, mutation, and elitist strategy.

Step 15. If the maximum generation is not reached, go to Step 9.
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A structure is shown in Fig. 4.

Reduction phase
Fuzzy-rough feature
selection (FRFS) algorithm

Calculate fuzzy-rough meatures

—

i
Data set Filter relevant attributes

h

Generate reduced data set

Mining phase | |
: Classified fuzzy FP-growth | CFFP-growth |
I (CFFP-growth) algorithm : i algorithms
| |
! I
: Fuzzify numerical attributes I
I
I
| l :
! |
I
Fuzzy | GA process :
L I
assc?cllatnl.fe :
classification [ v |
rules : . . I
| Filter frequent fuzzy grids :
I
. |
! I
I Y |
I
| Construct a CFFP-tree :
I
| l :
! |
: |
| Filter frequent patterns :
I
. |
L T I I I I T I I T T

Fi1G. 4. The structure of the proposed algorithms.
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4. EXPERIMENTAL FRAMEWORK AND RESULTS

This section describes the classification data sets that are used in these exper-
iments and presents several experiments to evaluate the utility of our proposal.
First, an experiment shows the suitable parameters of each data set for the proposed
CFFP-growth algorithm. Then, we introduce experiments to verify the reduction
ability and reduction essentiality of the proposed FRFS algorithm for each data set.
Finally, the experiments summarize the other two methods selected for comparison.
The details of the experiments are described in [33].

To analyze the performance of the proposed approach, Table 5 summarizes the
main properties of the 10 classification data sets from the Knowledge Extraction
based on Evolutionary Learning(KEEL)-dataset repository [6, 5]. For each data set,
“Attributes(R/I/N)” is the number of (Real/Integer/Nominal) attributes in data,
“Examples” is the number of examples, and “Classes” is the number of classes. For
continuous attributes, their values are fuzzified in the interval [0, 1] by grid partition
method (2.1) to equalize the influence of attributes with different range domains.

TABLE 5. Data sets for the experimental study

Name Attributes(R/I/N) Examples Classes
Australian 14 (3/5/6) 690 2
Monks 6 (0/6/0) 432 2
Page-blocks 10 (4/6/0) 5472 5
Penbased 16 (0/16/0) 10992 10
Sonar 60 (60/0/0) 208 2
Vowel 13 (10/3/0) 990 11
Wadbc 30 (30/0/0) 569 2
Wine 13 (13/0/0) 178 3
Yeast 8 (8/0/0) 1484 10
Z0o 16 (0/0/16) 101 7

We use the ten fold cross-validation (10-fcv) procedure [47] to partition the data
sets. Each data set is randomly partitioned into ten subsets, preserving the same
number of examples and the same class distribution between partitions. In an
iterative process, one partition is selected as the test set whereas the remaining is
the training set. By averaging the results gained from the ten partitions, the final
results are thus obtained.

4.1. The experiment for parameters. In the parameters of the proposed CFFP-
growth algorithm, the number of linguistic terms affects not only the range of fuzzy
partition in quantitative variables but the formation of fuzzy rules. Also, a suitable
number of combinations of fuzzy grids equips human users with the ability to handle
pattern candidates to be appropriate amounts of rules. So this experiment is to
explore these two parameters, records the average accuracy rates of the different
number of linguistic terms within the three combinations of fuzzy grids, and the
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different number of combinations based on the experiment results of the number of
linguistic terms. “Tra” and “T'st” in Table 6 indicate the training data and testing
data of data sets, respectively.

The results show that every data set has various average accuracy rates in the
numbers of linguistic terms and combinations. In some cases, the highest accuracy
rates fall in the different ranges of linguistic terms and combinations. So, the ranges
are chosen according to the highest accuracy rates in the testing data of the data
set. And we adopt these results as the parameters of the CFFP-growth algorithm
for the later experiments. The best results for each one are highlighted in bold in
each case.

The other given parameters of the FRFS and CFFP-growth algorithms are illus-
trated in Table 7.

4.2. The experiment for attribute reduction. The purpose of the attribute
reduction is to reduce the representation of data and keep relevant attributes. The
idea of the rough sets is introduced to prevent additional artificial interventions. So,
the proposed FRFS algorithm combines these two concepts to make the operation
of data mining simply. This experiment is to verify that the FRFS algorithm has
the ability to reduce the representation of the given data sets.

For the later experiments, the minimum ¢—norm and the Lukasiewicz fuzzy im-
plicator are used, with fuzzy similarity relation defined in (3.1).

Table 8 lists the average reduction size, the original size, and reduction rate for
attributes in each data set. In considering the removed scales of attributes, the
reduction rate is computed by

| Removed Attributes|
|OriginAttributes|

(4.1) ReductionRate =

4.3. Experiments of reduction essentiality. In data mining, most of studies
only consider various methods for analyzing the contents of data. But there are
two issues: one is whether original data sets containing redundant attributes would
disarrange the rules and make the accuracy decrease, the other is whether the
reduced data sets have impacts on the decrease of execution time. So, we want
to explore the essentiality of attribute reduction by the proposed FRFS algorithm
before the data mining process.

This experiment uses the proposed CFFP-growth algorithm with two kinds of
data sets beforehand: the reduced ones treated by the FRFS algorithm (FRFS+
CFFP-growth) and the original ones (CFFP-growth) to compare the classification
capability by the average accuracy rates and execution rates of two data sets. Table
9 shows the average accuracy rates in training and testing data for each method and
data set. The execution rate is the reducing proportion of the execution time by the
FRFS and CFFP-growth algorithms compared with the CFFP-growth algorithm.
And the execution rate is calculated by

|CFFP-growth| — [FRFS+CFFP-growth|
|CFFP-growth|

(4.2) ExecutionRate =
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TABLE 7. Parameter specification for the proposed algorithms

Algorithm Parameters
FRFS Gamma=1.0.

Number of generations=50; Population size=30;

Length of support and confidence=10;

Weight of the classification accuracy rate (WCAR)=10.0;
Weight of the number of fuzzy rules (WV)=1.0;
Crossover Probability=1.0;

Mutation Probability (per gen)=0.01;

Learning rate n1=0.001; Learning rate n2=0.1;

Number of iterations Jmax=100.

CFFP-growth

TABLE 8. Results for reduction in data sets

Data set After reduction / Origin (size) Reduction rate (%)

Australian 11 /14 21.43
Monks 5/6 16.67
Page-blocks 9/10 10.00
Penbased 14 / 16 12.50
Sonar 17 / 60 72.67
Vowel 11/ 13 15.38
Wdbc 21 /30 30.00
Wine 6 /13 53.85
Yeast 6/8 25.00
Zoo 15 / 16 6.25

where |algorithm| is the execution time of the algorithm. The best accuracy results
for each one are highlighted in bold in each data set.

The results in Table 9 reveal that most of the data sets have higher accuracy in
FRFS and CFFP-growth algorithms. Although the reduced criterion of the FRFS
algorithm may remove those attributes which have supports for the classification
of data, the difference of the accuracy is not too far. In addition, the execution
rates show that the data sets would have higher performance after the attribute
reduction. So, the data sets with irrelevant attributes have larger chances to create
surplus rules and decrease the accuracy. The reduced data sets treated by the
FRFS algorithm not only increase the computation efficiency but retain essential
attributes that can generate higher relevant rules by the CFFP-growth algorithm
to better the ability for classification.

The experiment reported in this paper has demonstrated that the FRFS algo-
rithm can be practically implemented and provide adequate results.
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TABLE 9. Results for reduction essentiality

Data set FRFS 4+ CFFP-growth CFFP-growth FExecution

Tra Tst Tra Tst  Rate (%)
Australian  86.49 85.65 86.31 85.51 37.89
Monks 100.00 100.00 99.55 98.97 35.66
Page-blocks 92.51 92.31 92.40 92.44 1.57
Penbased 72.03 72.07 54.56  54.39 93.90
Sonar 87.51 74.22 89.74 T72.71 92.02
Vowel 33.07 32.51 0.00  0.00 47.06
Wdbc 96.52 95.05 96.59 94.89 80.46
Wine 100.00 97.42 99.83  96.94 43.43
Yeast 54.17 52.83 53.92 53.17 9.91
Zoo 98.53 92.83 95.24 92.89 72.83

4.4. Comparisons with other methods. Our aim is to solve the shortcoming of
the Apriori algorithm which takes enormous time begetting high quantities fuzzy
grids. For comparison, we introduce two methods based on the Apriori algorithm,
which have given membership functions and are available in the KEEL software tool
[6]. The following are brief descriptions of these two different methods, the fuzzy
rules for classification problems based on the Apriori algorithm (FRCA) method
and the classification with fuzzy association rules (CFAR) method. The other given
parameters of these methods are illustrated in Table 10.

TABLE 10. Parameter specification for the compared methods

Algorithm Parameters

Number of generations=50; Population size=30;
Length of support and confidence=10;
Weight of the classification accuracy rate (WCAR)=10.0;
Weight of the number of fuzzy rules (WV)=1.0;
FCRA Crossover Probability=1.0;
Mutation Probability (per gen)=0.01;
Learning rate n1=0.001; Learning rate n2=0.1;
Number of iterations Jmax=100;
Number of linguistic values=5.

Number of rules combining for every example (§)=0.05;
Minimum Gain=0.7;

Weight decay factor (a)=0.66;

Number of rules used in prediction=5.

CFAR
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The FRCA method, proposed by Hu et al. [24], uses the Apriori algorithm to
discover fuzzy grids and the evolutionary process to learn the appropriate minimum
support and confidence for the fuzzy classification rules. To differentiate the process
for searching the antecedents of rules, our algorithm with the reduced attributes
adopts the evolutionary process of the FRCA method but replaces the Apriori
algorithm with the adjusted CFFP-growth structure.

The CFAR method, proposed by Chen and Chen [9], uses different measures of
the minimum support and confidence to generate fuzzy classification rules based on
the extend Apriori-type rule mining. However, to be more suitable for each data set,
our proposed algorithm has the learning of the minimum support and confidence.
Because the CFAR method has no iteration process, this experiment only utilizes
the accuracy to examine the performance of our study.

Table 11 shows the accuracy results and computation rates between the FRCA
method and our proposed algorithm. The computation rate is similar to (4.2) where
the CFFP-growth algorithm is replaced by the compared method. Table 12 shows
the accuracy results between the CFAR method and our proposed algorithm. The
best accuracy results for each one are highlighted in bold in each data set.

TABLE 11. Results for out study and the FRCA method

Data set FRFS 4+ CFFP-growth FRCA Execution
Tra Tst Tra Tst  Rate(%)
Australian 86.49 85.65 87.31 86.65 99.99
Monks 100.00 100.00 100.00 100.00 99.16
Page-blocks 92.51 92.31 90.24  90.20 88.41
Penbased 72.03 72.07 55.78  55.67 94.48
Vowel 33.07 32.51 0.00 0.00 90.00
Wine 100.00 97.42 99.72  92.31 99.97
Yeast 54.17 52.83 55.07 53.03 99.52

TABLE 12. Results for out study and the CFAR method

Data set FRFS + CFFP-growth CFAR

Tra Tst Tra Tst
Australian 86.49 85.65 87.54 86.73
Monks 100.00 100.00 47.22 47.34
Page-blocks 92.51 92.31 89.78 89.78
Penbased 72.03 72.07 10.40 10.40
Vowel 33.07 32.51 9.09 9.09
Wine 100.00 97.42 98.52 91.80

Yeast 54.17 52.83 16.44 16.47
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Consequently, we can observe that the proposed FRFS and CFFP-growth algo-
rithm achieves the highest accuracies of 6 data sets. The classification ability of
our proposed FRFS and CFFP-growth algorithm is more accurate than that of the
other two methods in most of data sets. Also, concerning time elapsed, our study
takes lower execution time than the time takes on the FRCA method by an average
over 90%. The results show that the performance of the CFFP-growth algorithm is
better than that of the Apriori algorithm.

However, the comparison results cannot be revealed in other data sets. Except
for the limitation of the computer hardware, we observe that too many number of
attributes may increase the execution time of these methods even if they have small
sizes of data. A possible reason is that while these attributes partition are fuzzy
sets, the total amounts of fuzzy sets may enlarge the computing objects for the
later process to generate fuzzy rules. So, the quantity of attributes has influences
on the computational complexity of the fuzzy classification mining methods. The
introduced concepts of attribute reduction can have some assistants.

5. CONCLUSIONS

This study concludes a research on the attribute reduction and fuzzy classification
mining methods. With the application of FRFS algorithm and the appropriate
parameters of the CFFP-growth algorithm, the attributes pertaining to the data sets
beget fuzzy associative classification rules. The results unfold that the data sets with
redundant attributes and indelicate number of linguistic terms and combinations
have the tendency to issue excess rules and increase the likelihood of inaccuracy for
classification. One can argue that the compositions of antecedents of rules mark the
classification ability. It explains why the FRFS algorithm contributes much in fuzzy
classification mining since it detects relevant attributes. Not only does it lessen the
computational complexity but it brings forth fuzzy associative classification rules.
Our findings in the end reinforce the efficiency of CFFP-growth algorithm and its
surpassing quality than the Apriori algorithm.
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