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ON OPTIMALITY CONDITIONS FOR BEST APPROXIMATION
PROBLEMS

MOON HEE KIM, GWI SOO KIM, AND GUE MYUNG LEE

This paper is dedicated for the memory of Professor K. Goebel.

ABSTRACT. We consider best approximation problems involving integral func-
tions defined on L2[0,1] and conic constraints, and obtain optimality conditions
for the problems which hold without any constraint qualification and which are
expressed by sequences.

1. INTRODUCTION AND PRELIMINARIES

Jeyakumar et al. [3] obtained the Lagrange multiplier optimality theorems for con-
vex optimization problems, which held without any constraint qualification and
which were expressed by sequences. Such optimality theorems have been investi-
gated for many kinds of convex optimization problems [5,7-12].

In this paper, we consider best approximation problems involving integral func-
tions defined on L2[0,1] and conic constraints, and obtain optimality conditions
for the problems which hold without any constraint qualification and which are
expressed by sequences. Moreover, we give an example illustrating how to use
the optimality conditions for getting the optimal solution for a best approximation
problem (see Example 3.2).

Now we give the definition of the convex function and the conjugate function, and
then we state the well-known results about the epigraphs of the conjugate functions
of the convex functions.

Let E be a Banach space with norm x — ||z|| and let E* the dual of E.

Definition 1.1. The conjugate function of a function f: E — R U {400} is the
function f*: E* — R U {+o0} defined by
fr(@7) :=sup {(z", x) — f(2)} (2" € E7).
el
A function g: F — R U {400} is said to be convex if for all ¢ € [0, 1],

g((1 =tz +ty) < (1 —t)g(z) +tg(y)
for all z,y € E. Let g: E — R U {400} be a proper convex function. We denote
the epigraph of g by epig, that is , epig := {(z,7) € E x R: g(x) < r}.
The following two propositions are well known (See [2] and [4]);
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Proposition 1.2. Let E be a Banach space. Consider a family of proper lower
semicontinuous convez functions ¢;: E — RU{+o0}, i € I, where I is an arbitrary
index set. Suppose that sup,c; ¢; is not identically +oo. Then

epi(sup ¢;)* = clco U epi ¢;.

el il

Proposition 1.3. Let E be a Banach space. Let ¢p1: E — R, ¢o: E — RU {400}
be proper, lower semicontinuous convex functions. Then

epi(¢1 + ¢2)" = cl(epi @7 + epip3).

In addition, if one of the proper, lower semicontinuous convex functions is con-
tinuous, then

epi(¢1 + ¢2)" = epi ¢y + epi ¢5.
2. FORMULATION

Now we formulate our best approximation problem defined on L2[0, 1]: Consider

1
(P)  Minimize,crzoy /0 (o))t
subject to reK,
a;(t)Tx(t) —bi(t) =0ae t€(0,1], i=1,...,m

where K is a closed convex cone in L2[0,1] and a; € L£°[0,1] and b; € L?[0,1],
i =1,...,m are given, where L2[0,1] = {z | = : [0,1] — R" : measurable and
fo ||l (t) ]2dt < oo} and L[0,1] = {x | = : [0,1] — R™ : measurable and there exists
M such that ||:L‘( )H < M a.e on [0,1]}}. We define the inner product (-,-) as

fo t)dt for any f,g € L2[0,1]. Then L2[0,1] is a Hilbert space with
the inner product (refer [1] for the definitions and basic properties of the spaces
L2[0,1] and L[0,1]).

Let A ={z € K | a;(t)Tx(t) — b;i(t) =0 a.e. t € [0,1]}. Assume that A # (). We
can prove that A is a closed convex subset of L2[0,1]. So the problem (P) has the
unique optimal solution.

We define the nonnegative dual cone of K as

_{zeL201|/ t)dt =20 Vz € K}.

We recall that =y in L2[0, 1] if and only if z(t) = y(¢) a.e on [0, 1].

Example 2.1. Consider the following best approximation problem defined on
L3[0,1]:

1 1

subject to x1(t) + 22(t) =t a.e. t € ]0,1].

1

Then (5, %) is the unique solution of (P;) and its optimal value is 15.
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Consider another best approximation problem defined on L20, 1]:

L 1!
(P)2 MlmmlzexeL% (R /0 [ml(t)z + :cg(t)Q] dt
! 1
subject to / [xl(t) + .%'2(t)j| dt = —.
0 2

Then (%, 1) is the unique solution of (P); and its optimal value is 1.

Jeyakumar et al. [6] studied the (P)q type best approximation problem, but in
this paper, we consider the type (P); best approximation problem. The example
says that the two type best approximation problems are different.

3. OPTIMALITY CONDITIONS
Now we give the following optimality theorem for (P):

Theorem 3.1. Let T € A. Then the following are equivalent:
(i) & is an optimal solution of (P);
(ii) there emist v € L2[0,1], AL € L2[0,1], kj € K*, r 2 0 andr 2 0, i =
1,...,m such that

m

7+ lim [Z Ma; — kﬂ =0

l—o0 L4
=1

1, _ 1, . l
ond — Sl = Sol + o+ Jim [S7 () 4]

i=1
(i) there exist AL € L?[0,1] and kj € K* such that
m
Pl |3 e ki] =0
=
and lim (k/',z) =0,
—00

where Ma; = (Mal, ..., Ndl) (a; = (a},...,dl)).

Proof. (i)= (ii): Suppose that 7 is an optimal solution of (P). Let f(z) = %fol |z(t)||?dt.
Let D = {z € L2[0,1] | a;(t)Tx(t) — b;(t) = 0 ae. t € [0,1], i =1,...,m} and
AN={reK|at)lz(t)—bi(t) =0ae. t€[0,1],i=1,...,m}. Then A = DNK.
Let hi(z) = a;(-)Tx(-) — bi(-). Then h; : L2[0,1] — L2[0,1],i = 1,...,m, is contin-
uous and affine,

D={xecL20,1] | hi(z) =0, i=1,...,m}.
By Proposition 1.3, we have,

(0, —f(z))

m

epi(f +0a)"
= epif* 4 epidp
= epif* + cl(epidp + epidi).
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Thus

(3.1) (0, —f(z)) € epif™ + cl(epidy) + epidk).

Since f*(v) = Z||v||?, epif* = {(v, |v||?) |v € L2]0,1]} + {0} x Ry Since dp(z) =

sup Yoty (i, hi(2)), it follows from Proposition 1.2 that
X eL2[0,1]

epidy = o [ J iepi(<>\i7hi(')>)*

A €L2[0,1] i=1

- [ U {Z)‘%/ i( b(t)dt)}+{()}xR+

XN€E€L2[0,1] =1

3

and epid}, = (—K*) x R;. Thus, from (3.1),
0.1 #P) € {(v, 1ol e o1 f + ) xR,
U {Z )\a“/ i b(t)dt)}+{—K*}><R+ .

/\€L201] =1

Hence there exist v € L2[0,1], AL € L?[0, 1], kf e K*,r20andr 20,i=1,...,m
such that

(0.~5l21?) = (v 5loIP) +(0,1)
m 1
+ Jim [;(Aé“"’ /0 N (Obi(t)dt) + (—kf, ).

Therefore there exist v € L2[0,1], Al € L?[0,1], kf € K*, r 2 0and 7, 2 0, i =
1,...,m such that

_ . l Y ]
(3.2) o+ lim [Z&(-)az() k| =0
1 m
(3.3) and — _]” = HvH2+r+h [Z/ (t)dt + 1.

Thus (ii) holds.
(ii) = (iii): Suppose that (ii) holds. From (3.2) and (3.3), there exist A} € L2[0, 1],
k; € K* and r; € R4 such that

(3.4) 0 = (3 <llggo(ZAal— ) >

1, 1 [t
(3.5) 0 = §<x,x>+2<vv —l—r—i—hm{;/o dt—}-n}
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From (3.4) and (3.5),

1, o 1,
0 = —§<x,x>+<v,x>—§<v,v>—r
l = 1 £ —
+lli>r&[<z_;)‘zaiax> - z_;/ )‘z(t)bl(t)dt - <kl ,$> - T
1, .
= —§||a:—v|| —7r — lim ((kl,x>+rl>

Thus ||z — 9||* = 0, that is, Z = 9, r = 0, lim (k},Z) = 0 and lim r; = 0. Thus,
l—o00 l—o00

from (3.2), there exist Al € L?[0,1] and k; € K* such that

7+ i [E PV —k:] -
x+ziglo - e ] 0
and lim (k,z) = 0.

l—o0

Hence (iii) holds.
(iii)= (i): Suppose that (iii) holds. Then for any = € A, we have

= T — T 1 )\lz—k* — 7T
0 (z,z a:)—i—liglo<; ia 1T x>

= (@)~ |z]* + lim [i (A bi) = (ki) — > (b + (k7 7)|
=1

= =1
= (@2~ |al* - lim (k,2).

Thus for any = € A, (z,2) — ||Z||*> =2 0 and so ||z — z||? < ||z||?> — ||Z||?>. Thus Z is an
optimal solution of (P) and so (i) holds. O

Example 3.2. Consider the problem (P); in Example 2.1. Then by Theorem 3.1,
(Z1,Z2) is the unique optimal solution of (P); if and only if

T1(t) + T2(t) =t ae. t€[0,1] and

there exists A\' € L2[0,1] such that

(1, 72) = lim M(1,1) =0,

equivalently, 71 (t) + Z2(t) = t a.e. t € [0,1] and there exist A' € L]0, 1] such that

(Z1(), T2 () = (— lim A (t), — lim \(¢)) a.e. t € [0,1].

=00 l—00

Hence A'(t) = —% (a.e. t € [0,1]) and (Z1(t), Z2(t)) = (%, %) (a.e. t € [0,1]) is the
unique optimal solution of (P);.
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Remark 3.3. We do not know the example which shows that the limits in Theorem
3.1 can not be removed. We do not know whether the limits in Theorem 3.1 for best
approximation problem can be removed or not. We had examples which show that
such limits could not be removed in other convex or linear fractional optimization

problems (see [3,8-12]).

ACKNOWLEDGMENT

The authors would like to thank the referees for giving their valuable comments
for this paper.

1]
2l
8l

[4

5

6

(7]
(8]
(9]

[10]
(1]

(12]

REFERENCES

1. Ekeland and T. Turnbull, ”Infinite-Dimensional Optimization and Convexity”, The Univer-
sity of Chicago Press, 1983.

A. Dhara and J. Duatta, ”Optimality Conditions in Convex Optimization: A Finite-
Dimensional View”, Taylor and Francis Group, LLC, 2012.

V. Jeyakumar, G. M. Lee and N. Dinh, New sequential Lagrange multiplier conditions char-
acterizing optimality without constraint qualification for convex programs, STAM J. Optim. 14
(2003), 534-547.

V. Jeyakumar, G. M. Lee and N. Dinh, Characterization of solution sets of convexr vector
minimization problems, European J. Oper. Res. 174 (2006), 1380-1395.

V. Jeyakumar and G. Li, Strong duality in robust convex programming: complete characteri-
zations, SIAM J. Optim. 20 (2010), 3384-3407.

V. Jeyakumar and G. Li, B. S. Mordukhovich and J. H. Wang, Robust best approxmation with
interpolation constraints under ellipsoidal uncertainty: Strong duality and nonsmooth Newton
methods, Nonlinear Anal. 81 (2013), 1-11.

V. Jeyakumar, Z. Y. Wu, G. M. Lee and N. Dinh, Liberating the subgradient optimality con-
ditions from constraint qualifications, J. Global Optim. 36 (2006), 127-137.

M. H. Kim, G. S. Kim and G. M. Lee, On semidefinite linear fractional optimization problems,
J. Nonlinear Convex Anal. 22 (2021), 1297-1310.

M. H. Kim, G. S. Kim and G. M. Lee, On sequential optimality theorems for lineaar fractional
optimization problems involving integral functions defined on L2[0,1], J. Appl. Numer. Optim.
3 (2021), 501-512.

G. M. Lee, G. S. Kim and M. H. Kim, Linear fractional optimization problems on Jordan
Euclidean algebras, J. Nonlinear Var. Anal. 6 (2022), 65-82.

G. M. Lee and K. B. Lee, On optimality conditions for abstract convex vector optimization
problems, J. Korean Math. Soc. 44 (2007), 971-985.

J. H. Lee and G. M. Lee, On Sequential optimality theorems for convexr optimization problems,
Linear and Nonlinear Anal. 2 (2017), 155-170.



BEST APPROXIMATION PROBLEMS 315

Manuscript received 21 December 2022
revised 22 December 2022

M. H. Kim
College of General Education, Tongmyong University, Busan 48520, Korea.
E-mail address: mooni@tu.ac.kr

G. S. Kt
Department of Applied Mathematics, Pukyong National University, Busan 48513, Korea.
E-mail address: gwisoo1103@hanmail .net

G. M. LEE
Corresponding author, Department of Applied Mathematics, Pukyong National University, Busan
48513, Korea

E-mail address: gmlee@pknu.ac.kr



