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is called a modular space.
Assume that ρ is a modular defined on a vector space X. We say that the modular

ρ satisfies a ∆2-type condition if there exists a number M > 0 such that

(2.1) ρ(2x) ≤ Mρ(x), x ∈ Xρ.

The authors of [12] considered a modular function space Lρ (which is a particular
case of a modular space) with a modular ρ satisfying a ∆2-type condition. They
showed that if T is a self-mapping of a closed subset K of Lρ such that for some
c ∈ [0, 1),

ρ(T (x)− T (y)) ≤ cρ(x− y) for all x, y ∈ K

and such that there exists x0 ∈ K satisfying

sup{ρ(2T p(x0)) : p = 1, 2, . . . } < ∞,

then T has a fixed point.
Assume that ρ is a modular defined on the vector space X. For each x, y ∈ X,

define

d(x, y) := ρ(x− y).

It is easy to see that for each x, y ∈ X, d(x, y) = 0 if and only if x = y and that
d(x, y) = d(y, x).

Assume that ρ satisfies the ∆2-type condition (2.1) with a number M > 0. Then
for each x, y, z ∈ Xρ, we have

d(x, z) = ρ(x− z) = ρ((x− y) + (y − z))

= ρ(2(2−1(x− y) + 2−1(y − z)))

≤ Mρ(2−1(x− y) + 2−1(y − z))

≤ M(ρ(x− y) + ρ(y − z))

≤ Md(x, y) +Md(y, z).

We say that a modular ρ is uniformly continuous (see Definition 5.4 of [11]) if for
each ϵ > 0 and each L > 0, there exists δ > 0 such that

(2.2) |ρ(x+ y)− ρ(x)| ≤ ϵ

for each pair x, y ∈ Xρ satisfying ρ(y) < δ and ρ(x) < L.
Assume that the modular ρ is uniformly continuous and that ϵ > 0 and L > 0.

Then there exists a number δ > 0 such that (2.2) holds for each pair x, y ∈ Xρ

satisfying ρ(y) ≤ δ and ρ(x) ≤ L.
Assume now that the points x, y, z ∈ Xρ satisfy

d(x, y) ≤ L, d(y, z) ≤ δ.

Then

ρ(x− y) ≤ L, ρ(y − z) ≤ δ,

d(x− z) = ρ(x− z) = ρ((x− y) + (y − z))

and in view of the choice of δ,

|d(x, z)− d(x, y)| = |ρ(x− z)− ρ(x− y)| ≤ ϵ.
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Thus we have shown that for each ϵ > 0 and each L > 0, there exists δ > 0 such
that if x, y, z ∈ Xρ satisfy

d(x, y) ≤ L, d(y, z) ≤ δ,

then

|d(x, z)− d(x, y)| ≤ ϵ.

In other words, d is uniformly continuous.

3. Generalized metric space

Assume that X is a nonempty set, d : X×X → [0,∞], M > 0, and that for each
x, y, z ∈ X,

(3.1) d(x, y) = 0 if and only if x = y,

(3.2) d(x, y) = d(y, x)

and

(3.3) d(x, z) ≤ Md(x, y) +Md(y, z).

We call the pair (X, d) a generalized metric space. For each point x ∈ X and each
number r > 0, set

Bd(x, r) := {y ∈ X : d(x, y) ≤ r}.
Clearly, a generalized metric space is both a generalization of the concept of a mod-
ular space and a generalization of the concept of a metric space. It was introduced
in [22]. By investigating generalized metric spaces we are able to unify the study of
these two important classes of spaces. For specific examples of modular spaces, see
[11, 14].

We equip the space X with the uniformity determined by the base

(3.4) U(ϵ) := {(x, y) ∈ X ×X : d(x, y) ≤ ϵ}, ϵ > 0.

This uniform space is metrizable (by a metric d̃). We also equip the space X with
the topology induced by this uniformity and assume that the uniform space X is
complete.

Consider a sequence {xn}∞n=1 ⊂ X and a point x ∈ X. Clearly,

lim
n→∞

xn = x

if and only if

lim
n→∞

d(xn, x) = 0

and {xn}∞n=1 is a Cauchy sequence if and only if for each ϵ > 0, there exists a natural
number n(ϵ) such that d(xn, xm) ≤ ϵ for every pair of integers n,m ≥ n(ϵ).

A set E ⊂ X is said to be bounded if

sup{d(x, y) : x, y ∈ E} < ∞.
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We say that the generalized metric d is uniformly continuous on bounded sets if
for each nonempty bounded set D ⊂ X and each ϵ > 0, there exists a number δ > 0
such that for each x, y ∈ D and each z ∈ X satisfying d(y, z) ≤ δ, the inequality

|d(x, y)− d(x, z)| ≤ ϵ

holds.
From now on we assume that the generalized metric d is uniformly continuous on

bounded sets. For each mapping T : S → X, where S ⊂ X set T 0(x) = x, x ∈ S.

4. The main result

We use the notations and definitions introduced in Section 3 and assume that all
the assumptions made there hold.

Theorem 4.1. Let K be a nonempty and closed subset of X. Assume that T : K →
X satisfies

(4.1) d(T (x), T (y)) ≤ ϕ(d(x, y)) for each x, y ∈ K,

where ϕ : [0,∞) → [0,∞) is upper semicontinuous and satisfies

(4.2) ϕ(t) < t for all t > 0.

Assume further that for each integer n ≥ 1, xn ∈ K, there exists

(4.3) Tn(xn) ∈ K

and the set

E := {T i(xn) : n = 1, 2, . . . and i ∈ {0, . . . , n}}
is bounded. Then the following assertions hold.

(A) There exists x̄ ∈ K such that T (x̄) = x̄ and this fixed point is unique if
d(x, y) < ∞ for each pair x, y ∈ K.

(B) Let M0 > 0, ϵ ∈ (0, 1). Then there exist δ > 0 and a natural number k such
that for each integer n ≥ k and each sequence {xi}ni=0 ⊂ K satisfying

d(x0, x̄) ≤ M0

and

d(xi+1, T (xi)) ≤ δ, i = 0, . . . , n− 1,

the inequality d(xi, x̄) ≤ ϵ holds for i = k, . . . , n.

Proof. (A) The uniqueness of x̄ is obvious. Let us establish its existence. Set

(4.4) M1 = sup{d(y, z) : y, z ∈ E}.

Let ϵ ∈ (0, 1). We will show that there exists a natural number k such that the
following property holds:

(P2) If n and i are integers such that k ≤ i < n, then

d(T i(xn), T
i+1(xn)) ≤ ϵ.
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Assume the contrary. Then for each natural number k, there exist natural num-
bers nk and ik such that

(4.5) k ≤ ik < nk and d(T ik(xnk
), T ik+1(xnk

)) > ϵ.

Since the function t− ϕ(t) is positive for all t > 0 and lower semicontinuous, there
is γ > 0 such that

(4.6) t− ϕ(t) ≥ γ for all t ∈ [ϵ/2, 4M1 + 4].

Choose a natural number k such that

(4.7) k > γ−1(2 + 2M1).

Then (4.5) holds. By (4.5),

(4.8) d(T i(xnk
), T i+1(xnk

)) > ϵ, i = 0, . . . , ik.

In view of (4.4) and (4.8), for all i = 0, . . . , ik,

(4.9) ϵ < d(T i(xnk
), T i+1(xnk

)) ≤ M1.

It follows from (4.1), (4.3), (4.5), (4.6) and (4.9) that for all i = 0, . . . , ik − 1,

d(T i+2(xnk
), T i+1(xnk

)) ≤ ϕ(d(T i+1(xnk
), T i(xnk

)))

≤ d(T i+1(xnk
), T i(xnk

))− γ.

When combined with (4.4) and (4.5), this implies that

−M1 ≤ −d(xnk
, T (xnk

)) ≤ d(T ik+1(xnk
), T ik(xnk

))− d(xnk
, T (xnk

))

=

ik−1∑
i=0

[d(T i+2(xnk
), T i+1(xnk

))− d(T i+1(xnk
), T i(xnk

))]

≤ −γik ≤ −kγ

and

k ≤ γ−1M1.

This contradicts (4.7). The contradiction we have reached proves the existence of a
natural number k such that property (P1) holds.

Now let δ > 0 be given. We will show that there exists a natural number k such
that the following property holds:

(P1) If n, i and j are integers such that k ≤ i, j < n, then

d(T i(xn), T
j(xn)) ≤ δ.

Assume to the contrary that there is no natural number k for which (P2) holds.
Then for each natural number k, there exist natural numbers nk, ik and jk such

that

(4.10) k ≤ ik < jk < nk

and

(4.11) d(T ik(xnk
), T jk(xnk

)) > δ.
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We may assume without loss of generality that for each natural number k, the
following property holds:

If an integer j satisfies ik < j ≤ jk, then

(4.12) d(T ik(xnk
), T j(xnk

)) ≤ δ.

Assume now that k is a natural number. It follows from (4.10)-(4.12) that

(4.13)

δ < d(T ik(xnk
), T jk(xnk

))

≤ d(T ik(xnk
), T jk−1(xnk

))

+ |d(T ik(xnk
), T jk(xnk

))− d(T ik(xnk
), T jk−1(xnk

))|

≤ δ + |d(T ik(xnk
), T jk(xnk

))− d(T jk(xnk
), T jk−1(xnk

))|.

Property (P1) and (4.10) imply that

lim
k→∞

d(T jk(xnk
), T jk−1(xnk

)) = 0.

When combined with the boundedness of E and the uniform continuity of d on
bounded sets this implies that

(4.14) lim
k→∞

|d(T ik(xnk
), T jk(xnk

))− d(T ik(xnk
), T jk−1(xnk

))| = 0.

By (4.13) and (4.14),

(4.15) lim
k→∞

d(T ik(xnk
), T jk(xnk

)) = δ.

By (4.1) and (4.11), for each integer k ≥ 1,

(4.16)

δ < d(T ik(xnk
), T jk(xnk

))

≤ d(T ik+1(xnk
), T jk(xnk

))

+ |d(T ik(xnk
), T jk(xnk

))− d(T jk(xnk
), T ik+1(xnk

))

≤ |d(T ik(xnk
), T jk(xnk

))− d(T jk(xnk
), T ik+1(xnk

))|

+ d(T ik+1(xnk
), T jk+1(xnk

))

+ |d(T ik+1(xnk
), T jk(xnk

))− d(T jk+1(xnk
), T ik+1(xnk

))|

≤ ϕ(d(T ik(xnk
), T jk(xnk

))

+ |d(T ik(xnk
), T jk(xnk

))− d(T jk(xnk
), T ik+1(xnk

))|

+ |d(T ik+1(xnk
), T jk(xnk

))− d(T jk+1(xnk
), T ik+1(xnk

))|.

Property (P1) and (4.10) imply that

(4.17) lim
k→∞

d(T ik(xnk
), T ik+1(xnk

)) = 0,

(4.18) lim
k→∞

d(T jk(xnk
), T jk+1(xnk

)) = 0.

It follows from (4.17), (4.18), the boundedness of the set E and the uniform conti-
nuity of d on bounded sets that

lim
k→∞

|d(T ik(xnk
), T jk(xnk

))− d(T jk(xnk
), T ik+1(xnk

))| = 0,
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lim
k→∞

|d(T ik+1(xnk
), T jk(xnk

))− d(T jk+1(xnk
), T ik+1(xnk

))| = 0.

Together with (4.15), (4.16) and the upper semicontinuity of ϕ this implies that

δ ≤ lim inf
k→∞

ϕ(d(T ik(xnk
), T jk(xnk

)) ≤ ϕ(δ),

contradiction. The contradiction we have reached proves that there exists a natural
number k such that (P2) holds.

Let ϵ > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P3) If the integers n1, n2 > k, then d(T k(xn1), T
k(xn2)) ≤ ϵ.

Assume the contrary. Then for each integer k ≥ 1, there are integers n
(k)
1 , n

(k)
2 > k

such that

(4.19) d(T k(x
n
(k)
1

), T k(x
n
(k)
2

)) > ϵ.

Set

(4.20) δ = lim sup
k→∞

d(T k(x
n
(k)
1

), T k(x
n
(k)
2

)).

(Note that E is bounded.) By (4.20), there exists a strictly increasing sequence of
natural numbers {ki}∞i=1 such that

(4.21) δ = lim
i→∞

d(T ki(x
n
(ki)
1

), T ki(x
n
(ki)
2

)).

By (4.19) and (4.21),

(4.22) δ ≥ ϵ.

Clearly, for each natural number i,

(4.23)

d(T ki(x
n
(ki)
1

), T ki(x
n
(ki)
2

))

≤ d(T ki+1(x
n
(ki)
1

), T ki(x
n
(ki)
1

))

+ |d(T ki(x
n
(ki)
1

), T ki(x
n
(ki)
2

))− d(T ki+1(x
n
(ki)
1

), T ki(x
n
(ki)
2

))|

≤ |d(T ki(x
n
(ki)
1

), T ki(x
n
(ki)
2

))− d(T ki+1(x
n
(ki)
1

), T ki(x
n
(ki)
2

))|

+ d(T ki+1(x
n
(ki)
1

), T ki+1(x
n
(ki)
2

))

+ |d(T ki+1(x
n
(ki)
1

), T ki+1(x
n
(ki)
2

))− d(T ki+1(x
n
(ki)
1

), T ki(x
n
(ki)
2

))|.

Property (P1) implies that

(4.24) lim
i→∞

d(T ki(x
n
(ki)
2

), T ki+1(x
n
(ki)
2

)) = 0, lim
i→∞

d(T ki(x
n
(ki)
1

), T ki+1(x
n
(ki)
1

)) = 0.

It follows from (4.1), (4.21)-(4.23), the boundedness of the set E, the uniform con-
tinuity of d on bounded sets and the upper semicontinuity of ϕ that

ϵ ≤ δ ≤ lim
i→∞

d(T ki(x
n
(ki)
1

), T ki(x
n
(ki)
2

))

≤ lim inf
i→∞

d(T ki+1(x
n
(ki)
1

), T ki+1x
n
(ki)
2

))
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≤ lim inf
i→∞

ϕ(d(T ki(x
n
(ki)
1

), T ki(x
n
(ki)
2

))) ≤ ϕ(δ),

contradiction. This contradiction implies that there is indeed a natural number k
such that (P3) holds, as claimed.

Let ϵ > 0 be given. By (P3), there exists a natural number k1 such that

d(T k1(xn1), T
k1(xn2)) ≤ (ϵ/4)(M + 1)−2

(4.25) for all integers n1, n2 ≥ k1.

Property (P2) implies that that there exists a natural number k2 such that

d(T i(xn), T
j(xn)) ≤ (ϵ/4)(M + 1)−2

(4.26) for all natural numbers n, i, j satisfying k2 ≤ i, j < n.

Assume that the natural numbers n1, n2, i and j satisfy

(4.27) n1, n2 > k1 + k2, i, j ≥ k1 + k2, i < n1, j < n2.

We claim that d(T i(xn1), T
j(xn2)) ≤ ϵ. By (4.1), (4.25) and (4.27),

(4.28) d(T k1+k2(xn1), T
k1+k2(xn2)) ≤ d(T k1(xn1), T

k1(xn2)) ≤ (ϵ/4)(M + 1)−2.

In view of (4.26) and (4.27),

d(T k1+k2(xn1), T
i(xn1)) ≤ (ϵ/4)(M + 1)−2

(4.29) and d(T k1+k2(xn2), T
j(xn2)) ≤ (ϵ/4)(M + 1)−2.

Inequalities (4.28) and (4.29) imply that

d(T i(xn1), T
j(xn2)) ≤ M(d(T i(xn1), T

k1+k2(xn1)) + d(T k1+k2(xn1), T
j(xn2))]

≤ M(M + 1)−2ϵ/4 +Md(T k1+k2(xn1), T
j(xn2))

≤ M(M + 1)−2ϵ/4 +M2(d(T k1+k2(xn1), T
k1+k2(xn2))

+ d(T k1+k2(xn2), T
j(xn2)))

≤ M(M + 1)−2ϵ/4 +M2(M + 1)−2ϵ/4

+M2d(T k1+k2(xn1), T
k1+k2(xn2)) < ϵ.

Thus we have shown that the following property holds:
(P4) For each ϵ > 0, there exists a natural number k(ϵ) such that

d(T i(xn1), T
j(xn2)) < ϵ for all natural numbers n1, n2, i and j

such that

n1, n2 > k(ϵ), i ∈ [k(ϵ), n1) and j ∈ [k(ϵ), n2).

Consider now the sequences {Tn−2(xn)}∞n=3 and {Tn−1(xn)}∞n=3. Property (P4)
implies that both of them are Cauchy sequences and that

lim
n→∞

d(Tn−2(xn), T
n−1(xn)) = 0.



CONVERGENCE OF INEXACT ITERATES 303

Hence there exists x̄ ∈ K such that

lim
n→∞

d(x̄, T n−2(xn)) = lim
t→∞

d(x̄, T n−1(xn)) = 0.

Since the mapping T is continuous, it follows that T (x̄) = x̄. Thus part (A) of our
theorem is proved.

We now turn to the proof of part (B). Fix θ ∈ K. Set

(4.30) M1 = MM0 +Md(θ, x̄) + 2.

In view of upper semicontinuity of ϕ,

(4.31) γ0 := inf{t− ϕ(t) : t ∈ [ϵ/4, (M + 1)(M1 + 1)]} > 0.

By the uniform continuity of d on bounded sets, there exists a positive number

(4.32) δ ∈ (0,min{γ0, 2−1})

such that the following property holds:
(P5) for each y, z ∈ Bd(x̄, (M + 1)(M1 + 1)) satisfying d(y, z) ≤ δ, we have

|d(x̄, z)− d(x̄, y)| ≤ γ0/4.

Assume that

y ∈ Bd(θ,M0).

Then

d(y, x̄) ≤ M(d(y, θ) + d(θ, x̄)) ≤ MM0 +Md(θ, x̄)

and in view of (4.30),

(4.33) Bd(θ,M0) ⊂ B(x̄,M1).

Assume that

(4.34) y ∈ K ∩B(x̄,M1), z ∈ X and d(z, T (y)) ≤ δ.

By (4.1) and the equation T (x̄) = x̄,

d(x̄, z) ≤ d(x̄, T (y)) + |d(x̄, T (y))− d(x̄, z)|

(4.35) ≤ ϕ(d(x̄, y)) + |d(x̄, T (y))− d(x̄, z)|.

It follows from (4.1), (4.32), (4.34) and the equation T (x̄) = x̄ that

(4.36) d(x̄, T (y)) ≤ d(x̄, y) ≤ M1,

d(x, z) ≤ M(d(x̄, T (y)) + d(T (y), z))

(4.37) ≤ M(d(x̄, y) + 1) ≤ M(M1 + 1).

Property (P5) and equations (4.34), (4.36) and (4.37) imply that

(4.38) |d(x̄, z)− d(x̄, T (y))| ≤ γ0/4.

There are two cases:

(4.39) d(y, x̄) ≤ M1/4;

(4.40) d(y, x̄) > M1/4.
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Assume that (4.39) holds. By (4.1), (4.30), (4.31), (4.38), (4.39) and the equation
T (x̄) = x̄,

d(x̄, z) ≤ d(x̄, y) + γ0 ≤ M1/4 + γ0/4 ≤ M1.

Assume that (4.40) holds. Then by (4.1), (4.30), (4.31), (4.34), (4.38) and the
equation T (x̄) = x̄,

d(x̄, z) ≤ γ0 + ϕ(d(x̄, y)) ≤ d(x̄, y) ≤ M1.

Thus the following property holds:
(P6) if y ∈ K ∩B(x̄,M1), z ∈ X and d(z, T (y)) ≤ δ, then d(x̄, z) ≤ M1.
Choose a natural number k such that

(4.41) k > 2(M1 + 1)γ−1
0 + 2.

Assume that n is a natural number such that n ≥ k and that

(4.42) {xi}ni=0 ⊂ K, d(x0, θ) ≤ M0

and that

(4.43) d(xi+1, T (xi)) ≤ δ, i = 0, . . . , n− 1.

It follows from (3.3), (4.30) and (4.42),

d(x0, x̄) ≤ M1.

Together with property (P6), (4.42) and (4.43) this implies that

(4.44) d(xi, x̄) ≤ M1, i = 0, . . . , n.

We claim that

d(xi, x̄) ≤ ϵ, i = k, . . . , n.

First we show that there exists j ∈ {0, . . . , k − 1} such that

d(xj , x̄) ≤ ϵ/2.

Assume the contrary. Then

(4.45) d(xi, x̄) > ϵ/2, i = 0, . . . , k − 1.

Let i ∈ {0, . . . , k − 1}. By (4.1), (4.30), (4.31), (4.44) and (4.45) and the equation
(T (x̄) = x̄,

(4.46) d(T (xi), x̄) ≤ ϕ(d(xi, x̄)) ≤ d(xi, x̄)− γ0.

Equations (4.43), (4.44), (4.46) and property (P5) imply that

(4.47) d(xi+1, x̄)− d(T (xi), x̄) ≤ γ0/4.

In view of (4.46) and (4.47),

d(xi+1, x̄) ≤ d(xi, x̄)− γ0/2.

Together with (4.44) this implies that

M1 ≥ d(x0, x̄) ≥ d(x0, x̄)− d(xk, x̄)
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=
k−1∑
i=0

(d(xi, x̄)− d(xi+1, x̄)) ≥ kγ0/2

and

k ≤ 2γ−1
0 M1.

This contradicts (4.41). The contradiction we have are reached proves that there
exists an integer j ∈ {0, . . . , k − 1} such that

(4.48) d(xj , x̄) ≤ ϵ/2.

Assume that there is an integer p such that

p ∈ {j, . . . , n} and d(xp, x̄) > ϵ.

In view of (4.48), we may assume without loss of generality that

(4.49) d(xi, x̄) ≤ ϵ, i = j, . . . , p− 1.

There are two cases:

(4.50) d(xp−1, x̄) ≤ ϵ/2;

(4.51) d(xp−1, x̄) > ϵ/2.

Assume that (4.50) holds. By (4.1) and (4.50),

(4.52) d(T (xp−1), x̄) ≤ ϵ/2.

Assume that (4.51) holds. By (4.1), (4.31), (4.44), (4.49) and (4.51),

(4.54) d(T (xp−1), x̄) ≤ ϕ(d(xp−1, x̄)) ≤ d(xp−1, x̄)− γ0 ≤ ϵ− γ0.

Property (P5) and equations (4.1), (4.43) and (4.44) imply that

(4.55) |d(xp, x̄)− d(T (xp−1), x̄)| ≤ γ0/4.

It follows from (4.52), (4.54) and (4.55) that

d(xp, x̄) ≤ ϵ,

a contradiction. The contradiction we have reached proves that

d(xi, x̄) ≤ ϵ, i = j, . . . , n.

Thus part (B) of our theorem is also proved. This completes the proof of Theorem
4.1.

□
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