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CONVERGENCE OF INEXACT ITERATES FOR MAPPINGS OF
CONTRACTIVE TYPE IN GENERALIZED METRIC SPACES

ALEXANDER J. ZASLAVSKI

ABSTRACT. In the present paper we prove the existence a fixed point for certain
operators of contractive type in generalized metric spaces. We also show the
convergence of inexact iterates to a fixed point.

1. INTRODUCTION

For more than sixty years now, there has been a lot of research activity regard-
ing the fixed point theory of contractive and of nonexpansive (that is, 1-Lipschitz)
mappings. See, for example, [2, 4, 5, 8, 9, 10, 13, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26]
and references cited therein. This activity stems from Banach’s classical theorem
[1] concerning the existence of a unique fixed point for a strict contraction. It also
concerns the convergence of (inexact) iterates of a nonexpansive mapping to one of
its fixed points. Since that seminal result, many developments have taken place in
this field including, in particular, studies of feasibility, common fixed point prob-
lems and variational inequalities, which find important applications in mathematical
analysis, optimization theory, and in engineering, medical and the natural sciences
[3, 6, 7, 23, 24, 25, 26].

In [22] we have first introduced certain generalized metric spaces by extending
the concept of a modular space studied in [11, 12, 14] and then established a fixed
point theorem for certain Rakotch type contractive operators which map a closed
subset into the space and have finite orbits of arbitrary lengths. In the present
paper we extend this result for operators of contractive type considered in [18]. We
also show the convergence of inexact iterates to a fixed point.

2. MODULAR SPACE

Let X be a vector space. A functional p : X — [0,00] is called a modular
[11, 12, 14] if the following three properties hold:

(1) p(x) = 0 if and only z = 0;

(2) p(—x) = p(x) for all z € X;

(3) plax + By) < p(x) + p(y) for each z,y € X and each o, > 0 satisfying
a+p=1.

The vector space

A

X, ={zxeX: p(Ar) = 0as A= 0}
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is called a modular space.

Assume that p is a modular defined on a vector space X. We say that the modular
p satisfies a As-type condition if there exists a number M > 0 such that
(2.1) p(2z) < Mp(x), v € X,.

The authors of [12] considered a modular function space L, (which is a particular
case of a modular space) with a modular p satisfying a As-type condition. They
showed that if T is a self-mapping of a closed subset K of L, such that for some
ce[0,1),

p(T(z) —T(y)) < cplz —y) forall z,y € K
and such that there exists xg € K satisfying

sup{p(2TP(x9)): p=1,2,...} < o0,

then T has a fixed point.
Assume that p is a modular defined on the vector space X. For each z,y € X,
define

d(z,y) = p(z — y).
It is easy to see that for each z,y € X, d(x,y) = 0 if and only if x = y and that
d(x,y) = d(y, ).
Assume that p satisfies the Ag-type condition (2.1) with a number M > 0. Then
for each z,y,z € X,, we have
d(z,2) = p(z — z) = p((x — y) + (y — 2))
=p22 @ -y +27(y-2)
< Mp2 Yz —y)+ 27 (y — 2))
< M(p(z —y)+ply — 2))
< Md(z,y) + Md(y, z).

We say that a modular p is uniformly continuous (see Definition 5.4 of [11]) if for
each € > 0 and each L > 0, there exists § > 0 such that

(2.2) lp(z+y) —plx)] < e

for each pair z,y € X, satisfying p(y) < ¢ and p(z) < L.

Assume that the modular p is uniformly continuous and that ¢ > 0 and L > 0.
Then there exists a number 6 > 0 such that (2.2) holds for each pair z,y € X,
satisfying p(y) < ¢ and p(x) < L.

Assume now that the points x,y, 2z € X, satisfy

d(z,y) < L, d(y,2) < 0.
Then
plz —y) <L, p(y — 2) <6,
d(z —z) = plz —z) = p((z —y) + (y — 2))
and in view of the choice of 4§,

|d(z,z) — d(z,y)| = [p(z — 2) — pz —y)| < e
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Thus we have shown that for each € > 0 and each L > 0, there exists § > 0 such
that if z,y, 2z € X, satisfy

d(z,y) <L, d(y,z) <6,

then
ld(z,2) — d(z,y)| <e.

In other words, d is uniformly continuous.

3. GENERALIZED METRIC SPACE

Assume that X is a nonempty set, d : X x X — [0,00], M > 0, and that for each
T,Y,2 € X’

(3.1) d(z,y) = 0 if and only if x = y,
(3.2) d(x,y) = d(y,x)

and

(3.3) d(z,z) < Md(x,y) + Md(y, z).

We call the pair (X, d) a generalized metric space. For each point x € X and each
number 7 > 0, set

Bi(z,r) :={ye X : d(z,y) <r}.

Clearly, a generalized metric space is both a generalization of the concept of a mod-
ular space and a generalization of the concept of a metric space. It was introduced
in [22]. By investigating generalized metric spaces we are able to unify the study of
these two important classes of spaces. For specific examples of modular spaces, see
[11, 14].

We equip the space X with the uniformity determined by the base

(3.4) U(e) i={(z,y) e X x X : d(z,y) <€}, e>0.

This uniform space is metrizable (by a metric d). We also equip the space X with
the topology induced by this uniformity and assume that the uniform space X is
complete.

Consider a sequence {z,,}72; C X and a point € X. Clearly,

lim z, ==
n—oo

if and only if
lim d(x,,z) =0

n—oo
and {x, }7° ; is a Cauchy sequence if and only if for each € > 0, there exists a natural
number n(e) such that d(x,,x,,) < € for every pair of integers n, m > n(e).
A set E' C X is said to be bounded if

sup{d(z,y) : z,y € E} < 0.
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We say that the generalized metric d is uniformly continuous on bounded sets if
for each nonempty bounded set D C X and each e > 0, there exists a number § > 0
such that for each x,y € D and each z € X satisfying d(y, z) < §, the inequality

‘d($7y) - d(.’L" Z)| <€

holds.
From now on we assume that the generalized metric d is uniformly continuous on
bounded sets. For each mapping T : S — X, where S C X set T(z) =2, z € S.

4. THE MAIN RESULT

We use the notations and definitions introduced in Section 3 and assume that all
the assumptions made there hold.

Theorem 4.1. Let K be a nonempty and closed subset of X. Assume thatT : K —
X satisfies

(4.1) A(T(x), T()) < $(d(z,)) for cach 2,y € K,
where ¢ : [0,00) — [0,00) is upper semicontinuous and satisfies
(4.2) o(t) <t forallt > 0.

Assume further that for each integer n > 1, x, € K, there exists
(4.3) T"(x,) € K
and the set

E:={Tx,): n=1,2,... andi € {0,...,n}}

is bounded. Then the following assertions hold.

(A) There exists T € K such that T(Z) = T and this fived point is unique if
d(z,y) < oo for each pair x,y € K.

(B) Let My > 0,e € (0,1). Then there exist § > 0 and a natural number k such
that for each integer n > k and each sequence {z;}_, C K satisfying

d(xo,z) < My
and
d(xiy1,T(z;)) <9,i=0,...,n—1,
the inequality d(z;,z) < € holds for i =k, ..., n.
Proof. (A) The uniqueness of T is obvious. Let us establish its existence. Set
(4.4) M, =sup{d(y,z): y,z € E}.

Let € € (0,1). We will show that there exists a natural number k such that the
following property holds:
(P2) If n and 7 are integers such that k¥ < i < n, then

(T (), T (2,)) < €.
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Assume the contrary. Then for each natural number k, there exist natural num-
bers n; and 73 such that
(4.5) k <ip, < ng and d(T% (x,, ), T*(2,,)) > €

Since the function t — ¢(t) is positive for all ¢ > 0 and lower semicontinuous, there
is v > 0 such that

(4.6) t—¢(t) >~ for all t € [¢/2,4M; + 4].
Choose a natural number £ such that

(4.7) k>~y"H2+2M;).

Then (4.5) holds. By (4.5),

(4.8) A(T (), T (w0,)) > €, 1 =0,... 0.
In view of (4.4) and (4.8), for all i =0, ..., g,

(4.9) e < d(T(xn,), T (2n,)) < M.

It follows from (4.1), (4.3), (4.5), (4.6) and (4.9) that for all ¢ =0, ... 4 — 1,
AT (2n,), T (2n,)) < AT (@0,), T (20,)))
< AT (@n,), T (20,)) = -
When combined with (4.4) and (4.5), this implies that
~My < —d(zn,, T(wp,)) < AT (2y,), T* (20,)) — d(Tn,, T(n,))

i1

= (AT (20,), T (@) — AT (@), T ()]
i=0

< —vip < —ky

and
k S "y_lMl.

This contradicts (4.7). The contradiction we have reached proves the existence of a
natural number k such that property (P1) holds.

Now let § > 0 be given. We will show that there exists a natural number k such
that the following property holds:

(P1) If n,i and j are integers such that k£ <4, j < n, then

(T (), TV (x,,)) < 0.

Assume to the contrary that there is no natural number %k for which (P2) holds.
Then for each natural number k, there exist natural numbers nyg, i and ji such
that

(4.10) k<ip <jr <ng
and

(4.11) A(T* (), T (2,)) > 9.
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We may assume without loss of generality that for each natural number k, the
following property holds:
If an integer j satisfies i, < j < ji, then

(4.12) d(T% (), TV () < 6.

Assume now that & is a natural number. It follows from (4.10)-(4.12) that
§ < d(T™ (), T ()

< AT (0,), T (3,))

1T (0, ), T (0, )) — (T (), T ()

< 6 [T (0, ), T (20, )) — AT (), T ()]

Property (P1) and (4.10) imply that
Jim. d(T7 (2, ), T (2p,)) = 0.

(4.13)

When combined with the boundedness of F and the uniform continuity of d on
bounded sets this implies that

(4.14) Jm (T (20, ), TP (0,)) — A(T™ (), T (2, )| = O,
By (4.13) and (4.14),
(4.15) Jim d(T" (2, ), T (,)) = 6.

By (4.1) and (4 11), for each integer k > 1,
T (Tny,), T T (@)
T (2,,), Tj’“(l’nk))
+ |d(T™ (2, ), T (20,)) = AT (), T (2,))
<|d(T™ (wn,), T (wy.) — d(T (@), T () )|
(4.16) +d(T*(2p,), T (20,))
+ (T (2,), T () — AT (2,), T (2|
< ¢(d(Tik (.I'nk), T (xnk))
(T (20, ), T (20,)) = AT (20,), T (20,))|
+ |d(Tik+1 (xnk)7 Tjk (xnk)) - d(Tjk+1(xnk)7 Tik+l(xnk>)"
Property (P1) and (4.10) imply that

< d(
< d(

. ik tr+1 —
(4.17) Jim (T (), T () = 0,
(4.18) Jim d(T7 (), T4 () = 0.

It follows from (4.17), (4.18), the boundedness of the set E and the uniform conti-
nuity of d on bounded sets that

Jim (d(T (20, ), TP (a0n,)) = d(T7* (a0 ), T (100,)) | = 0,
—00
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i [T (0, ), T (20,)) — AT (0, T ()] = 0.
—00
Together with (4.15), (4.16) and the upper semicontinuity of ¢ this implies that
5 < liminf p(d(T™ (), T () < H(5),
k—ro0

contradiction. The contradiction we have reached proves that there exists a natural
number k such that (P2) holds.

Let € > 0 be given. We will show that there exists a natural number k such that
the following property holds:

(P3) If the integers ny,ng > k, then d(T*(z,,), TF(x,,)) < €.

Assume the contrary. Then for each integer £ > 1, there are integers ngk) , nék)
such that

>k

(4.19) d(Tk(ﬂSn(k)),Tk(arn(k))) > €.
1 2
Set
(4.20) = limsup d(T*(z_w),T"(x x)).
k—o0 ™ e

(Note that E is bounded.) By (4.20), there exists a strictly increasing sequence of
natural numbers {k;}5°; such that

(4.21) § = lim d(T"(x w)), T"(z @)
i—00 nq ng

By (4.19) and (4.21),
(4.22) J>e
Clearly, for each natural number i,

d(Tki (xngkl) )7 T (xnékz) ))

<d(Th Nz 1), T (2 wp))

1

ny

k)|

Ty

+1d(TF (2 5), T (x_y))) — ATz ), T (2
n g ny
< (T (z 1), TV (x 0)) = AT (@ ), TR (2 0))]
1 2 1 2
+d(TF Nz ), T (2 g)
nq ng
+1dTF @ 0), T (2 1)) — ATz ), TR (2 5)))]-
n Ny ny Ny
Property (P1) implies that
(4.24) lim d(T"(z @), T (2 4p)) =0, lim d(T*(z_x,), T5 (2 @) = 0.
1—00 Ny Ny 1—00 ny ny

It follows from (4.1), (4.21)-(4.23), the boundedness of the set F, the uniform con-
tinuity of d on bounded sets and the upper semicontinuity of ¢ that
€ <0 < lim d(T™ (2, 1), T (, )
1—00 ny Ny
< liminfd(TkiJrl(x (ki)),TkiJrlx k)))
LS o

1—00
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< liminf ¢(d(T" (z_x), T"(x wp))) < (6),

1—00

contradiction. This contradiction implies that there is indeed a natural number k
such that (P3) holds, as claimed.
Let € > 0 be given. By (P3), there exists a natural number k; such that

d(T* (n,), T (20,)) < (€/4)(M +1)77

(4.25) for all integers nq,no > ki.
Property (P2) implies that that there exists a natural number k2 such that
d(T" (20), T (2n)) < (e/4)(M +1)72

(4.26) for all natural numbers n, i, j satisfying ko < 1,5 < n.
Assume that the natural numbers ni,ns,i and j satisfy
(4.27) ni,ng > ki + ko, 1,5 > k1 + ko, i <nq, j<nos.
We claim that d(T*(xp,), T? (zn,)) < €. By (4.1), (4.25) and (4.27),
(4.28)  d(T™ 2 (20,), T 2(2,,)) < AT (@), T (0,)) < (¢/4)(M + 1)72,
In view of (4.26) and (4.27),
AT (2,,), T (20,)) < (¢/4)(M +1)72

(4.29) and d(T* %2 (,,,), T (2,)) < (¢/4)(M +1)72
Inequalities (4.28) and (4.29) imply that
A(T" (2n,), T (wn,)) < M(A(T (), T2 (2,)) + AT 2 (2,), T (20,))]

< M(M +1)"%e/4 + Md(T* %2 (2, ), T (2,))
< M(M +1)2e/4 + M2 (d(T*V*2 (2,,,), TF T2 (2,,))

+ d(TMHR2 (2,), T (200,)))
< M(M +1)"2e¢/d+ M*(M +1)"%¢/4

+ M2d(TH 2 (a0, )), TR R2 (2,,)) < e

Thus we have shown that the following property holds:
(P4) For each € > 0, there exists a natural number k(e) such that

d(T"(xp,), T’ (2,)) < € for all natural numbers ny,ny,i and j
such that
ny,ng > k(e), i € [k(e),n1) and j € [k(e), n2).
Consider now the sequences {77 2(z,,)}°% 5 and {T" ! (x,)}22 4. Property (P4)
implies that both of them are Cauchy sequences and that

lim d(T" %(x,), T" Y (z,)) = 0.

n—oo
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Hence there exists £ € K such that
: = n—2 o = n—1 _
nlggo d(z, T" *(zy)) = th_glo d(z, T" " (zy)) = 0.

Since the mapping T is continuous, it follows that 7'(Z) = z. Thus part (A) of our
theorem is proved.
We now turn to the proof of part (B). Fix § € K. Set

(4.30) My = MMy + Md(6,z) + 2.
In view of upper semicontinuity of ¢,
(4.31) Yo :=inf{t — ¢(t) : t € [¢/4,(M + 1)(M; +1)]} > 0.
By the uniform continuity of d on bounded sets, there exists a positive number
(4.32) 6 € (0,min{yp,27'})
such that the following property holds:

(P5) for each y, z € By(z, (M + 1)(M; + 1)) satisfying d(y, z) < J, we have

|d(Z, 2) — d(Z,y)| < v0/4.
Assume that
y € By(0, Mp).
Then
d(y,z) < M(d(y,0) +d(0,z)) < MMy + Md(0,x)

and in view of (4.30),

(4.33) Bd(e,M(]) C B(i’, Ml).
Assume that
(4.34) ye KNB(z, M), z€ X and d(2,T(y)) < 0.

By (4.1) and the equation T'(Z) = Z,
d(z,2) <d(z,T(y)) + |d(z, T(y)) — d(z, 2)|

(4.35) < ¢(d(7,y)) + |d(z, T(y)) — d(z, 2)|.
It follows from (4.1), (4.32), (4.34) and the equation T'(Z) = = that
(4.36) d(z,T(y)) < d(z,y) < M,

d(z, z) < M(d(z, T(y)) + d(T(y),2))
(4.37) <M(d(z,y)+1) < M(M; +1).
Property (P5) and equations (4.34), (4.36) and (4.37) imply that
(4.38) |d(z, 2) = d(z,T(y))| < 0/4.
There are two cases:
(4.39) d(y, 7) < My /4;

(4.40) d(y,z) > My /A.
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Assume that (4.39) holds. By (4.1), (4.30), (4.31), (4.38), (4.39) and the equation
T(z) =z,
d(z,z) <d(Z,y) +v < My /44 v0/4 < M.
Assume that (4.40) holds. Then by (4.1), (4.30), (4.31), (4.34), (4.38) and the
equation T'(z) = z,
d(z,2) < v+ o(d(z,y)) < d(@,y) < M.

Thus the following property holds:

(P6) if y € KN B(z, M), z€ X and d(z,T(y)) < 6, then d(z,z) < M.

Choose a natural number k such that

(4.41) k>2(M;p+ 1)yt +2.
Assume that n is a natural number such that n > k£ and that
(4.42) {zi}iy C K, d(z0,0) < My
and that
(4.43) d(xiy1,T(z;)) <9, i=0,...,n—1.
It follows from (3.3), (4.30) and (4.42),
d(xg,z) < M.
Together with property (P6), (4.42) and (4.43) this implies that
(4.44) d(z;,z) < My, i1 =0,...,n

We claim that
d(z;, ) <€, i=k,...,n
First we show that there exists j € {0,...,k — 1} such that
d(z;,z) <€/2.
Assume the contrary. Then
(4.45) d(x;,z) >€/2,1=0,...,k—1.

Let i € {0,...,k —1}. By (4.1), (4.30), (4.31), (4.44) and (4.45) and the equation
(T'(z) = =,

(4.46) d(T(xi), ) < $(d(wi, 7)) < d(xi, T) = Y0-
Equations (4.43), (4.44), (4.46) and property (P5) imply that
(4.47) d(.CCi_,_l,fi’) — d(T(JZZ),i’) < ’}/0/4.

In view of (4.46) and (4.47),
d(@it1,7) < d(@i, T) — 70/2-
Together with (4.44) this implies that
M > d(zg,z) > d(zg,z) — d(zk, T)
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= ‘ (d(zi,z) — d(xig1,%)) > kyo/2

E
—_

s
Il
o

and
k S 2’yalM1.

This contradicts (4.41). The contradiction we have are reached proves that there
exists an integer j € {0,...,k — 1} such that

(4.48) d(zj,z) < €/2.
Assume that there is an integer p such that
p€{j,...,n} and d(xp,T) > €.
In view of (4.48), we may assume without loss of generality that
(4.49) d(z;,2) <e, i=j,...,p— L.
There are two cases:

(4.50) d(zp—1,7) < €/2;

(4.51) d(zp—1,T) > €/2.
Assume that (4.50) holds. By (4.1) and (4.50),
(4.52) d(T(zp-1),z) < €/2.
Assume that (4.51) holds. By (4.1), (4.31), (4.44), (4.49) and (4.51),
(454)  d(T(0p1),8) < $(d(wp1,7)) < d(zp1,) — 0 < € — 0.
Property (P5) and equations (4.1), (4.43) and (4.44) imply that
(4.55) Ay, 7) — d(T(y-1), 3)] < 70/4.
It follows from (4.52), (4.54) and (4.55) that

d(zp,T) <,
a contradiction. The contradiction we have reached proves that

d(z;, @) <€, i=7j,...,n.

Thus part (B) of our theorem is also proved. This completes the proof of Theorem
4.1.
d
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