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Let A : C → H be a nonlinear mapping. The classical variational inequality
problem (shortly, VIP) is to find a u ∈ C such that

(1.2) ⟨v − u,Au⟩ ≥ 0, ∀v ∈ C.

This problem is called Hartman-Stampacchia variational inequality ([7, 14]). We
denote the set of solutions to the VIP(1.2) by V I(C,A). As we also know, variational
inequality theory has emerged as an important tool in studying a lot of real-life
problems, such as, in signal processing, resource allocation, image recovery and so
on.

A fixed point problem (shortly, FPP) is to find a fixed point z of a nonlinear
mapping T with property:

(1.3) z ∈ C, Tz = z.

Fixed point theory is one of the most powerful and important tools of modern
mathematics and may be considered a core subject of nonlinear analysis.

As we all know, the convex feasibility problem (shortly, CFP) is the problem of
finding a point in the (nonempty) intersection C = ∩m

i=1Ci of a finite number of
closed convex sets Ci (i = 1, · · · ,m).

Recently, many authors considered iterative algorithms for finding a common el-
ement of solution sets of the MP(1.1), VIP(1.2), and the FPP(1.3) combined with
some nonlinear problems as special cases of the CFP. For instance, we can refer
to Takahashi and Toyoda [16] for the VIP(1.2) for an inverse strongly monotone
mapping A and the FPP(1.3) for a nonexpansive mapping T , refer to Peng and Yao
[11] for the VIP(1.2) for a monotone and Lipschitz continuous mapping A and the
FPP(1.3) for a nonexpansive mapping T , refer to Jung [4] for the VIP(1.2) for an
inverse strongly monotone mapping A and the FPP(1.3) for a strictly pseudocon-
tractive mapping T , and refer to Jung [5] for the VIP(1.2) for a continuous monotone
mapping A and the FPP(1.3) for a continuous pseudocontractive mapping T , and
refer to Jung [6] for the the MP(1.1) for a real-valued convex (Fréchet) differentiable
function F and the FPP(1.3) for a continuous pseudocontractive mapping T .

In particular, in 2020, Sow [13] considered an iterative algorithm for the MP(1.1)
of a convex function F , the VIP(1.2) for an inverse strongly monotone mapping A
and the FPP(1.3) for a demicontractive mapping T and a strictly pseudocontractive
mapping mapping T .

In this paper, in order to study the MP(1.1) combined with the VIP(1.2) and
the FPP(1.3), we introduce an implicit iterative algorithm for finding a common
element of the set of solutions to the MP(1.1) for F , the set of solutions to the
VIP(1.2) for A and the set of fixed points of T , where F : C → (−∞,∞] is a proper
convex and lower semi-continuous function, A : C → H are continuous monotone
mapping and T : C → C is a continuous pseudocontractive mapping. Then we
establish strong convergence of the sequence generated by the proposed iterative
algorithm to a common element of three aforementioned sets, which is a solution of
a certain variational inequality. As a direct consequence, we find the unique solution
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of the minimum-norm problem:

∥x∗∥ = min{∥x∥ : x ∈ Φ},

where Φ := argminy∈C F (y)∩V I(C,A)∩Fix(T ). The results in this paper develop
and complement of the recent results announced by several authors in this direction.

2. Preliminaries and Lemmas

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. In the following, we write xn ⇀ x to indicate that the sequence {xn} converges
weakly to x. xn → x implies that {xn} converges strongly to x.

We recall ([1, 3]) that a mapping F of C into H is called

(i) Lipschitzian if there exists a constant κ ≥ 0 such that

∥Fx− Fy∥ ≤ κ∥x− y∥ ∀x, y ∈ C;

(ii) monotone if ⟨x− y, Fx− Fy⟩ ≥ 0, ∀x, y ∈ C;
(iii) α-inverse strongly monotone if there exists a constant α > 0 such that

⟨x− y, Fx− Fy⟩ ≥ α∥Fx− Fy∥2, ∀x, y ∈ C;

(iv) η-strongly monotone if there exists a positive real number η such that

⟨x− y, Fx− Fy⟩ ≥ η∥x− y∥2, ∀x, y ∈ C.

We note that if F is an α-inverse strongly monotone mapping of C into H, then
it is obvious that F is 1

α -Lipschitz continuous, that is, ∥Fx − Fy∥ ≤ 1
α∥x − y∥

for all x, y ∈ C. Clearly, the class of monotone mappings includes the class of
α-inverse-strongly monotone mappings.

We recall ([1]) that a mapping T : C → H is said to be pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

and T is said to be k-strictly pseudocontractive if there exists a constant k ∈
[0, 1)such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

where I is the identity mapping. The class of k-strictly pseudocontractive map-
pings includes the class of nonexpansive mappings as a subclass. That is, T is
nonexpansive (i.e., ∥Tx − Ty∥ ≤ ∥x − y∥, ∀x, y ∈ C) if and only if T is 0-strictly
pseudocontractive.

In a real Hilbert space H, the following hold:

(2.1) ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩,

for all x, y ∈ H. For every point x ∈ H, there exists a unique nearest point in C,
denoted by PCx, such that

∥x− PCx∥ = inf{∥x− y∥ : y ∈ C}.
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PC is called the metric projection of H onto C. It is well known ([15])that PC is
nonexpansive and PC is characterized by the property

(2.2) u = PCx ⇐⇒ ⟨x− u, u− y⟩ ≥ 0, ∀x ∈ H, y ∈ C.

We need the following lemmas for the proof of our main results.

Lemma 2.1 ([18]). Let C be a closed convex subset of a real Hilbert space H. Let
A : C → H be a continuous monotone mapping. Then, for ω > 0 and x ∈ H, there
exists z ∈ C such that

⟨Az, y − z⟩+ 1

ω
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

For ω > 0 and x ∈ H, define Aω : H → C by

Aωx =

{
z ∈ C : ⟨Az, y − z⟩+ 1

ω
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Aω is single-valued;
(ii) Aω is firmly nonexpansive, that is,

∥Aωx−Aωy∥2 ≤ ⟨Aωx−Aωy, x− y⟩, ∀x, y ∈ H;

(iii) Fix(Aω) = V I(C,A);
(iv) V (I, A) is a closed convex subset of C.

Lemma 2.2 ([18]). Let C be a closed convex subset of a real Hilbert space H. Let
T : C → C be a continuous pseudocontractive mapping. Then, for r > 0 and x ∈ H,
there exists z ∈ C such that

⟨Tz, y − z⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : ⟨Tz, y − z⟩ − 1

r
⟨y − z, (1 + r)z − x⟩ ≤ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C.

The following lemma can be easily proven, and therefore, we omit the proof.
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Lemma 2.3. Let V : C → H be an l-Lipschitzian mapping with constant l ≥ 0, and
G : C → H be a ρ-Lipschitzian and η-strongly monotone mapping with constants ρ
and η > 0. Then for 0 ≤ γl < µη,

⟨(µG− γV )x− (µG− γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2, ∀x, y ∈ C.

That is, µG− γV is strongly monotone with constant µη − γl.

We also need the following lemma (see [17] for the proof).

Lemma 2.4. Let C be a nonempty closed subspace of a Hilbert space H. Let
G : C → H be a ρ-Lipschizian and η-strongly monotone mapping with constants
ρ > 0 and η > 0. Let 0 < µ < 2η

ρ2
and 0 < t ≤ 1. Then I − tµG : C → H is a

contraction with contractive constant 1− tτ , where τ = 1−
√

1− µ(2η − µρ2).

Lemma 2.5 ([1] (Demiclosedness principle)). Let H be a real Hilbert space, let C
be a closed convex subset of H and let T : C → C be a nonexpansive mapping. Then
I − T is demiclosed, that is,

{xn} ⊂ C, xn ⇀ x ∈ C and (I − T )xn → y implies that (I − T )x = y.

Let F : C → (−∞,∞] be a proper convex and lower semi-continuous function.
For any λ > 0, define the Moreau-Yosida resolvent of F in a real Hilbert space H
as follows:

JF
λ x = argmin

y∈C

[
F (y) +

1

2λ
∥x− y∥2

]
for all x ∈ H. It was shown in [2] that the set of fixed points of the resolvent
associated with F coincides with the set of minimizers of F . Also the resolvent JF

λ

of F is single-valued and nonexpansive for all λ > 0.

Lemma 2.6. ([10]) For any r > 0 and µ > 0, the following holds:

JF
r x = JF

µ

(
µ

r
x+

(
1− µ

r

)
JF
r x

)
.

The following lemma is a variant of a Minty lemma (see [9]).

Lemma 2.7. Let C be a nonempty closed convex subset of a real Hilbert space
H. Assume that the mapping G : C → H is monotone and weakly continuous
along segments, that is, G(x + ty) → G(x) weakly as t → 0. Then the variational
inequality

x̃ ∈ C, ⟨Gx̃, p− x̃⟩ ≥ 0, ∀p ∈ C,

is equivalent to the dual variational inequality

x̃ ∈ C, ⟨Gp, p− x̃⟩ ≥ 0, ∀p ∈ C.
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3. Main results

Throughout the rest of this paper, we always assume the following:

• H is a real Hilbert space;
• C is a nonempty closed subset of H;
• F : C → (−∞,∞] is a proper convex and lower semi-continuous function;
• argminy∈C F (y) is the set of minimizers of F on C;
• A : C → H is a continuous monotone mapping ;
• Aωn : H → C is a mapping defined by

Aωnx =

{
z ∈ C : ⟨y − z,Az⟩+ 1

ωn
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
for ωn ∈ (0,∞) and lim infn→∞ ωn > 0;

• V I(C,A) is the set of the VIP(1.2) for A;
• T : C → C is a continuous pseudocontractive mapping with Fix(T ) ̸= ∅;
• Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : ⟨y − z, Tz⟩ − 1

rn
⟨y − z, (1 + rn)z − x⟩ ≤ 0, ∀y ∈ C

}
for rn ∈ (0,∞) and lim infn→∞ rn > 0;

• V : C → H is l-Lipschitzian mapping with constant l ∈ [0,∞);
• G : C → H is a ρ-Lipschitzian and η-strongly monotone mapping with
constants ρ > 0 and η > 0;

• Constants µ, l, τ , and γ satisfy 0 < µ < 2η
ρ2

and 0 ≤ γl < τ , where

τ = 1−
√
1− µ(2η − µρ2);

• PC : H → C is the metric projection of H onto C.
• Φ := argminy∈C F (y) ∩ V I(C,A) ∩ ∩Fix(T ) ̸= ∅.

By Lemma 2.1 and Lemma 2.2, Aωn and Trn are nonexpansive and V I(C,A) =
Fix(Aωn), and Fix(T ) = Fix(Trn).

First, we introduce the following iterative algorithm which generates a sequence
{xn} in an implicit way:

(3.1)


vn = argminy∈C

[
F (y) + 1

2λn
∥y − xn∥2

]
,

zn = Aωnvn,

xn = PC [αnγV xn + (I − αnµG)(βnxn + (1− βn)Trnzn)], ∀n ≥ 1,

where {αn}, {βn} ⊂ (0, 1); {λn}, {ωn}, {rn} ⊂ (0,∞); and x1 ∈ C is an arbitrary
initial guess.

From Lemma 2.1, Lemma 2.2 and noxexpansivity of JF
λn
, it follows that Wn :=

TrnAωnJ
F
λn

is nonexpansive.
Now, consider the following mapping Qn on C defined by, for x ∈ C,

Qnx = PC [αnγV x+ (I − αnµG)(βnx+ (1− βn)Wnx)]

= PC [αnγV x+ (I − αnµG)(βnx+ (1− βn)TrnAωnJ
F
λn
x)], ∀ n ≥ 1.
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Let Rnx = βnx + (1 − βn)TrnAωnJ
F
λn
x = βnx + (1 − βn)Wnx. Since Wn is nonex-

pansive, we have for x, y ∈ C

∥Rnx−Rny∥ ≤ βn∥x− y∥+ (1− βn)∥Wnx−Wny∥
≤ βn∥x− y∥+ (1− βn)∥x− y∥ = ∥x− y∥.

Then, by Lemma 2.4, we derive for x, y ∈ C,

∥Qnx−Qny∥ = ∥PC(αnV x+ (I + αnµG)Rnx]− PC(αnV x+ (I + αnµG)Rny]∥
≤ ∥αnV x+ (I + αnµG)Rnx− (αnV x+ (I + αnµG)Rny)∥
≤ αnγ∥V x− V y∥+ ∥(I − αnµG)Rnx− (I − αnµG)Rny∥
≤ αnγl∥x− y∥+ (1− αnτ)∥Rnx−Rny∥
≤ αnγl∥x− y∥+ (1− αnτ)∥x− y∥
= (1− αn(τ − γl)∥x− y∥.

Since 0 < 1−αn(τ−γl) < 1, Qn is a contractive mapping. Therefor, by the Banach
contraction principle, Qn has a unique fixed point xn ∈ H, which uniquely solves
the fixed point equation

xn = PC [αnγV xn + (I − αnµG)(βnxn + (1− βn)TrnAωnJ
F
λn
xn)]

= PC [αnγV xn + (I − αnµG)(βnxn + (1− βn)Wnxn)]

= PC [αnγV xn + (I − αnµG)yn],

where yn = βnxn + (1 − βn)TrnAωnJ
F
λn
xn. We note that JF

λn
xn = vn and Trnzn =

TrnAωnvn = TrnAωnJ
F
λn
xn = Wnxn.

Now we prove strong convergence of the sequence {xn} and show the existence
of q ∈ Φ, which solves the variational inequality

(3.2) ⟨(µG− γV )q, p− q⟩ ≥ 0, ∀ p ∈ Φ.

Equivalently, q = PΦ(I − µG+ γV )q (by (2.2))

Theorem 3.1. Let {xn} be a sequence defined by (3.1). Let {αn}, {βn}, {λn},
{ωn}, and {rn} be satisfy the following conditions:

(i) limn→∞ αn = 0;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < λ ≤ λn < ∞;
(iv) 0 < ω ≤ ωn < ∞;
(v) 0 < r ≤ rn < ∞.

Then {xn} converges strongly as n → ∞ to a point q ∈ Φ, which is the unique
solution of the variational inequality (3.2).

Proof. First, we can show easily the uniqueness of a solution of the variational
inequality (3.2). In fact, noting that 0 ≤ γl < τ and µη ≥ τ ⇐⇒ κ ≥ η, it follows
from Lemma 2.3 that

⟨(µG− γV )x− (µG− γV )y, x− y⟩ ≥ (µη − γl)∥x− y∥2.
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That is, µG − γV is strongly monotone for 0 ≤ γl < τ ≤ µη. So the variational
inequality (3.2) has only one solution. Below we use q ∈ Ω to denote the unique
solution of the variational inequality (3.2).

Note that from the condition (i), without loss of generality, we assume that
αn(τ − γl) < 1 for n ≥ 1. From now, we put vn = JF

λn
xn, zn = Aωnvn, wn = Trnzn

and yn = βnxn + (1− βn)TrnAωnvn= βnxn + (1− βn)Trnzn= βnxn + (1− βn)Wnxn
for n ≥ 1. Let p ∈ Φ. Then, from Lemma 2.1 and Lemma 2.2, it follows that
p = Aωnp and p = Trnp. Also we have p = JF

λn
p. In fact, since F (p) ≤ F (y) for all

y ∈ C, this implies

F (p) +
1

2λn
∥p− p∥2 ≤ F (y) +

1

2λn
∥y − p∥2,

and hence JF
λn
p = p for all n ≥ 1, where JF

λn
is the Moreau-Yosida resolvent of F

on C.
Since JF

λn
, Aωn and Trn are nonexpansive as firmly nonexpansive, the following

inequalities hold:

(3.3) ∥vn − p∥ = ∥JF
λn
xn − JF

λn
p∥ ≤ ∥xn − p∥,

(3.4) ∥zn − p∥ = ∥Aωnvn −Aωnp∥ ≤ ∥vn − p∥ (≤ ∥xn − p∥),

(3.5) ∥wn − p∥ = ∥Trnzn − Trnp∥ ≤ ∥zn − p∥(≤ ∥vn − p∥ ≤ ∥xn − p∥)

Now, we divide the proof into several steps.

Step 1. We show that {xn} is bounded. To this end, let p ∈ Φ. Then, from (3.3),
(3.4) and (3.5), it follows that

(3.6)

∥yn − p∥ = ∥βnxn − (1− βn)Wnxn − p∥
≤ βn∥xn − p∥+ (1− βn)∥Wxn − p∥
≤ βn∥xn − p∥+ (1− βn)∥xn − p∥ = ∥xn − p∥.

Therefore, by (3.6) and Lemma 2.4, we drive

∥xn − p∥ = ∥PC [αnγV xn + (I − αnµG)yn]− PCp∥
≤ ∥αnγV xn + (I − αnµG)yn − p∥
≤ ∥αn(γV xn − γV p) + (I − αnµG)yn − (I − αnµG)p+ αn(γV p− µGp)∥
≤ αnγl∥xn − p∥+ (1− αnτ)∥yn − p∥+ αn∥γV p− µGp∥
≤ αnγl∥xn − p∥+ (1− αnτ)∥xn − p∥+ αn(γ∥V p∥+ µ∥Gp∥),

and so

∥xn − p∥ ≤ γ∥V p∥+ µ∥Gp∥
τ − γl

.

Thus, {xn} is bounded and {zn}, {vn}, {Gyn}, {V xn} and {Trnzn} are also bounded.
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Step 2. We show that limn→∞ ∥xn − Trnzn∥ = 0. Indeed, observing that

∥xn − Trnzn∥ = ∥PC [αnγV xn + (I − αnµG)yn]− PC [Trnzn]∥
≤ ∥αnγV xn + (I − αnµG)yn]− PC [Trnzn]∥
≤ αn∥γV xn − µGyn∥+ ∥yn − Trnun∥
= αn∥γV xn − µGyn∥+ ∥βnxn + (1− βn)Trnzn − Trnzn∥
= αn∥γV xn − µGyn∥+ βn∥xn − Trnzn∥,

we obtain

∥xn − Trnzn∥ ≤ αn

1− βn
∥γV xn − µGyn∥ → 0 as n → ∞.

Step 3. We show that limn→∞ ∥vn − xn∥ = limn→∞ ∥JF
λn
xn − xn∥ = 0. In fact,

using vn = JF
λn
xn, p = JF

λn
p and firmly nonexpansivity of JF

λn
, we obtain from (2.1)

that

∥vn − p∥2 = ∥JF
λn
xn − p∥2

≤ ⟨JF
λn
xn − JF

λn
p, xn − p⟩

= ⟨vn − p, xn − p⟩

=
1

2
(∥vn − p∥2 + ∥xn − p∥2 − ∥vn − xn∥2).

This implies

(3.7) ∥vn − p∥2 ≤ ∥xn − p∥2 − ∥vn − xn∥2.

Again, noting that yn = βnxn+(1−βn)Trnzn and xn = PC [αnγV xn+(I−αnµG)yn],
by (3.5) and (3.7), we induce that
(3.8)

∥xn − p∥2 = ∥PC [αnγV xn + (I − αnµG)yn]− PCp∥2

≤ ∥αnγV xn + (I − αnµG)yn − p∥2

= ∥αn(γV xn − µGyn) + (yn − p)∥2

= ∥αn(γV xn − µGyn) + βn(xn − Trnzn) + (Trnzn − p)∥2

≤ [(∥αn(γV xn − µGyn)∥+ ∥zn − p∥) + βn∥xn − Trnzn∥]2

≤ [(∥αn(γV xn − µGyn)∥+ ∥vn − p∥) + βn∥xn − Trnzn∥]2

= α2
n∥γV xn − µGyn∥2 + 2αn∥γV xn − µGyn∥∥vn − p∥+ ∥vn − p∥2

+ βn∥xn − Trnzn∥2(αn∥γV xn − µGyn∥+ ∥vn − p∥)
+ β2

n∥xn − Trnzn∥2

≤ αn∥γV xn − µGyn∥2 + ∥vn − p∥2 +Mn

≤ αn∥γV xn − µGyn∥2 + ∥xn − p∥2 − ∥vn − xn∥2 +Mn,
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where
(3.9)

Mn = 2αn∥γV xn − µGyn∥∥vn − p∥
+ βn∥xn − Trnzn∥2(αn∥γV xn − µGyn∥+ ∥vn − p∥) + β2

n∥xn − Trnzn∥2.

From (3.8), we obtain

∥vn − xn∥2 ≤ αn∥γV xn − µGyn∥2 +Mn.

Since Mn → 0 as n → ∞ by condition (i) and Step 2, we get

lim
n→∞

∥vn − xn∥ = lim
n→∞

∥JF
λn
xn − xn∥ = 0.

Step 4. We show that limn→∞ ∥zn − vn∥ = limn→∞ ∥Aωnvn − vn∥ = 0. Again,
since zn = Aωnvn, p = Aωnp and Aωn is firmly nonexpansive (Lemma 2.1 (ii)), from
(2.1), we have

∥zn − p∥2 = ∥Aωnvn − p∥2

≤ ⟨Aωnvn −Aωnp, vn − p⟩
= ⟨zn − p, vn − p⟩

=
1

2
(∥zn − p∥2 + ∥vn − p∥2 − ∥zn − vn∥2).

This implies

(3.10) ∥zn − p∥2 ≤ ∥vn − p∥2 − ∥zn − vn∥2 ≤ ∥xn − p∥2 − ∥zn − vn∥2.

Now, from (3.8), (3.9) and (3.10), we derive

∥xn − p∥2 ≤ αn∥γV xn − µGyn∥2 + ∥un − p∥2 +Mn

≤ αn∥γV xn − µGyn∥2 + ∥zn − p∥2 +Mn

≤ αn∥γV xn − µGyn∥2 + ∥xn − p∥2 − ∥zn − vn∥2 +Mn,

where Mn is of (3.9) and so

∥zn − vn∥2 ≤ αn∥γV xn − µGyn∥2 +Mn.

From limn→∞Mn = 0 and condition (i), it follows that

lim
n→∞

∥zn − vn∥ = lim
n→∞

∥Aωnvn − vn∥ = 0.

Step 5. We show that limn→∞ ∥zn − Trnzn∥ = limn→∞ ∥wn − zn∥ = 0. In fact,
since ∥zn − Trnzn∥ ≤ ∥zn − vn∥ +∥vn − xn∥+ ∥xn − Trnzn∥, by Step 2, Step 3 and
Step 4, we conclude

lim
n→∞

∥zn − Trnzn∥ = lim
n→∞

∥zn − wn∥ = 0.

Step 6. We show that limn→∞ ∥xn − zn∥ = 0. Indeed, by Step 2 and Step 5,

∥xn − zn∥ ≤ ∥xn − Trnzn∥+ ∥Trnzn − zn∥ → ∞ as n → ∞.

Step 7. We show that {xn} converges strongly to q ∈ Φ as n → ∞, where
q is the unique solution of variational inequality (3.2). To this end, consider a
subsequence {xni} of {xn}. Since {xn} is bounded, there exists a subsequence
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{xnij
} of {xni} which converges weakly q ∈ C. Without loss of generality, we can

assume xni ⇀ q ∈ C.
First of all, by (3.1) and Lemma 2.4, we induce for p ∈ Φ

(3.11)

∥xn − p∥2

= ∥PC [αnγV xn + (I − αnµG)yn]− PCp∥2

≤ ∥αnγV xn + (I − αnµG)yn − p∥2

= ∥(I − αnµG)yn − (I − αnµG)p− αn(µG− γV )p+ αnγ(V xn − V p)∥2

= ∥(I − µG)yn − (I − µG)p∥2

− 2αn[⟨(µG− γV )p, yn − p⟩ − αn⟨(µG− γV )p, µGyn − µGp⟩]
+ 2αnγ[⟨V xn − V p, yn − p⟩ − αn⟨V xn − V p, µGyn − µGp⟩]
− 2α2

nγ⟨(µG− γV )p, V xn − V p⟩
+ α2

n∥(µG− γV )p∥2 + α2
nγ

2∥V xn − V p∥2

≤ (1− αnτ)
2∥yn − p∥2 − 2αn⟨(µG− γV )p, yn − p⟩

+ 2αnγl∥xn − p∥∥yn − p∥+ 2α2
n∥(µG− γV )p∥(µ∥Gyn∥+ µ∥Gp∥)

+ 2α2
nγl∥xn − p∥((µ∥Gyn∥+ µ∥Gp∥) + 2α2

nγl∥(µG− γV )p∥∥xn − p∥
+ α2

n∥(µG− γV )p∥2 + α2
nγ

2l2∥xn − p∥2

= (1− 2αnτ + α2
nτ

2)∥yn − p∥2 − 2αn⟨(µG− γV )p, yn − p⟩
+ 2αnγl∥xn − p∥∥yn − p∥+ 2α2

n∥(µG− γV )p∥(µ∥Gyn∥+ µ∥Gp∥)
+ 2α2

nγl∥xn − p∥(µ∥Gyn∥+ µ∥Gp∥) + 2α2
nγl∥(µG− γV )p∥∥xn − p∥

+ α2
n(∥(µG− γV )p∥2 + γ2l2∥xn − p∥2)

≤ (1− 2αnτ)∥yn − p∥2 + 2αn⟨(µG− γV )p, p− yn⟩
+ αnτ l(∥xn − p∥2 + ∥yn − p∥2) + α2

nM,

where

M = sup{τ2∥yn − p∥2 + 2(∥(µG− γV )p∥+ γl∥xn − p∥)(µ∥Gyn∥+ µ∥Gp∥)
+ 2γl∥(µG− γV )p∥∥xn − p∥+ ∥(µG− γV )p∥2 + γ2l2∥xn − p∥2 : n ≥ 1}.

Hence by (3.6) and (3.11), we obtain

(3.12)

∥xn − p∥2 ≤ 1− 2αnτ + αnγl

1− αnγl
∥yn − p∥2 + 2αn

1− αnγl
⟨(µG− γV )p, p− yn⟩

+
α2
n

1− αnγl
M

≤ 1− 2αnτ + αnγl

1− αnγl
∥xn − p∥2 + 2αn

1− αnγl
⟨(µG− γV )p, p− yn⟩

+
α2
n

1− αnγl
M.
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Observe that

(3.13)

⟨(µG− γV )p, p− yn⟩ = ⟨(µG− γV )p, p− (βnxn + (1− βn)Trnzn)⟩
= ⟨(µG− γV )p, p− Trnzn⟩

+ βn⟨(µG− γV )p, Trnzn − xn⟩
= ⟨(µG− γV )p, p− zn⟩

+ ⟨(µG− γV )p, un − Trnzn⟩
+ βn⟨(µG− γV )p, Trnzn − xn⟩

≤ ⟨(µG− γV )p, p− zn⟩
+ ∥(µG− γV )p∥∥un − Trnzn∥
+ βn∥(µG− γV )p∥∥Trnun − xn∥

≤ ⟨(µG− γV )p, p− zn⟩+ Ln,

where Ln = ∥(µG−γV )p∥∥zn−Trnzn∥+βn∥(µG−γV )p∥∥Trnzn−xn∥. Then, from
(3.12) and (3.13), we derive

(3.14) ∥xn − p∥2 ≤ 1

τ − γl
⟨µG− γV p, p− zn⟩+

αnM

2(τ − γl
+

Ln

τ − γl
.

Now, we show that q ∈ Φ. For this purpose, we divide its proof into three steps.

(i) We prove that q ∈ argminy∈C F (y). Using vn = JF
λn
xn, Lemma 2.6 and

condition (iii), we derive

∥xn − JF
λ xn∥ ≤ ∥vn − JF

λ xn∥+ ∥vn − xn∥

= ∥JF
λn
xn − JF

λ xn∥+ ∥vn − xn∥

= ∥vn − xn∥+
∥∥∥∥JF

λ

(
λn − λ

λn
JF
λn
xn +

λ

λn
xn

)
− JF

λ xn

∥∥∥∥
≤ ∥vn − xn∥+

∥∥∥∥(λn − λ

λn
JF
λn
xn +

λ

λn
xn

)
− xn

∥∥∥∥
= ∥vn − xn∥+

(
1− λ

λn

)
∥vn − xn∥

=

(
2− λ

λn

)
∥vn − xn∥

≤ L∥vn − xn∥

for some L > 0. Hence it follows from Step 3 that

(3.15) lim
n→∞

∥xn − JF
λ xn∥ = 0

Since JF
λ is single-valued and nonexpansive and xni ⇀ q as i → ∞, using (3.15)and

Lemma 2.5, we have

q ∈ Fix(JF
λ ) = argmin

y∈C
F (y).
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(ii) We prove that q ∈ V I(C,A). In fact, from zn = Aωnvn and Lemma 2.1, we
obtain

(3.16) ⟨y − zn, Azn⟩+
〈
y − zn,

zn − vn
ωn

〉
≥ 0, ∀y ∈ C.

Set vϵ = ϵv + (1 − ϵ)q for ϵ ∈ (0, 1] and v ∈ C. Then vϵ ∈ C, and it follows from
(3.16) that

(3.17) ⟨vϵ − zn, Avϵ⟩ ≥ ⟨vϵ − zn, Avϵ⟩ − ⟨vϵ − zn, Azn⟩ −
〈
vϵ − zn,

zn − vn
ωn

〉
.

By Step 4, we have ∥zn−vn∥
ωn

≤ ∥zn−vn∥
ω → 0 as n → ∞. Moreover, by Step 6, {xn}

and {zn} have the same asymptotic behavior. So, since xni ⇀ q as i → ∞, we also
induce zni ⇀ q as i → ∞. And, from monotonicity of A, it follows that

⟨vϵ − zn, Avϵ −Azn⟩ ≥ 0.

Thus, replacing n by ni and letting i → ∞, from (3.17), we obtain

0 ≤ ⟨vϵ − q, Avϵ⟩,

and hence

⟨v − q, Avϵ⟩ ≥ 0, ∀v ∈ C.

If ϵ → 0, then the continuity of A yields that

⟨v − q, Aq⟩ ≥ 0, ∀v ∈ C.

This means that q ∈ V I(C,A).

(iii) We prove that q ∈ Fix(T ). In fact, noting wn = Trnzn, by Lemma 2.2, we
induce

(3.18) ⟨y − wn, Twn⟩ −
1

rn
⟨y − wn, (1 + rn)wn − zn⟩ ≤ 0, ∀y ∈ C.

Put vϵ = ϵv + (1− ϵ)q for 0 < ϵ ≤ 1 and v ∈ C. Then vϵ ∈ C, and from (3.18) and
pseudocontractivity of T , it follows that

(3.19)

⟨wn − vϵ, T vϵ⟩ ≥ ⟨wn − vϵ, T vϵ⟩+ ⟨vϵ − wn, Twn⟩

− 1

rn
⟨vϵ − wn, (1 + rn)wn − zn⟩

= − ⟨vϵ − wn, T vϵ − Twn⟩ −
1

rn
⟨vϵ − wn, wn − zn⟩

− ⟨vϵ − wn, wn⟩

≥ − ∥vϵ − wn∥2 −
1

rn
⟨vϵ − wn, wn − zn⟩ − ⟨vϵ − wn, wn⟩

= − ⟨vϵ − wn, vϵ⟩ −
〈
vϵ − wn,

wn − zn
rn

〉
.
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By Step 6, {xn} and {zn} have the same asymptotic behavior. Also, by Step 5, we

have ∥wn−zn∥
rn

≤ ∥wn−zn∥
r → 0 as n → ∞. From Step 2, it follows that wni ⇀ q as

i → ∞. So, replacing n by ni and letting i → ∞, we derive from (3.19)

⟨q − vϵ, T vϵ⟩ ≥ ⟨q − vϵ, vϵ⟩

and

−⟨v − q, Tvϵ⟩ ≥ −⟨v − q, vϵ⟩, ∀v ∈ C.

Letting ϵ → 0 and using the fact that T is continuous, we obtain

(3.20) −⟨v − q, T q⟩ ≥ −⟨v − q, q⟩, ∀v ∈ C.

Let v = Tq in (3.20). Then we have q = Tq, that is, q ∈ Fix(T ). This along with
(i) and (ii) obtains q ∈ Φ.

Now, replacing n by ni, we substitute q for p in (3.14) to obtain

(3.21) ∥xni − q∥2 ≤ 1

τ − γl
⟨µG− γV q, q − zni⟩+

αnM

2(τ − γl)
+

Lni

τ − γl
.

Note that zni ⇀ q as i → ∞ by Step 6 and limn→∞ Ln = 0 by Step 2 and Step
5. This fact and the inequality (3.21) along with condition (i) imply that xni → q
strongly as i → ∞.

Next, we show that q solves the the variational inequality (3.2). Indeed, taking
the limit in (3.14) as i → ∞, we get

∥q − p∥2 ≤ 1

τ − γl
⟨(µG− γV )p, p− q⟩, ∀p ∈ Φ.

In particular, q solves the following variational inequality

q ∈ Φ ⟨(µG− γV )p, p− q⟩ ≥ 0, p ∈ Φ,

or the equivalent dual variational inequality(Lemma 2.7).

(3.22) q ∈ Φ ⟨(µG− γV )q, p− q⟩ ≥ 0, p ∈ Φ.

Finally we show that the sequence {xn} converges strongly to q. Indeed, let {xnk
}

be another subsequence of {xn} and assume xnk
→ q̂. By the same method as the

proof above, we have q̂ ∈ Φ. Moreover, it follows from (3.22) that

(3.23) ⟨(µG− γV )q, q − q̂⟩ ≤ 0.

Interchanging q and q̂, we obtain

(3.24) ⟨(µG− γV )q̂, q̂ − q⟩ ≤ 0.

Lemma 2.3 and adding these two inequalities (3.23) and (3.24) yields

(µη − γl)∥q − q̂∥2 ≤ ⟨(µG− γV )q − (µG− γV )q̂, q − q̂⟩ ≤ 0.

Hence q = q̂. Therefore we conclude that xn → q as n → ∞.
The variational inequality (3.2) can be rewritten as

⟨(I − µG+ γV )q − q, q − p⟩ ≥ 0, ∀p ∈ Φ.
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By (2.2), this is equivalent to the fixed point equation

PΦ(I − µG+ γV )q = q.

□

From Theorem 3.1, we obtain the following result.

Corollary 3.2. Let {xn} be a sequence generated by
vn = argminv∈C

[
F (v) + 1

2λn
∥v − xn∥2

]
,

zn = Aωnvn,

xn = PC [(1− αn)(βnxn + (1− βn)Trnzn)], ∀n ≥ 1.

Let {αn}, {βn}, {λn}, {ωn} and {rn} be satisfy the conditions (i), (ii), (iii), (iv)
and (v) in Theorem 3.1. Then {xn} converges strongly as n → ∞ to a point q ∈ Φ,
which solves the following minimum-norm problem: find x∗ ∈ Φ such that

(3.25) ∥x∗∥ = min
x∈Φ

∥x∥.

Proof. Take G = I, µ = 1, τ = 1, V = 0 and l = 0 in Theorem 3.1. Then the
variational inequality (3.2) is reduced to the inequality

⟨q, p− q⟩ ≥ 0, ∀p ∈ Φ.

This is equivalent to ∥q∥2 ≤ ⟨p, q⟩∥p∥∥q∥ for all p ∈ Φ. It turns out that ∥q∥ ≤ ∥p∥
for all p ∈ Φ and q is the minimum-norm point of Φ. □

If in Theorem 3.1, we take T ≡ I, the identity mapping on C, then we obtain the
following result.

Corollary 3.3. Let {xn} be a sequence generated by
vn = argminy∈C

[
F (y) + 1

2λn
∥y − xn∥2

]
,

zn = Aωnvn,

xn = PC [αnγV xn + (I − αnµG)(βnxn + (1− βn)zn)], ∀n ≥ 1,

Let {αn}, {βn}, {λn} and {ωn} be satisfy the conditions (i), (ii), (iii) and (iv)
in Theorem 3.1. Then {xn} converges strongly as n → ∞ to a point q ∈ Γ :=
argminy∈C F (y)∩V I(C,A), which is the unique solution of the variational inequality

⟨(µG− γV )q, p− q⟩ ≥ 0, ∀ p ∈ Γ.

By taking V ≡ 0, G ≡ I, µ = 1 in Corollary 3.3, we also obtain the following
result.
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Corollary 3.4. Let {xn} be a sequence generated by
vn = argminy∈C

[
F (y) + 1

2λn
∥y − xn∥2

]
,

zn = Aωnvn,

xn = PC [(1− αn)(βnxn + (1− βn)zn)], ∀n ≥ 1,

Let {αn}, {βn}, {λn} and {ωn} be satisfy the conditions (i), (ii), (iii) and (iv) in
Theorem 3.1. Then {xn} converges strongly as n → ∞ to a point q ∈ Γ, which is
the minimum-norm element of Γ.

Remark 3.5. 1) For finding a point in Φ = argminy∈C F (y)∩V I(C,A)∩Fix(T ),
where F : C → (−∞,∞] is a proper convex and lower semi-continuous func-
tion, A : C → H is a continuous monotone mapping and T : C → C is a
continuous pseudocontractive mapping, Theorem 3.1 is a new one differ-
ent from previous those introduced by several authors. Consequently, as
a new result for convex minimization problem combined with some non-
linear problems, Theorem 3.1 develops and complements the corresponding
results, which were obtained recently by several authors in references; for
instance, see [5, 6, 11, 13, 16] and the references therein.

2) Theorem 3.1 supplements and develops the corresponding result in [13] in
following aspect:
(a) The VIP(1.2) for an inverse strongly monotone mapping A in [13] is ex-

tended to the case of the VIP (1.2) for a continuous monotone mapping
A.

(b) The FPP(1.3) for a demicontractive mapping T and a strictly pseudo-
contractive mapping T in [13] is extended to the case of the FPP(1.3)
of a continuous pseudocontractive mapping T .

(c) The contractive mapping f with a constant b ∈ (0, 1) is extended to
case of Lipschitizian V with a constant l ≥ 0.

(d) The ρ-Lipschitzian and η-strongly monotone mapping G with constants
ρ > 0 and η > 0 was utilized in comparison to [13].

3) Corollary 3.3 is also a new ones for finding common solutions of MP(1.1)
and VIP(1.2).

3) We point out that Corollary 3.2 and Corollary 3.4 for finding the
minimum-norm element of Φ = argminy∈C F (y)∩V I(C,A)∩Fix(T ) and Γ
= argminy∈C F (y)∩V I(C,A), respectively, are also new ones different from
previous those introduced by several authors.
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