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∂

∂t
u1(t, x1, . . . , xN )

∂

∂t
u2(t, x1, . . . , xN )

. . .
∂

∂t
un(t, x1, . . . , xN )



=


aj11 aj12 . . . aj1n∑N

j=1 aj12 aj22 . . . aj2n

. . .

aj1n aj2n . . . ajnn





∂

∂xj
u1(t, x1, . . . , xN )

∂

∂xj
u2(t, x1, . . . , xN )

. . .
∂

∂xj
un(t, x1, . . . , xN )




u1(0, x1, . . . , xN )
u2(0, x1, . . . , xN )

. . .
un(0, x1, . . . , xN )

 =


u01(x1, . . . , xN )
u02(x1, . . . , xN )

. . .
u0n(x1, . . . , xN )

 .

The Fourier transform of (1.1) is

(1.2)

{
d
dt û(t, ξ) = −i

(∑N
j=1 ξjAj

)
û(t, ξ)

û(0, ξ) = û0(ξ)
for −∞ < t < ∞, ξ ∈ RN .

We denote by

A(ξ) =
N∑
j=1

ξjAj =

 N∑
j=1

ajikξj

n

i,k=1

for ξ = (ξ1, . . . , ξN ), ξj ∈ R.

Since A(ξ) is Hermitian, e−iA(ξ)t is a unitary matrix for t ∈ R. Thus we get the
solution to the equation (1.2):

û(t, ξ) = e−itA(ξ)û0(ξ) for −∞ < t < ∞, ξ ∈ RN .

1.2. Group representation. We cite some basic results on group representations
needed later. M(n) denotes the set of n×n matrices, U(n) the set of n×n unitary
matrices:

U(n) =
{
U ∈ M(n)

∣∣ U · tŪ = I
}

or

‖Ux‖ = ‖x‖ (Ux,Uy) = (x, y) =
n∑

i=1

xiȳi

for x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Cn.
The Lie algebra of U(n) is denoted by L

(
U(n)

)
:

L
(
U(n)

)
=

{
A ∈ M(n)

∣∣ A∗ ≡ tĀ = −A
}
.

[X,Y ] ≡ XY − Y X ∈ L
(
U(n)

)
for X,Y ∈ L

(
U(n)

)
.
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That is, aij = −āji for (aij)
n
i,j=1 = A ∈ L

(
U(n)

)
. A is an anti-Hermite matrix and

the eigen values of A are pure imaginary.
Let G be the minimum subgroup of U(n) containing

{
eitA(ξ)

∣∣ ξ ∈ RN , t ∈ R
}

and L be the Lie algebra of G. L is the minimum Lie algebra containing{
−iA(ξ)

∣∣ ξ ∈ RN
}
. If G is reducible, it is completely reducible. Hence in a suitable

coordinates, there exists G̃ such that

(1.3) G ⊂ G̃ ≡


U(n1) 0 . . . 0

0 U(n2) . . . 0
... · . . .

...
0 . . . 0 U(nk)

 for n = n1 + n2 + · · ·+ nk.

We consider an m-dimensional commutative representation σ of G :

σ : U(n) −→ U(m),

σ(UV ) = σ(U)σ(V ) = σ(V )σ(U) for U, V ∈ G.

If m = 1, then σ is a 1-dimensional representation,

∀U ∈ G, ∃θ ∈ R such that σ(U) = eiθ.

In general(m > 1), we have

(1.4) σ(U) =

 σ1(U) . . . 0
...

. . .
...

0 . . . σm(U)

 =

 eiθ1 . . . 0
...

. . .
...

0 . . . eiθm

 ,

where σk is a 1-dimensional representation. We denote σ = (σk).
If all Aj are commutative : AjAk = AkAj , 1 ≤ ∀i, j ≤ N , then G is commutative

and hence every representation of G is commutative.

1.3. Tensor Product Spaces. In this section we discuss abstract groups of iso-
metric operators on tensor product spaces. We simply call them isometric groups.
The results are valid for semigroups of contractions, but we do not discuss them
here. Tensor product produces some new function space other than Sobolev spaces.
These new function spaces are sometimes useful for nonlinear problems. For the
cross norm of tensor product spaces, see [1] or [8]. Let S(j)(t) be a isometric group
on a Banach space Xj and Bj its generator for 1 ≤ j ≤ N .

Lemma 1.1. Let X1 = · · · = XN = X. If every pair of {Bj} commutes, i.e.

BjBk = BkBj , 1 ≤ ∀i, j ≤ N , then the closure B of the sum
∑N

j=1Bj generates an

isometric group {S(t)} on X.

Proof. Since
{
S(t) ≡ S(1)(t) . . . S(N)(t)

}
is an isometric group. □

We define that

G(1;X) ≡
{
S(t)

∣∣ S(t) : X → X : contraction semigroup
}
,

G(S(t);X) ≡
{
B

∣∣ B : X → X : generator of S(t)
}
.

The following theorem is well known.
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Theorem 1.2 ([5]P.502 Thorem 2.11). Let T ∈ G(e−tT ;X), A ∈ G(e−tA;X) and
e−tT , e−tA ∈ G(1;X), let D(T )

⋂
D(A) be dense in X and T + A+ ξ have a dense

range R(T +A+ ξ) for sufficiently large real ξ ∈ R. If T +A is closable, its closure
S ≡ T +A ∈ G(e−tS ;A) and e−tS ∈ G(1;X).

The π-norm of the tensor product of two Banach spaces X and Y is defined by

‖z‖π = inf


N∑
j=1

‖xj‖ · ‖yj‖

∣∣∣∣∣ z =

N∑
j=1

xj ⊗ yj

 , z ∈ X ⊗ Y.

The π-norm is the strongest cross norm and ε-norm, the dual norm of π-norm, is
the weakest one:

‖z‖ε ≤ ‖z‖α ≤ ‖z‖π for ∀z ∈ X ⊗ Y

for any compatible ( = reasonable ) norm ‖ · ‖α, that is, ‖x ⊗ y‖α = ‖x‖X · ‖y‖Y .
The completion of X ⊗ Y with respect to the norm ‖ · ‖α denotes X⊗̂

α
Y.

Let X0 be the tensor product of {Xj} with the π-norm and Xπ the completion
of X0 :

Xπ = X1⊗̂
π
. . . ⊗̂

π
XN ⊃ X0 = X1⊗

π
. . .⊗

π
XN .

We define natural extensions of S̃(j)(t) and B̃j to X0 by the following relations

S̃(j)(t)(x1 ⊗ · · · ⊗ xN ) = x1 ⊗ · · · ⊗ S(j)(t)xj ⊗ · · · ⊗ xN ,

B̃j(x1 ⊗ · · · ⊗ xN ) = x1 ⊗ · · · ⊗Bjxj ⊗ · · · ⊗ xN .

Note that B̃j generates the semigroup S̃(j)(t) and every pair of {B̃j} commutes.
Let

S̃(t) = S̃(1)(t)⊗ · · · ⊗ S̃(j)(t)⊗ · · · ⊗ S̃(N)(t).

That is,

S̃(t)(x1 ⊗ · · · ⊗ xN ) = S(1)(t)x1 ⊗ · · · ⊗ S(j)(t)xj ⊗ · · · ⊗ S(N)(t)xN .

Using Lemma 1.1 we have the following theorem:

Theorem 1.3. Let S(t) and B be the minimal closed extensions of S̃(t) and
∑N

j=1 B̃j

respectively. Then B generates the isometric group {S(t)} on X.

Let X ′
j be dual space of Xj . Since S(j)(t) is an isometric group, its dual tS(j)(t)

is also an isometric group in X ′
j . Hence we can define tS̃(t) which is an isometric

group on

X∗ = X ′
1⊗̂
π
. . . ⊗̂

π
X ′

N .

Thus ttS̃(t) is an isometric group on

Xε = X1⊗̂
ε
. . . ⊗̂

ε
XN .

The norm ‖ · ‖α is said to be an interpolation of ‖ · ‖π and ‖ · ‖ε if the following
condition is satisfied :
If a linear operator T of X1 ⊗ · · · ⊗XN is bounded with respect to the two norms
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π and ε then it is bounded with respect to the α-norm, that is there exist positive
constants c1, c2 and c3 such that

‖Tx‖π ≤ c1‖x‖π and ‖Tx‖ε ≤ c2‖x‖ε,=⇒ ‖Tx‖α ≤ c3‖x‖α.

Thus if a semigroup {T (t)} is bounded with respect to the norms π and ε, it is

bounded with respect to the norm ‖ · ‖α. In particular, S̃(t) is a bounded group
with respect to the norm ‖ · ‖α.

1.4. Wellposed Spaces. As in [6], the Schrödinger equation

∂

∂t
u(t, x) = −i

N∑
j=1

∂2

∂x2j
u(t, x)

is wellposed in

Xπ = X1⊗̂
π
. . . ⊗̂

π
XN , or Xε = X1⊗̂

ε
. . . ⊗̂

ε
XN ,

if ∂
∂tu(t, x) = −i ∂2

∂x2u(t, x) is wellposed in every Xj , since every ∂2

∂x2 commutes.
This is not the case for Dirac equations since that

Aj
∂

∂xj
Ak

∂

∂xk
u(t, x) 6= Ak

∂

∂xk
Aj

∂

∂xj
u(t, x) for j 6= k.

In order to treat Dirac equations in a similar way to Schrödinger equations, we
make use of commutative representation of U(n).

−iA· ξ generates a semigroup e−itA·ξ for a fixed ξ ∈ RN . Hence −iA· ξ generates
a semigroup in the space L1

loc(RN ,Cn) ≡ (L1
loc)

n, n-times product of L1
loc, where

L1
loc ≡ {f(·)

∣∣ f is integrable on every compact set in RN}.
We put

T (t)(ξ) = e−itA·ξ, T (j)(t)(ξ) = e−itξjAj for j = 1, . . . , N.

T (t)(ξ) and T (j)(t)(ξ) are transformations of RN for fixed ξ ∈ RN .
If we consider these as transformations of a function space Z ⊂ (L1

loc)
n, or Zj ⊂

L1
loc, we denote these by T (t) or T (j)(t). Z could be a space of distributions or

generalized functions of some kind, but here we restrict Z to a subspace of (L1
loc)

n.
When the space Z is not referred to, we call {T (t)} a formal semigroup and A = −iA
its formal generator.

Let σ be a 1-dimensional representation of G. We put

S(j)(t) = σ
(
T (j)(t)

)
.{

S(j)(t)
}N

j=1
has the semigroup property:

S(j)(t)S(j)(s) = σ
(
T (j)(t)

)
σ
(
T (j)(s)

)
= σ

(
T (j)(t+ s)

)
= S(j)(t+ s).

Since σ is commutative, we have

S(j)(t)S(i)(t) = S(i)(t)S(j)(t) for i, j = 1 . . . N.
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We denote the generator of
{
S(j)(t)

}
by Bj .

Let Yj =
{
f
∣∣ f(ξj) ∈ C, ξj ∈ R

}
be a Banach space such that

S(j)(t) : Yj −→ Yj is isometric i.e. ‖S(j)(t)f‖Yj = ‖f‖Yj .

Let
Y = Y1⊗̂

π
. . . ⊗̂

π
YN .

We define two operators of Y :

B = B1 ⊗ I ⊗ · · · ⊗ I + I ⊗B2 ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗BN ,

S(t) = S(1)(t)⊗ · · · ⊗ S(N)(t).

Lemma 1.4. The formal generator B generates an isometric group {S(t)} on Y .

We denote by U(n) the group of unitary matrices and by SU(n) the group of
special unitary matrices.

Definition 1.5. We denote by Un the set of the U(n)-valued measurable functions
and by T the set of the unitary group of hyperbolic type:

(1.5) Un =
{
U

∣∣ U(ξ) ∈ U(n), ∀ξ ∈ RN
}
,

(1.6) T =
{
e−it

∑N
j=1 ξjAj

∣∣ Aj = Hermitian
}
.

We denote

(1.7) V0 = the minimum subgroup of Un containing T and SU(n).

(1.8) VA = the minimum subgroup of Un containing {eitA·ξ} and SU(n).
Let Y ⊂ L1

loc be a Banach space such that

‖f(ξ)‖ = ‖eiλ·ξf(ξ)‖ for λ, ξ ∈ RN and f ∈ Y.

For the unit ball BY of Y and a unit vector e0 ∈ Cn , we put

BX = con

{
‖f‖Y Uσ−1

(
f

‖f‖Y

) ∣∣ f ∈ BY , f 6≡ 0, U ∈ V0

}
· e0,

where con{·} is the convex hull of a set. Let X be the Banach space which is the
completion of the normed space with the unit ball BX . This Banach space X does
not depend on the choice of e0. We evidently have X ⊃ Y .

Definition 1.6. The Banach space X above is denoted by Ȳ V0 .

Theorem 1.7. The Banach space Ȳ V0 is the minimum wellposed spce containing
Y . ( A formal generator A = −iA generates an isometric group {T (t)} on Ȳ V0.)

The proof is clear by the preceding lemma.

Definition 1.8.
Y̆ V0 =

⋂
U∈V0

UX.

Theorem 1.9. The Banach space Y̆ V0 is the maximum wellposed space contained
in Y .
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2. Examples

2.1. 0-dimensional representation. Let σ be a 0-dimensional representation :
σ(U) = 1, ∀U ∈ G. In this case the solution to the equation (1.1) is

|f(ξ)|σ(T (t)U0(ξ))1 = |f(ξ)|.

Since

|f(ξ)| = |û(0, ξ)|

≡

 n∑
j=1

|ûj(0, ξ)|2
 1

2

 ,

we have  n∑
j=1

|ûj(t, ξ)|2
 1

2

= σ
(
u(t, ξ)

)
= σ

(
u0(ξ)

)
=

 n∑
j=1

|u0j (ξ)|2
 1

2

.

Theorem 2.1. The equation (1.2) is wellposed on the following Banach space :

X =

v = t(v1, . . . , vn)

∣∣∣∣∣
 n∑

j=1

|vj(·)|2
 1

2

∈ Y

 ,

where Y is any function space with N-variables.

For example, the equation (1.2) is well-posed , or the semigroup is isometric, in
the norm

‖f‖2,p =
(∫

‖f(ξ)‖p2dξ
)1/p

for 1 ≤ p < ∞.

In this case for X = t(X1, . . . , XN ), each Xj is equal to Lp. The most simple and
usefull case is Y = M(1). For an application of this space to semilinear equations
see [6], or to oblique boundary conditions see [2].

2.2. 1-dimensional representation. Let σ be a 1-dimensional representation. As
is already discussed,

σ
(
T j(t)

)
= eitθj , σ

(
T (t)

)
= eitθ for θ = θ1 + · · ·+ θn.

Fourier transform of eitθ means the translation:

F−1(eitθû) = u(x+ tθ).

Hence for a translation invariant space Y , we have T (t)σ−1(Y ) ⊂ Y . For instance
we let Y = {f | limx→±∞ f(x) = 0} and {T (t)} is an isometric semigroup on
X = σ−1(Y ). In this case each Xj is somewhat ambiguous. Nevertheless it is
useful to discuss the path integral for Dirac equations. Some other results will be
published elsewhere.
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2.3. Commutative G. If {Aj} in (1.2) are commutative:

AjAk = AkAj for 1 ≤ j, k ≤ N,

then they are diagonal matrices in a suitable coordinates. Hence for the formal
generator A = −iA(ξ) = −i

∑N
j=1 ξjAj there exists T ∈ U(n) such that

TA(ξ)T−1 =



i

N∑
j=1

aj1ξj . . . 0

...
. . .

...

0 . . . i

N∑
j=1

ajNξj


for ajk ∈ R.

In this case G is commutative and we have

Ȳ VA = Y, if ‖f(ξ)‖Y = ‖eiλ·ξf(ξ)‖Y for f ∈ Y.

We can pick up σ = σ(n) such that σ(U) = TUT−1. The semigroup is

T̃ (t) = TT (t)T−1 =



exp(t
N∑
j=1

aj1ξj) . . . 0

...
. . .

...

0 . . . exp(t
N∑
j=1

ajNξj)


.

In this case the problem is reduced to first order partial differential equations

∂vj
∂t

(t, x) =

N∑
l=1

bjl
∂vj
∂xl

(t, x) for 0 ≤ j ≤ n,

or equivalently, ordinary differential equations

dṽj
dt

(t, x) = 0 for 0 ≤ j ≤ n,

where ṽj(t, x) = vj

(
x1 − b1j t, . . . , xN − bNj t

)
.

This is known as a singular case. Though our theory brings nothing new, it
unifies this singular case and general cases. A family of solutions to (1.1) is usually
considered as a Cn-valued function space, and hence we shall identify a Cn-valued
function and the first column (f̂uj1)

n
j=1 of our matrx-valued function f̂U . For a

Cn-valued function G = t(g1, . . . , gn), there exist a function g and a unitary matrix
valued function V = (vjk) such that gj = g ∗ v̂j1. Using these, we define a matrix
valued function

Ǧ = g ∗ V̂ = (gjk), gjk = g ∗ v̂jk.

The mapˇ: G 7−→ Ǧ is multi-valued. In this sense X̂V
n is the minimum (in our class)

wellposed space containing X̂n since e−itA(ξ)B = B
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