Volume 8, Number 3, 2022, 255-263

WELLPOSED SPACES FOR HYPERBOLIC EQUATIONS

KIYOKO FURUYA
Dedicated to the late Professor Kazimierz Goebel

Abstract

In the previous work we posed the problem of wellposed function spaces for nonparabolic equations and discussed the problem for Schrödinger equations. In this paper we intend to discuss "wellposed function spaces" for hyperbolic equations of the simplest type. We get minimum (or maximum) wellposed space containing (or contained in) any given function space. Some applications to nonlinear problems will be found to oblique boundary conditions.

Introduction

In the previous work [6] we posed the problem of wellposed function spaces for nonparabolic equations and discussed the problem for Schrödinger equations. In this paper we intend to discuss "wellposed function spaces" for hyperbolic equations of the simplest type. We get minimum (or maximum) wellposed space containing (or contained in) any given function space. Some applications to nonlinear problems will be found, and to oblique boundary conditions in [2] and [3]. An application of our theory to path integrals for Dirac equation will be given : the path integral is expressed by an L^{2}-valued measure.

1. Wellposed function space

1.1. Equation. We consider hyperbolic equations of the following type:

$$
\left\{\begin{align*}
\frac{\partial}{\partial t} u(t, x) & =\sum_{j=1}^{N} A_{j} \frac{\partial}{\partial x_{j}} u(t, x) \quad \text { for } \quad-\infty<t<\infty, \quad x \in \mathbb{R}^{N}, \tag{1.1}\\
u(0, x) & =u^{0}(x)
\end{align*}\right.
$$

where each $A_{j}=\left(a_{i k}^{j}\right)_{i, k=1}^{n}$ is an $n \times n$ Hermitian matrix. i.e. $a_{k l}^{j}=\overline{a_{l k}^{j}}$, $u=^{t}\left(u_{1}, \ldots, u_{n}\right)$ and $u^{0}={ }^{t}\left(u_{1}^{0}, \ldots, u_{n}^{0}\right)$. We can rewright equation (1) as follows:

2020 Mathematics Subject Classification. 47D99.
Key words and phrases. C_{0}-semigroup, evolution equation, well-posed function spaces, hyperbolic equations, oblique boundary condition

This work was supported by JSPS KAKENHI 20K03649.

$$
\begin{gathered}
\left(\begin{array}{c}
\frac{\partial}{\partial t} u_{1}\left(t, x_{1}, \ldots, x_{N}\right) \\
\frac{\partial}{\partial t} u_{2}\left(t, x_{1}, \ldots, x_{N}\right) \\
\ldots \\
\frac{\partial}{\partial t} u_{n}\left(t, x_{1}, \ldots, x_{N}\right)
\end{array}\right) \\
=\sum_{j=1}^{N}\left(\begin{array}{rrrr}
a_{11}^{j} & a_{12}^{j} & \ldots & a_{1 n}^{j} \\
\overline{a_{12}^{j}} & a_{22}^{j} & \ldots & a_{2 n}^{j} \\
\overline{a_{1 n}^{j}} & \overline{a_{2 n}^{j}} & \ldots & a_{n n}^{j}
\end{array}\right)\left(\begin{array}{c}
\frac{\partial}{\partial x_{j}} u_{1}\left(t, x_{1}, \ldots, x_{N}\right) \\
\frac{\partial}{\partial x_{j}} u_{2}\left(t, x_{1}, \ldots, x_{N}\right) \\
\frac{\partial}{\partial x_{j}} u_{n}\left(t, x_{1}, \ldots, x_{N}\right)
\end{array}\right) \\
\left(\begin{array}{r}
u_{1}\left(0, x_{1}, \ldots, x_{N}\right) \\
u_{2}\left(0, x_{1}, \ldots, x_{N}\right) \\
u_{n}\left(0, x_{1}, \ldots, x_{N}\right)
\end{array}\right)=\left(\begin{array}{c}
u_{1}^{0}\left(x_{1}, \ldots, x_{N}\right) \\
u_{2}^{0}\left(x_{1}, \ldots, x_{N}\right) \\
\ldots \\
u_{n}^{0}\left(x_{1}, \ldots, x_{N}\right)
\end{array}\right) .
\end{gathered}
$$

The Fourier transform of (1.1) is

$$
\left\{\begin{align*}
\frac{d}{d t} \hat{u}(t, \xi) & =-i\left(\sum_{j=1}^{N} \xi_{j} A_{j}\right) \hat{u}(t, \xi) \quad \text { for } \quad-\infty<t<\infty, \quad \xi \in \mathbb{R}^{N} . \tag{1.2}\\
\hat{u}(0, \xi) & =\hat{u}^{0}(\xi)
\end{align*}\right.
$$

We denote by

$$
A(\xi)=\sum_{j=1}^{N} \xi_{j} A_{j}=\left(\sum_{j=1}^{N} a_{i k}^{j} \xi_{j}\right)_{i, k=1}^{n} \quad \text { for } \quad \xi=\left(\xi_{1}, \ldots, \xi_{N}\right), \quad \xi_{j} \in \mathbb{R}
$$

Since $A(\xi)$ is Hermitian, $e^{-i A(\xi) t}$ is a unitary matrix for $t \in \mathbb{R}$. Thus we get the solution to the equation (1.2):

$$
\hat{u}(t, \xi)=e^{-i t A(\xi)} \hat{u^{0}}(\xi) \quad \text { for } \quad-\infty<t<\infty, \quad \xi \in \mathbb{R}^{N} .
$$

1.2. Group representation. We cite some basic results on group representations needed later. $M(n)$ denotes the set of $n \times n$ matrices, $\mathbb{U}(n)$ the set of $n \times n$ unitary matrices:

$$
\mathbb{U}(n)=\left\{U \in M(n) \mid U \cdot{ }^{t} \bar{U}=I\right\}
$$

or

$$
\|U x\|=\|x\| \quad(U x, U y)=(x, y)=\sum_{i=1}^{n} x_{i} \bar{y}_{i}
$$

for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$.
The Lie algebra of $\mathbb{U}(n)$ is denoted by $L(\mathbb{U}(n))$:

$$
\begin{gathered}
L(\mathbb{U}(n))=\left\{A \in M(n) \mid A^{*} \equiv{ }^{t} \bar{A}=-A\right\} \\
{[X, Y] \equiv X Y-Y X \in L(\mathbb{U}(n)) \text { for } X, Y \in L(\mathbb{U}(n)) .}
\end{gathered}
$$

That is, $a_{i j}=-\bar{a}_{j i}$ for $\left(a_{i j}\right)_{i, j=1}^{n}=A \in L(\mathbb{U}(n)) . A$ is an anti-Hermite matrix and the eigen values of A are pure imaginary.

Let G be the minimum subgroup of $\mathbb{U}(n)$ containing $\left\{e^{i t A(\xi)} \mid \xi \in \mathbb{R}^{N}, t \in \mathbb{R}\right\}$ and L be the Lie algebra of $G . \quad L$ is the minimum Lie algebra containing $\left\{-i A(\xi) \mid \xi \in \mathbb{R}^{N}\right\}$. If G is reducible, it is completely reducible. Hence in a suitable coordinates, there exists \tilde{G} such that

$$
G \subset \tilde{G} \equiv\left(\begin{array}{cccc}
\mathbb{U}\left(n_{1}\right) & 0 & \cdots & 0 \tag{1.3}\\
0 & \mathbb{U}\left(n_{2}\right) & \cdots & 0 \\
\vdots & \cdot & \ddots & \vdots \\
0 & \cdots & 0 & \mathbb{U}\left(n_{k}\right)
\end{array}\right) \text { for } n=n_{1}+n_{2}+\cdots+n_{k} .
$$

We consider an m-dimensional commutative representation σ of G :

$$
\begin{gathered}
\sigma: \mathbb{U}(n) \longrightarrow \mathbb{U}(m) \\
\sigma(U V)=\sigma(U) \sigma(V)=\sigma(V) \sigma(U) \quad \text { for } \quad U, V \in G .
\end{gathered}
$$

If $m=1$, then σ is a 1 -dimensional representation,

$$
\forall U \in G, \quad \exists \theta \in \mathbb{R} \quad \text { such that } \quad \sigma(U)=e^{i \theta}
$$

In general $(m>1)$, we have

$$
\sigma(U)=\left(\begin{array}{ccc}
\sigma^{1}(U) & \ldots & 0 \tag{1.4}\\
\vdots & \ddots & \vdots \\
0 & \ldots & \sigma^{m}(U)
\end{array}\right)=\left(\begin{array}{ccc}
e^{i \theta_{1}} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & e^{i \theta_{m}}
\end{array}\right)
$$

where σ^{k} is a 1-dimensional representation. We denote $\sigma=\left(\sigma^{k}\right)$.
If all A_{j} are commutative : $A_{j} A_{k}=A_{k} A_{j}, 1 \leq{ }^{\forall} i, j \leq N$, then G is commutative and hence every representation of G is commutative.
1.3. Tensor Product Spaces. In this section we discuss abstract groups of isometric operators on tensor product spaces. We simply call them isometric groups. The results are valid for semigroups of contractions, but we do not discuss them here. Tensor product produces some new function space other than Sobolev spaces. These new function spaces are sometimes useful for nonlinear problems. For the cross norm of tensor product spaces, see [1] or [8]. Let $S^{(j)}(t)$ be a isometric group on a Banach space X_{j} and B_{j} its generator for $1 \leq j \leq N$.

Lemma 1.1. Let $X_{1}=\cdots=X_{N}=X$. If every pair of $\left\{B_{j}\right\}$ commutes, i.e. $B_{j} B_{k}=B_{k} B_{j}, 1 \leq{ }^{\forall} i, j \leq N$, then the closure B of the sum $\sum_{j=1}^{N} B_{j}$ generates an isometric group $\{S(t)\}$ on X.
Proof. Since $\left\{S(t) \equiv S^{(1)}(t) \ldots S^{(N)}(t)\right\}$ is an isometric group.
We define that

$$
\begin{gathered}
\mathcal{G}(1 ; X) \equiv\{S(t) \mid S(t): X \rightarrow X: \text { contraction semigroup }\} \\
G(S(t) ; X) \equiv\{B \mid B: X \rightarrow X: \text { generator of } S(t)\}
\end{gathered}
$$

The following theorem is well known.

Theorem 1.2 ([5]P. 502 Thorem 2.11). Let $T \in G\left(e^{-t T} ; X\right), A \in G\left(e^{-t A} ; X\right)$ and $e^{-t T}, e^{-t A} \in \mathcal{G}(1 ; X)$, let $D(T) \bigcap D(A)$ be dense in X and $T+A+\xi$ have a dense range $\mathcal{R}(T+A+\xi)$ for sufficiently large real $\xi \in \mathbb{R}$. If $T+A$ is closable, its closure $S \equiv \overline{T+A} \in G\left(e^{-t S} ; A\right)$ and $e^{-t S} \in \mathcal{G}(1 ; X)$.

The π-norm of the tensor product of two Banach spaces X and Y is defined by

$$
\|z\|_{\pi}=\inf \left\{\sum_{j=1}^{N}\left\|x_{j}\right\| \cdot\left\|y_{j}\right\| \mid z=\sum_{j=1}^{N} x_{j} \otimes y_{j}\right\}, \quad z \in X \otimes Y
$$

The π-norm is the strongest cross norm and ε-norm, the dual norm of π-norm, is the weakest one:

$$
\|z\|_{\varepsilon} \leq\|z\|_{\alpha} \leq\|z\|_{\pi} \quad \text { for } \quad \forall z \in X \otimes Y
$$

for any compatible ($=$ reasonable) norm $\|\cdot\|_{\alpha}$, that is, $\|x \otimes y\|_{\alpha}=\|x\|_{X} \cdot\|y\|_{Y}$. The completion of $X \otimes Y$ with respect to the norm $\|\cdot\|_{\alpha}$ denotes $X \hat{\otimes} Y$.

Let X_{0} be the tensor product of $\left\{X_{j}\right\}$ with the π-norm and X_{π} the completion of X_{0} :

$$
X_{\pi}=X_{1} \underset{\pi}{\hat{\otimes}} \ldots \underset{\pi}{\hat{\otimes}} X_{N} \supset X_{0}=X_{1} \underset{\pi}{\otimes} \ldots \underset{\pi}{\otimes} X_{N}
$$

We define natural extensions of $\tilde{S}^{(j)}(t)$ and \tilde{B}_{j} to X_{0} by the following relations

$$
\begin{aligned}
\tilde{S}^{(j)}(t)\left(x_{1} \otimes \cdots \otimes x_{N}\right) & =x_{1} \otimes \cdots \otimes S^{(j)}(t) x_{j} \otimes \cdots \otimes x_{N} \\
\tilde{B}_{j}\left(x_{1} \otimes \cdots \otimes x_{N}\right) & =x_{1} \otimes \cdots \otimes B_{j} x_{j} \otimes \cdots \otimes x_{N}
\end{aligned}
$$

Note that \tilde{B}_{j} generates the semigroup $\tilde{S}^{(j)}(t)$ and every pair of $\left\{\tilde{B}_{j}\right\}$ commutes. Let

$$
\tilde{S}(t)=\tilde{S}^{(1)}(t) \otimes \cdots \otimes \tilde{S}^{(j)}(t) \otimes \cdots \otimes \tilde{S}^{(N)}(t)
$$

That is,

$$
\tilde{S}(t)\left(x_{1} \otimes \cdots \otimes x_{N}\right)=S^{(1)}(t) x_{1} \otimes \cdots \otimes S^{(j)}(t) x_{j} \otimes \cdots \otimes S^{(N)}(t) x_{N}
$$

Using Lemma 1.1 we have the following theorem:
Theorem 1.3. Let $S(t)$ and B be the minimal closed extensions of $\tilde{S}(t)$ and $\sum_{j=1}^{N} \tilde{B}_{j}$ respectively. Then B generates the isometric group $\{S(t)\}$ on X.

Let X_{j}^{\prime} be dual space of X_{j}. Since $S^{(j)}(t)$ is an isometric group, its dual ${ }^{t} S^{(j)}(t)$ is also an isometric group in X_{j}^{\prime}. Hence we can define ${ }^{t} \tilde{S}(t)$ which is an isometric group on

$$
X^{*}=X_{1}^{\prime} \hat{\otimes} \underset{\pi}{\hat{Q}} \ldots \hat{\otimes} X_{N}^{\prime}
$$

Thus ${ }^{t t} \tilde{S}(t)$ is an isometric group on

$$
X_{\varepsilon}=X_{1} \hat{\otimes} \ldots \underset{\varepsilon}{\hat{\otimes}} \ldots \hat{\otimes}_{N}
$$

The norm $\|\cdot\|_{\alpha}$ is said to be an interpolation of $\|\cdot\|_{\pi}$ and $\|\cdot\|_{\varepsilon}$ if the following condition is satisfied :
If a linear operator T of $X_{1} \otimes \cdots \otimes X_{N}$ is bounded with respect to the two norms
π and ε then it is bounded with respect to the α-norm, that is there exist positive constants c_{1}, c_{2} and c_{3} such that

$$
\|T x\|_{\pi} \leq c_{1}\|x\|_{\pi} \quad \text { and } \quad\|T x\|_{\varepsilon} \leq c_{2}\|x\|_{\varepsilon}, \Longrightarrow\|T x\|_{\alpha} \leq c_{3}\|x\|_{\alpha}
$$

Thus if a semigroup $\{T(t)\}$ is bounded with respect to the norms π and ε, it is bounded with respect to the norm $\|\cdot\|_{\alpha}$. In particular, $\tilde{S}(t)$ is a bounded group with respect to the norm $\|\cdot\|_{\alpha}$.
1.4. Wellposed Spaces. As in [6], the Schrödinger equation

$$
\frac{\partial}{\partial t} u(t, x)=-i \sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}} u(t, x)
$$

is wellposed in

$$
X_{\pi}=X_{1} \underset{\pi}{\hat{\otimes}} \ldots \underset{\pi}{\hat{\otimes}} X_{N}, \quad \text { or } \quad X_{\varepsilon}=X_{1} \underset{\varepsilon}{\hat{\otimes}} \ldots \underset{\varepsilon}{\hat{\otimes}} X_{N}
$$

if $\frac{\partial}{\partial t} u(t, x)=-i \frac{\partial^{2}}{\partial x^{2}} u(t, x)$ is wellposed in every X_{j}, since every $\frac{\partial^{2}}{\partial x^{2}}$ commutes.
This is not the case for Dirac equations since that

$$
A_{j} \frac{\partial}{\partial x_{j}} A_{k} \frac{\partial}{\partial x_{k}} u(t, x) \neq A_{k} \frac{\partial}{\partial x_{k}} A_{j} \frac{\partial}{\partial x_{j}} u(t, x) \quad \text { for } \quad j \neq k .
$$

In order to treat Dirac equations in a similar way to Schrödinger equations, we make use of commutative representation of $\mathbb{U}(n)$.
$-i \mathcal{A} \cdot \xi$ generates a semigroup $e^{-i t \mathcal{A} \cdot \xi}$ for a fixed $\xi \in \mathbb{R}^{N}$. Hence $-i \mathcal{A} \cdot \xi$ generates a semigroup in the space $L_{l o c}^{1}\left(\mathbb{R}^{N}, \mathbb{C}^{n}\right) \equiv\left(L_{l o c}^{1}\right)^{n}, n$-times product of $L_{l o c}^{1}$, where $L_{l o c}^{1} \equiv\left\{f(\cdot) \mid f\right.$ is integrable on every compact set in $\left.\mathbb{R}^{N}\right\}$.

We put

$$
T(t)(\xi)=e^{-i t \mathcal{A} \cdot \xi}, T^{(j)}(t)(\xi)=e^{-i t \xi_{j} \mathcal{A}_{j}} \quad \text { for } \quad j=1, \ldots, N
$$

$T(t)(\xi)$ and $T^{(j)}(t)(\xi)$ are transformations of \mathbb{R}^{N} for fixed $\xi \in \mathbb{R}^{N}$.
If we consider these as transformations of a function space $Z \subset\left(L_{l o c}^{1}\right)^{n}$, or $Z_{j} \subset$ $L_{l o c}^{1}$, we denote these by $T(t)$ or $T^{(j)}(t)$. Z could be a space of distributions or generalized functions of some kind, but here we restrict Z to a subspace of $\left(L_{l o c}^{1}\right)^{n}$. When the space Z is not referred to, we call $\{T(t)\}$ a formal semigroup and $A=-i \mathcal{A}$ its formal generator.

Let σ be a 1-dimensional representation of G. We put

$$
S^{(j)}(t)=\sigma\left(T^{(j)}(t)\right)
$$

$\left\{S^{(j)}(t)\right\}_{j=1}^{N}$ has the semigroup property:

$$
S^{(j)}(t) S^{(j)}(s)=\sigma\left(T^{(j)}(t)\right) \sigma\left(T^{(j)}(s)\right)=\sigma\left(T^{(j)}(t+s)\right)=S^{(j)}(t+s)
$$

Since σ is commutative, we have

$$
S^{(j)}(t) S^{(i)}(t)=S^{(i)}(t) S^{(j)}(t) \quad \text { for } \quad i, j=1 \ldots N
$$

We denote the generator of $\left\{S^{(j)}(t)\right\}$ by B_{j}.
Let $Y_{j}=\left\{f \mid f\left(\xi_{j}\right) \in \mathbb{C}, \xi_{j} \in \mathbb{R}\right\}$ be a Banach space such that

$$
S^{(j)}(t): Y_{j} \longrightarrow Y_{j} \text { is isometric i.e. }\left\|S^{(j)}(t) f\right\|_{Y_{j}}=\|f\|_{Y_{j}} .
$$

Let

$$
Y=Y_{1} \underset{\pi}{\hat{\otimes}} \ldots \underset{\pi}{\otimes} Y_{N} .
$$

We define two operators of Y :

$$
\begin{gathered}
B=B_{1} \otimes I \otimes \cdots \otimes I+I \otimes B_{2} \otimes I \otimes \cdots \otimes I+\cdots+I \otimes \cdots \otimes B_{N}, \\
S(t)=S^{(1)}(t) \otimes \cdots \otimes S^{(N)}(t) .
\end{gathered}
$$

Lemma 1.4. The formal generator B generates an isometric group $\{S(t)\}$ on Y.
We denote by $\mathbb{U}(n)$ the group of unitary matrices and by $S \mathbb{U}(n)$ the group of special unitary matrices.
Definition 1.5. We denote by \mathcal{U}_{n} the set of the $\mathbb{U}(n)$-valued measurable functions and by \mathcal{T} the set of the unitary group of hyperbolic type:

$$
\begin{gather*}
\mathcal{U}_{n}=\left\{U \mid U(\xi) \in \mathbb{U}(n), \forall \xi \in \mathbb{R}^{N}\right\}, \tag{1.5}\\
\mathcal{T}=\left\{e^{-i t \sum_{j=1}^{N} \xi_{j} A_{j}} \mid A_{j}=\text { Hermitian }\right\} . \tag{1.6}
\end{gather*}
$$

We denote

$$
\begin{align*}
\mathcal{V}_{0} & =\text { the minimum subgroup of } \mathcal{U}_{n} \text { containing } \mathcal{T} \text { and } S \mathbb{U}(n) \tag{1.7}\\
\mathcal{V}_{\mathcal{A}} & =\text { the minimum subgroup of } \mathcal{U}_{n} \text { containing }\left\{e^{i \mathcal{A} \cdot \mathcal{A}}\right\} \text { and } S \mathbb{U}(n) .
\end{align*}
$$

Let $Y \subset L_{l o c}^{1}$ be a Banach space such that

$$
\|f(\xi)\|=\left\|e^{i \lambda \cdot \xi} f(\xi)\right\| \quad \text { for } \quad \lambda, \xi \in \mathbb{R}^{N} \text { and } f \in Y
$$

For the unit ball B_{Y} of Y and a unit vector $e_{0} \in \mathbb{C}^{n}$, we put

$$
B_{X}=\operatorname{con}\left\{\left.\|f\|_{Y} U \sigma^{-1}\left(\frac{f}{\|f\|_{Y}}\right) \right\rvert\, f \in B_{Y}, f \not \equiv 0, U \in \mathcal{V}_{0}\right\} \cdot e_{0},
$$

where $\operatorname{con}\{\cdot\}$ is the convex hull of a set. Let X be the Banach space which is the completion of the normed space with the unit ball B_{X}. This Banach space X does not depend on the choice of e_{0}. We evidently have $X \supset Y$.
Definition 1.6. The Banach space X above is denoted by $\bar{Y}{ }^{V_{0}}$.
Theorem 1.7. The Banach space $\bar{Y}^{\mathcal{V}_{0}}$ is the minimum wellposed spce containing Y. (A formal generator $A=-i \mathcal{A}$ generates an isometric group $\{T(t)\}$ on $\bar{Y}^{\nu_{0}}$.)

The proof is clear by the preceding lemma.
Definition 1.8.

$$
\breve{Y}^{\mathcal{V}_{0}}=\bigcap_{U \in \mathcal{V}_{0}} U X .
$$

Theorem 1.9. The Banach space $\breve{Y}^{V_{0}}$ is the maximum wellposed space contained in Y.

2. Examples

2.1. 0-dimensional representation. Let σ be a 0 -dimensional representation : $\sigma(U)=1, \forall U \in G$. In this case the solution to the equation (1.1) is

$$
|f(\xi)| \sigma\left(T(t) U_{0}(\xi)\right) 1=|f(\xi)|
$$

Since

$$
|f(\xi)|=|\hat{u}(0, \xi)|\left(\equiv\left(\sum_{j=1}^{n}\left|\hat{u}_{j}(0, \xi)\right|^{2}\right)^{\frac{1}{2}}\right)
$$

we have

$$
\left(\sum_{j=1}^{n}\left|\hat{u}_{j}(t, \xi)\right|^{2}\right)^{\frac{1}{2}}=\sigma(u(t, \xi))=\sigma\left(u^{0}(\xi)\right)=\left(\sum_{j=1}^{n}\left|u_{j}^{0}(\xi)\right|^{2}\right)^{\frac{1}{2}}
$$

Theorem 2.1. The equation (1.2) is wellposed on the following Banach space :

$$
X=\left\{v={ }^{t}\left(v_{1}, \ldots, v_{n}\right) \left\lvert\,\left(\sum_{j=1}^{n}\left|v_{j}(\cdot)\right|^{2}\right)^{\frac{1}{2}} \in Y\right.\right\}
$$

where Y is any function space with N-variables.
For example, the equation (1.2) is well-posed, or the semigroup is isometric, in the norm

$$
\|f\|_{2, p}=\left(\int\|f(\xi)\|_{2}^{p} d \xi\right)^{1 / p} \quad \text { for } \quad 1 \leq p<\infty
$$

In this case for $X={ }^{t}\left(X_{1}, \ldots, X_{N}\right)$, each X_{j} is equal to L^{p}. The most simple and usefull case is $Y=M(1)$. For an application of this space to semilinear equations see [6], or to oblique boundary conditions see [2].
2.2. 1-dimensional representation. Let σ be a 1-dimensional representation. As is already discussed,

$$
\sigma\left(T^{j}(t)\right)=e^{i t \theta_{j}}, \quad \sigma(T(t))=e^{i t \theta} \quad \text { for } \quad \theta=\theta_{1}+\cdots+\theta_{n}
$$

Fourier transform of $e^{i t \theta}$ means the translation:

$$
\mathcal{F}^{-1}\left(e^{i t \theta} \hat{u}\right)=u(x+t \theta)
$$

Hence for a translation invariant space Y, we have $T(t) \sigma^{-1}(Y) \subset Y$. For instance we let $Y=\left\{f \mid \lim _{x \rightarrow \pm \infty} f(x)=0\right\}$ and $\{T(t)\}$ is an isometric semigroup on $X=\sigma^{-1}(Y)$. In this case each X_{j} is somewhat ambiguous. Nevertheless it is useful to discuss the path integral for Dirac equations. Some other results will be published elsewhere.
2.3. Commutative G. If $\left\{\mathcal{A}_{j}\right\}$ in (1.2) are commutative:

$$
\mathcal{A}_{j} \mathcal{A}_{k}=\mathcal{A}_{k} \mathcal{A}_{j} \quad \text { for } \quad 1 \leq j, k \leq N,
$$

then they are diagonal matrices in a suitable coordinates. Hence for the formal generator $A=-i \mathcal{A}(\xi)=-i \sum_{j=1}^{N} \xi_{j} \mathcal{A}_{j}$ there exists $T \in \mathbb{U}(n)$ such that

$$
T A(\xi) T^{-1}=\left(\begin{array}{ccc}
i \sum_{j=1}^{N} a_{1}^{j} \xi_{j} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & i \sum_{j=1}^{N} a_{N}^{j} \xi_{j}
\end{array}\right) \quad \text { for } \quad a_{k}^{j} \in \mathbb{R} .
$$

In this case G is commutative and we have

$$
\bar{Y}^{\mathcal{V}_{\mathcal{A}}}=Y, \text { if }\|f(\xi)\|_{Y}=\left\|e^{i \lambda \cdot \xi} f(\xi)\right\|_{Y} \quad \text { for } \quad f \in Y .
$$

We can pick up $\sigma=\sigma(n)$ such that $\sigma(U)=T U T^{-1}$. The semigroup is

$$
\tilde{T}(t)=T T(t) T^{-1}=\left(\begin{array}{ccc}
\exp \left(t \sum_{j=1}^{N} a_{1}^{j} \xi_{j}\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \exp \left(t \sum_{j=1}^{N} a_{N}^{j} \xi_{j}\right)
\end{array}\right)
$$

In this case the problem is reduced to first order partial differential equations

$$
\frac{\partial v_{j}}{\partial t}(t, x)=\sum_{l=1}^{N} b_{l}^{j} \frac{\partial v_{j}}{\partial x_{l}}(t, x) \quad \text { for } \quad 0 \leq j \leq n,
$$

or equivalently, ordinary differential equations

$$
\frac{d \tilde{v}_{j}}{d t}(t, x)=0 \quad \text { for } \quad 0 \leq j \leq n,
$$

where $\tilde{v}_{j}(t, x)=v_{j}\left(x_{1}-b_{j}^{1} t, \ldots, x_{N}-b_{j}^{N} t\right)$.
This is known as a singular case. Though our theory brings nothing new, it unifies this singular case and general cases. A family of solutions to (1.1) is usually considered as a \mathbb{C}^{n}-valued function space, and hence we shall identify a \mathbb{C}^{n}-valued function and the first column $\left(\hat{f} u_{j 1}\right)_{j=1}^{n}$ of our matrx-valued function $\hat{f} U$. For a \mathbb{C}^{n}-valued function $G={ }^{t}\left(g^{1}, \ldots, g^{n}\right)$, there exist a function g and a unitary matrix valued function $V=\left(v_{j k}\right)$ such that $g^{j}=g * \hat{v}_{j 1}$. Using these, we define a matrix valued function

$$
\check{G}=g * \hat{V}=\left(g_{j k}\right), \quad g_{j k}=g * \hat{v}_{j k} .
$$

The map ${ }^{\imath}: G \longmapsto \check{G}$ is multi-valued. In this sense $\hat{X}_{n}^{\mathcal{V}}$ is the minimum (in our class) wellposed space containing \hat{X}^{n} since $e^{-i t A(\xi)} \mathcal{B}=\mathcal{B}$

References

[1] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, AMS, 1977.
[2] K. Furuya, On "well posed function spaces" for L^{2}-illposed hyperbolic equations, Journal of Nonlinear and Convex Analysis 19 (2018), 1525-1530.
[3] K. Furuya, On the L^{2}-illposed mixed problem for the wave equations with oblique boundary condition, Linear and Nonlinear Analysis 7 (2021), 413-419.
[4] T. Ichinose, Path integrals for a hyperbolic system of the first order, Duke Math. J. 51 (1984), 1-36.
[5] T. Kato, Perturbation Theory for Linear Operators. 2nd edition, Springer, 1980.
[6] Y. Kōmura and K. Furuya, Wave Equations in Nonreflexive Spaces, Lecture notes in Math. 1540 (H. Komatsu(ed):Functional Analysis and Related Topics) Springer, 1991, pp. 235-238.
[7] W. Littman, The wave operator and L_{p} norms, J. Math. and Mech. 12 (1963), 55-68.
[8] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.

Manuscript received 31 October 2022 revised 31 December 2022

Kiyoko Furuya

Faculty of Science,Ochanomizu University 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan E-mail address: furuya.kiyoko@ocha, ac,jp

