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N VARIABLE LOGARITHMIC MEAN

KENJIRO YANAGI

ABSTRACT. It is well known that the Hermite-Hadamard inequality refines the
definition of convexity of function f(x) defined on [a,b] by using the integral of
f(x) from a to b. There are many generalizations or refinements of the Hermite-
Hadamard inequality. In this article, we give an N variable Hermite-Hadamard
inequality and apply to give the definition of N variable logarithmic mean.

1. INTRODUCTION

A function f : [a,b] C R — R is said to be convex on [a, b] if the inequality

f (méry) < f(ﬂ?);rf(y)

(1.1)

holds for all z,y € [a,b]. If inequality (1.1) reverses, then f is said to be concave
on [a,b]. Let f:]a,b] C R — R be a convex function on an interval [a.b]. Then

b 1
(1:2) f<a;b> = bia/ f(?f)dltZ/O F((1=t)a+ th)dt < M

This double inequality is known in the literature as the Hermite-Hadamard integral
inequality for convex functions. It has many applications in more different areas
of pure and applied mathematics. In Section 2, we try to obtain an N variable
Hermite-Hadamard inequality. As applications, we give the definition of NV variable
logarithmic mean and N variable operator logarithmic mean. In Section 3, we
compare our N variable logarithmic mean and another N variable logarithmic mean
which has been defined in [10, 11]. We show that we can’t compare those means by
taking examples.

2. HERMITE-HADAMARD INEQUALITY

We need the following result.

Lemma 2.1 ([15]). Let x1,22,...,2xy € R or x1,z9,...,2n € X, where X is a
linear space. Then
N
1
i=1 1<J
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Proof.
N 1 N N 1 N N
Zl’z = = Z-’L’z‘f’Zl’j :2—22(551"‘.%])
i=1 =1 j=1 i=1 j=1
1
= on 22:@-4—2(@-4—%)
i=1 i#j
1 N
i=1 1<J 1>]
1Y 1
- LY e E S
N i=1 N i<j
Then
1) & 1
(1_N> x; = NZ(:BZ—I—I'])
- i<j
That is
N
1
i=1 1<j

We have the following IV variable Hermite-Hadamard inequality.

Theorem 2.2 ([15]). Let f(x) be a convez function on R and let x1,z2,...,xx € R.
Then

1 & 1 2 i +
f(NZ;:r> = oy nt+e) | = | ywop o

1<J 1<J

Ti+ T
2

9 1
< m;/{) F((1 = t)w; + tay)dt

2
S v-n 2!

1<J

2 fx) + f(zy)
= N(N—l); 7
. 1 1 N
- NN-D ;(f(xi) + f(zj)) = N ;f(xi).

Proof. The first equality is given by Lemma 2.1. The first inequality is given by
the convexity of f(x). From the second inequality to the third inequality are given
by (1.2). And the last equality is given by Lemma 2.1. O
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When f(x) = e®, we have the following corollary.
Corollary 2.3. Let f(x) = e”. We suppose that x; # x; for i # j. Then

1 & 9 o
ewp{ﬁ;xi}SN(N—l); p— Zea:l

By putting e** = y;, €% = y; we obtain

N NN
(ZI;[I yi) S -1) Z log Yi — log yj N Zyz

Then we define N variable logarithmic mean as follows:

Definition 2.4. Let x1,22...,2y € R and let x; # x; for i # j. Then N variable
logarithmic mean is defined by

2 T
I = ot
! N(N—l);jlogxi—long

We also define N variable operator logarithmic mean as follows:

Definition 2.5. Let A1, As, ..., Ax be positive bounded linear operators on Hilbert
space. Then N wvariable operator logarithmie mean is defined by

_1 > AilA;,

z<j
where AilA; = [} Aifl, Ajde and A, A = A)P (A2 4,471 %) A)2,
3. N VARIABLE LOGARITHMIC MEAN

The another definition of N variable Hermite-Hadamard inequality has been given
by [10, 11].

Definition 3.1. Let f(z) be a convex function on R and let x1,x2,...,2n € R.
Then

(N — 1)!/ (Zt ml> dtidts - dtn_q
An_1

i=1

~
VR
2=
=
8
~
IN

IN
=]~
-
=
&

where An_1 = {(t1,t2, - ,tn_1) € RNV oty + - 4ty < 1,t; > 0} and
tN:l—Zleltz

When f(z) = 27!, we have the following corollary.
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Corollary 3.2. Let f(z) =x~1. Then

N -1 N -1
! E —1 N —1)! E t dt dt < 1
— . < — ! iTi ce _ — i
N Z; = ( ) /AN1 &€ 1 N-1 =N < x

=1

Then N variable logarithmic mean is defined as follows:

Definition 3.3. Let x;,x9, -+ ,xny € R. Then N wvariable logarithmic mean is
defined by

-1

N —1
IQ = (N—l)!/ Ztixi dtl'“dt]v_l
An_1

i=1

4. THE COMPARISON BETWEEN TWO DEFINITIONS

When N = 3, I1 and I, are represented in the followings.

I_l 1 — X9 o — I3 r3 — I
173 logxy —logxys logwo —logxs logas —logxy |’
and
I (21 — o) (w2 — w3) (3 — 71)
2

-~ 2{z1(z3 — 29) log w1 + x2(x1 — 23) log xo + x3(x2 — 21) log w3}

In order to compare I; with I, we put x1 = x, 29 = (1 + s)x, 23 = (1 + t)x. Then

7 _ s + t—s + t
"7 3 \log(1+s) | log(1+t)—log(1+s)  log(1+¢t) )’

and

1=
2 t S

When s = 1,t = 2, we have 11[2_1 =0.999312---. Then I; < Is. On the other hand

when s = 1,¢ = 100, we have I;I; ' = 1.0663634---. Then I; > I5. Therefore we

can’t compare Iy with Is.

2 {(1+t)log(1—|—t) B (1+s)log(1+s)}
(t—s)x '
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