
LNALNA ISSN 2188-8167 
2022



240 SATIT SAEJUNG

Aoki [1] and Rassias [9] generalized Theorem H for φ(x, y) := δ(∥x∥p + ∥y∥p)
where 0 ≤ p < 1. Note that if p := 0, then Theorem H is obtained from the results
of Aoki and of Rassias.

Brzdęk [3] supplemented the results of Aoki and of Rassias where p < 0. In fact,
the following result was proved. Note that the completeness of Y is not required as
was the case in Theorem H.

Theorem B. Suppose that φ(x, y) := ∥x∥p+∥y∥p for all x, y ∈ X \{0} where p < 0.
If f : X → Y satisfies

∥f(x+ y)− f(x)− f(y)∥ ≤ φ(x, y) for all x, y ∈ X \ {0},

then f(x+ y) = f(x) + f(y) for all x, y ∈ X.

Inspired by Theorem B, Piszczek [7] proposed the following interesting result.

Theorem P. Suppose that a, b ∈ F \ {0}, A,B ∈ K \ {0}, and φ(x, y) := ∥x∥p∥y∥q
for all x, y ∈ X \ {0} where p, q ∈ R. Then f is general linear if

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ φ(x, y) for all x, y ∈ X \ {0}

and one of the following conditions is satisfied:
(a) p+ q < 0 (see [7, Theorem 2.1]);
(b) p+ q > 0; and either (b1) q > 0 and |a|p+q ̸= |A|; or (b2) p > 0 and |b|p+q ̸= |B|

(see [7, Theorem 2.2]).

The condition |a|p+q ̸= |A| (and |b|p+q ̸= |B|) is not superfluous as shown by an
example given in [5, 7].

First, we point out that there is a gap in the original proof of Theorem P. In fact,
via the method used there [7], we can conclude only that

f(ax+ by) = Af(x) +Bf(y) for all x, y ̸= 0 ̸= ax+ by.

It is clear that f satisfying the condition above is not necessarily general linear. To
see this, let f : R → R be defined by f(0) = 1 and f(x) = 0 for all x ̸= 0. In this
case, we see that f(x+ y) = f(x) + f(y) for all x, y ̸= 0 ̸= x+ y. In this paper, we
use another approach to conclude Theorem P. The proof is given in Section 2. We
do not use the fixed point theorem of Brzdęk [4] as was the case in [7].

2. Main results

Proof of Theorem P(a). We follow the idea of [2]. Let x, y ∈ X. Pick z ∈ X such
that ∥z∥ > max{∥ax∥, ∥a2x∥, ∥by∥, ∥b2y∥}. Put

xn := x+
nz

a
̸= 0; x′n :=

x

a
+

nz

2a2
̸= 0; x′′n :=

nz

2ab
≠ 0;

yn := y − nz

b
̸= 0; y′n := − nz

2ab
≠ 0; y′′n :=

y

b
− nz

2b2
̸= 0;

for all n ≥ 1. Note that

ax+ by = axn + byn

x = ax′n + by′n
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y = ax′′n + by′′n

xn = ax′n + bx′′n

yn = ay′n + by′′n

for all n ≥ 1. Moreover, it follows from p+ q < 0 that

lim
n→∞

φ(xn, yn) = lim
n→∞

np+q
∥∥∥x
n
+

z

a

∥∥∥p ∥∥∥ y
n
− z

b

∥∥∥q = 0

lim
n→∞

φ(x′n, y
′
n) = lim

n→∞
np+q

∥∥∥ x

na
+

z

2a2

∥∥∥p ∥∥∥− z

2ab

∥∥∥q = 0

lim
n→∞

φ(x′′n, y
′′
n) = lim

n→∞
np+q

∥∥∥ z

2ab

∥∥∥p ∥∥∥ y

nb
− z

2b2

∥∥∥q = 0

lim
n→∞

φ(x′n, x
′′
n) = lim

n→∞
np+q

∥∥∥ x

na
+

z

2a2

∥∥∥p ∥∥∥ z

2ab

∥∥∥q = 0

lim
n→∞

φ(y′n, y
′′
n) = lim

n→∞
np+q

∥∥∥ z

2ab

∥∥∥p ∥∥∥ y

nb
− z

2b2

∥∥∥q = 0.

Now we have the following

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ ∥f(ax+ by)−Af(xn)−Bf(yn)∥
+ |A|∥f(x)−Af(x′n)−Bf(y′n)∥
+ |B|∥f(y)−Af(x′′n)−Bf(y′′n)∥
+ |A|∥f(xn)−Af(x′n)−Bf(x′′n)∥
+ |B|∥f(yn)−Af(y′n)−Bf(y′′n)∥.

Taking n → ∞ gives the desired result. □
We can generalize Theorem P(a) as follows.

Theorem 2.1. Suppose that φ : (X \ {0})2 → [0,∞) satisfies the following condi-
tions: For each x, y ∈ X there exists z ̸= 0 such that

lim
n→∞

φ(x+ nz, y − nz) = lim
n→∞

φ(x+ nz,±nz) = lim
n→∞

φ(±nz, y − nz) = 0.

Then f : X → Y is general linear if

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ φ(x, y) for all x, y ∈ X \ {0}.

Before we discuss Theorem P(b). We need the following lemmas.

Lemma 2.2 ([8]). Suppose that h : X → Y satisfies the following condition:

h(ax+ by) = Ah(x) +Bh(y) for all x, y ̸= 0.

Then h is general linear.

Lemma 2.3. Suppose that h : X → Y satisfies the following conditions: h(0) = 0
and

h(ax+ by) = Ah(x) +Bh(y) for all x, y ̸= 0 ̸= ax+ by.

The following statements are true for the odd part ho and the even part he of h.
(i) ho is general linear, that is, ho(ax+ by) = Aho(x) +Bho(y) for all x, y ∈ X.
(ii) he is constant on X \ {0}. If A+B ̸= 1, then he(x) = 0 for all x ̸= 0.
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Proof. Note that

ho(x) :=
1

2
(h(x)− h(−x)) and he(x) :=

1

2
(h(x) + h(−x))

for all x ∈ X. In particular, we have

ho(0) = 0, ho(−x) = −ho(x), he(−x) = he(x), and h(x) = ho(x) + he(x)

for all x ∈ X. Moreover, we also have

ho(ax+ by) = Aho(x) +Bho(y) and he(ax+ by) = Ahe(x) +Bhe(y)

for all x, y ̸= 0 ̸= ax+ by.
To prove (i), let x ̸= 0. Note that

x = a
3x

2a
+ b

(
− x

2b

)
= a

x

2a
+ b

x

2b
.

It follows that

ho(x) = Aho

(
3x

2a

)
+Bho

(
− x

2b

)
= Aho

(
3x

2a

)
−Bho

( x

2b

)
;

ho(2x) = Aho

(
3x

2a

)
+Bho

( x

2b

)
.

In particular,
ho(2x)− ho(x) = 2Bho

( x

2b

)
.

Similarly, we can prove that

ho(2x)− ho(x) = 2Aho

( x

2a

)
.

This implies that

ho(2x)− ho(x) = Aho

( x

2a

)
+Bho

( x

2b

)
= ho(x)

and hence ho(2x) = 2ho(x). Now, let y ̸= 0 be such that x+ y ̸= 0. It follows that

ho(x+ y) = Aho

(x
a

)
+Bho

(y
b

)
= 2Ah

( x

2a

)
+ 2Bho

( y

2b

)
= ho(x) + ho(y).

It follows from [3] and ho(0) = 0 that ho(x + y) = ho(x) + ho(y) for all x, y ∈ X.
Moreover, we have

ho(ax) =
1

2
ho(2ax) =

2A

2
ho

(
2ax

2a

)
= Aho(x).

Similarly, we have ho(bx) = Bho(x). Hence

ho(ax+ by) = ho(ax) + ho(by) = Aho(x) +Bho(y) for all x, y ∈ X.

To prove (ii), we fix x0 ̸= 0. Let x ̸= 0. We prove that he(x) = he(x0). If
x = x0 or x = −x0, then we are done. We assume that x ̸= ±x0. In particular,
x−x0
2a ̸= 0 ̸= x+x0

2b . It follows that

he(x) = Ahe

(
x− x0
2a

)
+Bhe

(
x+ x0
2b

)
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= Ahe

(
−x+ x0

2a

)
+Bhe

(
x+ x0
2b

)
= he(x0).

Moreover, we also have

he(x0) = Ahe(x0) +Bhe(x0).

If A + B ̸= 1, then he(x0) = Ahe(
x0
2a ) + Bhe(

x0
2b ) = Ahe(x0) + Bhe(x0), that is,

he(x0) = 0. □

We are now ready to get rid of a gap in the original proof of Theorem P(b). The
method we use here is different from the one in [7].

Proof of Theorem P(b). We assume that p+ q > 0. It suffices to assume that q > 0
and |a|p+q ̸= |A|. (The assertion under the assumptions p > 0 and |b|p+q ̸= |B| can
be proved analogously.)

Case 1: |a|p+q < |A|. Put α := |a|p+q/|A| < 1. The proof is broken into four
steps.

Step 1 : ∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ α∥x∥p∥y∥q for all x, y ̸= 0 ̸= ax+ by.
Let x, y ∈ X \ {0} be such that ax+ by ̸= 0. For each integer n ≥ 1, we put

xn :=

(
a+

b

n

)
x; yn :=

(
a+

b

n

)
y; zn :=

(
a+

b

n

)
(ax+ by);

x′n :=
x

n
; y′n :=

y

n
; z′n :=

ax+ by

n
.

It follows that, for all sufficiently large n, 0 /∈ {xn, yn, zn, x′n, y′n, z′n}. In particular,

lim
n→∞

∥f(zn)−Af(ax+ by)−Bf(z′n)∥ ≤ lim
n→∞

∥ax+ by∥p+q

nq
= 0;

lim
n→∞

∥f(xn)−Af(x)−Bf(x′n)∥ ≤ lim
n→∞

∥x∥p+q

nq
= 0;

lim
n→∞

∥f(yn)−Af(y)−Bf(y′n)∥ ≤ lim
n→∞

∥y∥p+q

nq
= 0;

lim sup
n→∞

∥f(zn)−Af(xn)−Bf(yn)∥ ≤ lim sup
n

∣∣∣∣a+
b

n

∣∣∣∣p+q

∥x∥p∥y∥q

= |a|p+q∥x∥p∥y∥q;

lim
n→∞

∥f(z′n)−Af(x′n)−Bf(y′n)∥ ≤ lim
n→∞

∥x∥p∥y∥q

np+q
= 0.

Moreover, we have

|A|∥f(ax+ by)−Af(x)−Bf(y)∥
≤ ∥f(zn)−Af(ax+ by)−Bf(z′n)∥
+ |A|∥f(xn)−Af(x)−Bf(x′n)∥
+ |B|∥f(yn)−Af(y)−Bf(y′n)∥
+ ∥f(zn)−Af(xn)−Bf(yn)∥
+ |B|∥f(z′n)−Af(x′n)−Bf(y′n)∥
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Taking n → ∞ completes the proof of Step 1.
Step 2 : f(ax+by) = Af(x)+Bf(y) for all x, y ̸= 0 ̸= ax+by. (A careful reading

of the original proof [7] of Theorem P(b) reaches only this conclusion. It is worth
mentioning that the proof technique used in [7] is the fixed point method while our
method is different.) To see this, we put f ′ := f/α. It follows from Step 1 that

∥f ′(ax+ by)−Af ′(x)−Bf ′(y)∥ ≤ α∥x∥p∥y∥q for all x, y ̸= 0 ̸= ax+ by.

We proceed the same method as in Step 1 for f ′ and we obtain that

∥f ′(ax+ by)−Af ′(x)−Bf ′(y)∥ ≤ α∥x∥p∥y∥q for all x, y ̸= 0 ̸= ax+ by.

This implies that

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ α2∥x∥p∥y∥q for all x, y ̸= 0 ̸= ax+ by.

For each n ≥ 1, it follows by induction that

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ αn∥x∥p∥y∥q for all x, y ̸= 0 ̸= ax+ by.

Letting n → ∞ completes the proof of Step 2.
Step 3 : f(0) = Af(0)+Bf(0). To see this, let x ̸= 0. It follows from Step 2 that

f
( x

na

)
= Af

( x

2na2

)
+ f

( x

2nab

)
f
(
− x

nb

)
= Af

(
− x

2nab

)
+ f

(
− x

2nb2

)
.

In particular,

∥f(0)−Af(0)−Bf(0)∥

≤
∥∥∥f(0)−Af

( x

na

)
−Bf

(
− x

nb

)∥∥∥
+ |A|

∥∥∥f(0)−Af
( x

2na2

)
−Bf

(
− x

2nab

)∥∥∥
+ |B|

∥∥∥f(0)−Af
( x

2nab

)
−Bf

(
− x

2nb2

)∥∥∥
≤ ∥x∥p+q

np+q|a|p|b|q
+

∥x∥p+q

2p+qnp+q|a|2p+q|b|q
+

∥x∥p+q

2p+qnp+q|a|p|b|p+2q
.

Letting n → ∞ completes the proof of Step 3.
Step 4 : f is general linear. To see this, let g(x) := f(x)− f(0) for all x ∈ X. It

follows that g(0) = 0 and

g(ax+ by) = Ag(x) +Bg(y) for all x, y ̸= 0 ̸= ax+ by.

Note that 0 = g(0) = go(0) + ge(0) = ge(0). It follows from Lemma 2.3 that the
even part ge of g is constant on X \ {0}. Fix x0 ̸= 0, we have ge(x) = ge(x0) for all
x ̸= 0. We now prove that ge(x0) = 0. If A + B ̸= 1, then we are done. Now, we
assume that A+B = 1. In this case, we have

∥ge(0)−Age(bx0)−Bge(−ax0)∥ =
∥∥∥ge(0)−Age

(x0
n

)
−Bge

(x0
n

)∥∥∥ ≤ ∥x0∥p+q

np+q
.
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Letting n → ∞ gives 0 = ge(0) = (A + B)ge(x0) = ge(x0). Now, we can conclude
that ge(x) = 0 for all x ∈ X. Finally, let x, y ̸= 0 such that ax+ by = 0. Then

f(ax+ by) = g(ax+ by) + f(0)

= go(ax+ by) + f(0)

= Ago(x) +Bgo(y) + f(0)

= Ag(x) +Bg(y) +Af(0) +Bf(0)

= Af(x) +Bf(y).

Hence the conclusion follows from Lemma 2.2. The proof of Case 1 is finished.

Case 2: |a|p+q > |A|. Put β := |A|/|a|p+q < 1. The proof of this case is very
similar to that of Case 1. We only give a sketch proof. Let x, y ∈ X such that
x, y ̸= 0 ̸= ax+ by. For each n ≥ 1, we put

xn :=

(
1

a
+

1

na

)
(ax+ by); x′n :=

(
1

a
+

1

na

)
x; x′′n :=

(
1

a
+

1

na

)
y;

yn := − 1

nb
(ax+ by); y′n := − 1

nb
x; y′′n := − 1

nb
.

It follows that 0 /∈ {xn, x′n, x′′n, yn, y′n, y′′n} for all sufficiently large n. Note that

ax+ by = axn + byn

x = ax′n + by′n

y = ax′′n + by′′n

xn = ax′n + bx′′n

yn = ay′n + by′′n

for all n ≥ 1. It follows that

lim
n→∞

∥f(ax+ by)−Af(xn)−Bf(yn)∥ ≤ lim
n→∞

∣∣∣∣1a +
1

na

∣∣∣∣p ∣∣∣∣ 1

na

∣∣∣∣q ∥ax+ by∥p+q = 0;

lim
n→∞

∥f(x)−Af(x′n)−Bf(y′n)∥ ≤ lim
n→∞

∣∣∣∣1a +
1

na

∣∣∣∣p ∣∣∣∣ 1

na

∣∣∣∣q ∥x∥p+q = 0;

lim
n→∞

∥f(y)−Af(x′′n)−Bf(y′′n)∥ ≤ lim
n→∞

∣∣∣∣1a +
1

na

∣∣∣∣p ∣∣∣∣ 1

na

∣∣∣∣q ∥y∥p+q = 0;

lim sup
n

∥f(xn)−Af(x′n)−Bf(x′′n)∥ ≤ lim
n→∞

∣∣∣∣1a +
1

na

∣∣∣∣p+q

∥x∥p∥y∥q = ∥x∥p∥y∥q

|a|p+q
;

lim
n→∞

∥f(yn)−Af(y′n)−Bf(y′′n)∥ ≤ lim
n→∞

∣∣∣∣ 1

na

∣∣∣∣p+q

∥x∥p∥y∥q = 0.

As we proved Theorem P(a), we obtain that

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ β∥x∥p∥y∥q for all x, y ̸= 0 ̸= ax+ by.

Since β < 1, we repeat the proof above obtain that

f(ax+ by) = Af(x) +Bf(y) for all x, y ̸= 0 ̸= ax+ by.
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We can follow Step 3 and Step 4 of the proof of Theorem P(b) to obtain that f is
indeed general linear. □

A simple inspection of the proof of Theorem P(b) yields the following more general
results.

Theorem 2.4. Suppose that φ : (X \ {0})2 → (0,∞) satisfies one of the following
conditions:
(a) limn→∞ φ

(
x, xn

)
= 0 for all x ̸= 0; and limn→∞ φ

(
x
n ,

y
n

)
= 0 for each x, y ̸=

0 ̸= ax+ by; and

|A| sup

{
lim supn φ

((
a+ b

n

)
x,

(
a+ b

n

)
y
)

φ(x, y)
: x, y ̸= 0 ̸= ax+ by

}
< 1;

(b) limn→∞ φ
((
1 + 1

n

)
x,−ax

nb

)
= 0 for all x ̸= 0; and limn→∞ φ

(
x
n ,

y
n

)
= 0 for all

x, y ̸= 0 ̸= ax+ by; and

1

|A|
sup

{
lim supn φ

((
1
a + 1

na

)
x,

(
1
a + 1

na

)
y
)

φ(x, y)
: x, y ̸= 0 ̸= ax+ by

}
< 1.

Then f : X → Y is general linear if

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ φ(x, y) for all x, y ∈ X \ {0}.

Theorem 2.5. Suppose that φ : (X \ {0})2 → (0,∞) satisfies one of the following
conditions:
(a) limn→∞ φ

(
x
n , x

)
= 0 for all x ̸= 0; and limn→∞ φ

(
x
n ,

y
n

)
= 0 for each x, y ̸=

0 ̸= ax+ by; and

|B| sup

{
lim supn→∞ φ

((
a
n + b

)
x,

(
a
n + b

)
y
)

φ(x, y)
: x, y ̸= 0 ̸= ax+ by

}
< 1;

(b) limn→∞ φ
(
− bx

na ,
(
1
b +

1
n

)
x
)
= 0 for all x ̸= 0; and limn→∞ φ

(
x
n ,

y
n

)
= 0 for all

x, y ̸= 0 ̸= ax+ by; and

1

|B|
sup

{
lim supn→∞ φ

((
1
b +

1
nb

)
x,

(
1
b +

1
nb

)
y
)

φ(x, y)
: x, y ̸= 0 ̸= ax+ by

}
< 1.

Then f : X → Y is general linear if

∥f(ax+ by)−Af(x)−Bf(y)∥ ≤ φ(x, y) for all x, y ∈ X \ {0}.

We end the paper with the following two examples which are beyond the scope
of Theorem B and Theorem P.

Example 2.6. Suppose that φ(x, y) := |x|
|y|2 + |y|

|x|2 for all x, y ∈ R \ {0}. It follows
that

lim
n→∞

φ(x+ nz, y − nz) = lim
n→∞

φ(x+ nz,±nz) = lim
n→∞

φ(±nz, y − nz) = 0

for all x, y ∈ R and for all z ̸= 0. Hence our Theorem 2.1 can be applicable.
Moreover, φ(x, y) is neither of the form |x|p + |y|p where p < 0 nor |x|p|y|q where
p+ q < 0.
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Example 2.7. Suppose that

φ(x, y) :=


|x||y| if 0 < |x| ≤ 1 and 0 < |y| ≤ 1;
|x|2|y| if |x| ≥ 1 and 0 < |y| ≤ 1;
|x||y|2 if 0 < |x| ≤ 1 and |y| ≥ 1;
|x|2|y|2 if |x| ≥ 1 and |y| ≥ 1.

Our Theorem 2.4(a) is applicable where a = b = A = B = 1/2. Because
limn→∞ φ

(
x, xn

)
= 0 for all x ̸= 0; and limn→∞ φ

(
x
n ,

y
n

)
= 0 for each x, y ̸= 0 ̸=

1
2x+ 1

2y; and

1

2
sup

{
lim supn→∞ φ

((
1
2 + 1

2n

)
x,

(
1
2 + 1

2n

)
y
)

φ(x, y)
: x, y ̸= 0 ̸= 1

2
x+

1

2
y

}
≤ 1

8
< 1.

Note that φ is not smooth at (1, 1) and hence φ(x, y) is not of the form |x|p|y|q
where p, q ∈ R.
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