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VARIATIONS OF ORDERED FIXED POINT THEOREMS

SEHIE PARK

In memory of Art Kirk and Kaz Goebel

ABSTRACT. There are many fixed point theorems on ordered spaces. For a long
period, we noticed that certain maximal element theorems can be converted
equivalently to certain types of fixed point theorems, and conversely. This can
be applied to theorems due to Knaster-Tarski, Nadler, Zermelo, Zorn, Tarski-
Kantorovitch, and Edelstein. Consequently, several existence theorems on maxi-
mal elements, fixed points, stationary points, common fixed points, and common
stationary points are obtained for various ordered spaces.

1. INTRODUCTION

In 1982-2000, we had published several articles mainly related to the Caristi
fixed point theorem, the Ekeland variational principle for approximate solutions
of minimization problems, and their equivalent formulations with some applica-
tions; for example, see [21]-[27]. From the beginning of such study, we obtained a
Metatheorem for some equivalent statements on maximality, fixed points, stationary
points, common fixed points, common stationary points, and others. We applied
the Metatheorem for various occasions.

Recently, we add up some statements to the previous versions of the Metatheo-
rem and, by applying new Metatheorem, we obtain logically equivalent formulations
of existence of maximal elements of preordered set, Zorn’s lemma, Banach contrac-
tion principle, Nadler’s fixed point theorem, Brézis-Browder principle, Caristi’s fixed
point theorem, Ekeland’s variational principle, Takahashi’s nonconvex minimization
theorem, and other various results; see [28]. Consequently, several existence theo-
rems on maximal elements, fixed points, stationary points, common fixed points,
common stationary points are obtained for several ordered sets.

In 2001, Jachymski [16] showed that one of fundamental ordering principles — the
Knaster-Tarski Theorem, Zermelo’s Theorem or the Tarski-Kantorovitch Theorem
— can be applied to deduce the existence of a fixed point. He emphasized that all
the above principles are independent of the Axiom of Choice so the above approach
to metric fixed point theory is wholly constructive. He listed previous works on such
studies and noted that, on the other hand, authors have also studied a reciprocal
of the above problem: Given a partially ordered set and a mapping on it, define a
metric depending on this order so that some theorems of metric fixed point theory
could be applied. He studied consequences of the Knaster-Tarski theorem and the
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famous theorem of Zermelo such as theorems due to Banach, Nadler, Caristi, and
others.

In the present article, by applying our Metatheorem, we show that various order
theoretic principles can be reformulated various types of fixed point theorems.

In Section 2, we introduce our Metatheorem with its proof for completeness.
Section 3 is to introduce a particular form of Metatheorem for preordered sets and
the useful Brgndsted Principle recently due to ourselves. In Sections 4-8, according
to our Metatheorem, we introduce equivalent formulations of the Knaster-Tarski
theorem, the new Nadler fixed point theorem, the Zermelo fixed point theorem,
Zorn’s Lemma, and the Tarski-Kantorovitch theorem, respectively. Finally, Section
9 devotes various formulations and applications of Edelstein’s fixed point theorem.

2. A METATHEOREM RELATED TO THE EKELAND PRINCIPLE

The well-known central result of I. Ekeland [8, 9] on the variational principle for
approximate solutions of minimization problems runs as follows:

Theorem E (Ekeland). Let V be a complete metric space, and F : V — RU{+o0}
al.s.c. function, Z +00, bounded from below. Let e > 0 be given, and a point u € V
such that F(u) < infy F +e. Then for every A > 0, there exists a point v € B(u, \)
such that F(v) £ F(u) and F(w) > F(v) —eA~td(v,w) for any w € V, w # v.

When A = 1, this is called the e-variational principle. In order to obtain some
equivalents of this principle, we obtained a Metatheorem in [21]-][27]. Later we found
more additional conditions and, consequently, we obtain a new extended version of
Metatheorem [28, 29]. Now we add its simplified proof for the completeness.

Metatheorem. Let X be a set, A its nonempty subset, and G(x,y) a sentence
formula for x,y € X. Then the following eight statements are equivalent:

(i) There exists an element v € A such that G(v,w) for any w € X\{v}.

(i) If T : A — X is a multimap such that for any x € A\T'(z) there exists a
y € X\{z} satisfying ~G(x,y), then T" has a fized element v € A, that is, v € T'(v).

(iii) If f: A — X is a map such that for any x € A with x # f(x), there exists a
y € X\{z} satisfying ~G(z,y), then f has a fixed element v € A, that is, v = f(v).

(iv) If f:A— X is a map such that =G (x, f(x)) for each x € A, then f has a
fized element v € A, that is, v = f(v).

(v) If T : A — X is a multimap such that ~G(z,y) holds for any x € A and any
y € T(x)\{z}, then T has a stationary element v € A, that is, {v} = T(v).

(vi) If § is a family of maps f : A — X satisfying —-G(zx, f(z)) for all x € A
with © # f(x), then § has a common fized element v € A, that is, v = f(v) for all
fEes.
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(vil) If § is a family of multimaps T : A — X satisfying -G (x,y) for any x € A
and any y € T(z)\{z}, then § has a common stationary element v € A, that is,
{v}=T(v) for ol T € F.

(viii) If Y is a subset of X such that for each x € A\Y there ezists a z € X\{z}
satisfying ~G(x, z), then there exists a v € ANY.

(ix) Let § be a family of multimaps T : A — X such that, for oll z € A with
T(x) # 0, there exists y € X with y # x and —G(x,y) holds. Then there erists
v € A such that F(v) =0 for all T € §.

Here, = denotes the negation. This version will be called the 2022 Metatheorem
later.

Proof. (i) = (ii): Suppose v ¢ T'(v) in (ii). Then there exists a y € X\{v}
satisfying =G (v, y). This contradicts (i).

(ii) = (iii): Clear.

(ili) = (iv): Clear.

(iv) = (v): Suppose T has no stationary element, that is, T'(z)\{z} # 0 for any
x € A. Choose a choice function f on {T(x)\{z} : x € A}. Then f has no fixed

element by its definition. However, for any = € A, we have ~G(z, f(x)). Therefore,
by (iv), f has a fixed element, a contradiction.

(v) = (vi): Define a multimap 7' : A — X by T'(x) := {f(x) : f € F} # 0 for all
x € A. Since -G(z, f(x)) for any v € A and any f € §, by (iv), T has a stationary
element v € A, which is a common fixed element of §.

(vi) = (i): Suppose that for any = € A, there exists a y € X\{z} satisfying
—G(x,y). Choose f(x) to be one of such y. Then f: A — X has no fixed element
by its definition. However, =G(z, f(z)) for all x € A. Let § = {f}. By (v), f has
a fixed element, a contradiction.

(i)+(vi) = (vii): By (i), there exists a v € A such that G(v,w) for all w €
X\{v}. For each i € I, by (vi), we have a v; € A such that {v;} = T;(v;). Suppose
v # v;. Then G(v,v1) holds by (i) and =G(v, v1) holds by assumption on (vii). This
is a contradiction. Therefore v = v; for all 7 € 1.

(vii) = (vi): Clear.

(i) = (viii): By (i), there exists a v € A such that G(v,w) for all w # v. Then
by the hypothesis, we have v € Y. Therefore, v € ANY.

(viiil) = (i): For all = € A, let

Alx)={ye X2 #y, ~G(z,y)}.

Choose Y = {z € X : A(z) = 0}. If x ¢ Y, then there exists a z € A(z). Hence
the hypothesis of (viii) is satisfied. Therefore, by (viii), there exists a v € ANY.
Hence A(v) = 0; that is, G(v,w) for all w # v. Hence (i) holds.
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(i) = (ix): By (i) there exists v € A such that G(v,z) holds for all x € X\{v}.
Suppose to the contrary, there exists T' € § such that T'(v) # (). By hypothesis, there

exists w € X with w # v and =G (v, w) holds. Therefore it leads a contradiction
and T'(v) =0 for all T € §.

(ix) = (i): Suppose that, for each x € A, there exists y € X\{z} such that
—G(z,y) holds. For each z € A, define a multimap 7 : A — X \{z} by

T(z)={y e X:-G(z,y)} #0 for all x € A.

Then, by (ix), there exists v € A such that T'(v) = (. This is a contradiction.
This completes our proof. Il

Note that (iv) = (v) adopted the Axiom of Choice, and that the element v is
the same throughout (i)—(ix).

3. PREORDERED SETS

Let (X, =) be a preordered set; that is, X is a nonempty set, < is reflexive and
transitive. For each z € X, we denote S(z) = {y € X : x < y} and G(z,y) means
T =y.

Now we apply Metatheorem to preordered sets:

Theorem 3.1. Let (X, <) be a preordered set, xo € X, and A = S(xo). Then the
following eight statements are equivalent:

(i) There exists a mazimal element v € A, that is, v £ w for any w € X\{v}.

(i) If T : A — X is a multimap such that, for any x € A\T(x), there exists a
y € X\{z} satisfying x <y, then T has a fixed element v € A, that is, v € T(v).

(iii) If f: A — X is a map such that, for any x € A with x # f(x), there exists
ay € X\{z} satisfying x <y, then f has a fized element v € A, that is, v = f(v).

(iv) If f:A— X is a map such that x = f(x) for any x € A, then f has a fized
element v € A, that is, v = f(v).

(v) If T: A — X is a multimap such that x <y holds for any x € A and any
y € T(z)\{z}, then T has a stationary element v € A, that is, {v} = T(v).

(vi) If § is a family of maps f: A — X satisfying x < f(z) for all x € A with
x # f(x), then § has a common fized element v € A, that is, v = f(v) for all f € §.

(vii) If § is a family of multimaps T : A — X such that x <y holds for any
x € A and any y € T(z)\{x}, then § has a common stationary element v € A, that
is, {v} =T (v) for all T € §.

(viil) If Y is a subset of X such that, for each x € A\Y, there exists a z € X \{z}
satsfying x = z, then there exists an element v € ANY.
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(ix) Let § be a family of multimaps T : A — X such that, for all x € A with
T(x) # 0, there exists y € X\{x} satisfying x < y. Then there exists v € A such
that T(v) =0 for all T € §.

Proof. In Metatheorem, put A = S(z¢) and let G(v, w) be the statement v £ w.
Then each of (i)—(ix) follows from the corresponding ones in Metatheorem.
This completes our proof. ]

Remark 3.2. We claim that (i)—(ix) are equivalent in Theorem 3.1 and do not
say that they are true. For a counter-example, the real line R does not have any
maximal element in the natural order.

Now we borrow Jachymski [14, 16] as follows:

A partially ordered set is a pair (P, =), where P is a nonempty set and < is a
relation in P which is reflexive (p = p for all p € P), weakly antisymmetric (for
p,q € P, p X g and ¢ < p imply p = ¢) and transitive (for p,q,r € P, p < q and
g < r imply p < r). A nonempty subset C' of P is called a chain if given p,q € C,
either p < ¢ or ¢ <X p. If every chain in (P, <) has a supremum, then (P, <) is said
to be chain-complete. A map f : P — P is said to be isotone or increasing if it
preserves order, i.e., given p,q € P, p =< ¢ implies that f(p) < f(q).

Motivated by Brensted [4], we established the following in [29]:

Brgnsted Principle. Let (E, <X) be a preordered set and f : E — E be a map such
that © < f(x) for all x € E. Then a maximal element v € E is a fized point of f.

In most applications of this principle for partially ordered sets (posets), the ex-
istence of a maximal element is achieved by the upper bound of a chain in F.

From now on, by applying this principle, we are going to give examples of Theo-
rem 3.1 on order theoretic fixed point theorems. These examples are mainly taken
from Dugundji-Granas [7, 10] and Jachymski [16].

4. KNASTER-TARSKI THEOREM
The following is given as [16, Theorem 2.1]:

Theorem 4.1 (Knaster-Tarski). Let (P, =) be a partially ordered set in which
every chain has a supremum. Assume that f : P — P is isotone and there is an
element py € P such that po = f(po). Then f has a fized point.

According to Jachymski [16]: This theorem was proved in 1927 by Knaster [18J
for increasing — under set-inclusion — mappings, on and to the family of all subsets
of a set. In 1939 Tarski extended Knaster’s result to increasing maps on a complete
lattice and he gave its applications in set theory and topology, but his result was
unpublished until 1955 (cf. Tarski [33, footnote no.2]). The version of the Knaster-
Tarski theorem presented here is due to Abian and Brown [2] and, independently,
Pelczar [30], and was established in 1961.

Theorem 4.1 can be extended as follows:
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Theorem 4.2. Let (X, =X) be a partially ordered set in which every chain has a
supremum. Assume that f : X — X is isotone and there is an element xg € X
such that xo = f(zg) with A = {f"(z¢) : n € N} U {its supremum}.

Then Theorem 3.1(i)—(ixz) hold including the following:

(i) There exists a mazimal element v € A, that is, v A w for any w € X\{v}.

(i) If T : A — X is a multimap such that, for any x € A\T(x), there exists a
y € X\{z} satisfying x <y, then T has a fized element v € A, that is, v € T'(v).

(iii) If g: A — X is a map such that, for any x € A with x # g(x), there exists
ay € X\{z} satisfying x <y, then g has a fized element v € A, that is, v = g(v).

(iv) If g: A— X is a map such that x < g(z) for any x € A, then g has a fized
element v € A, that is, v = g(v).

Proof. Note that A is a chain with a supremum v € A. Since f is isotone, f|4
is progressive and has a fixed point v = f(v) € A by Theorem 4.1. Then by the
Brgndsted Principle, v € A satisfies (i) in Theorem 3.1. This completes the proof
as in Theorem 3.1. g

Note that (iii) and (iv) of Theorem 4.2 seem to be better than the Knaster-Tarski
theorem and that all of (ii)—(vii) are its generalizations.

5. NADLER FIXED POINT THEOREM

Following Jachymski [16], we shall give a new proof of Nadler’s theorem [20]
using partial ordering techniques. Let (X, d) be a metric space and Cl(X) denote
the family of all nonempty closed subsets of X (not necessarily bounded). For
A, B € CI(X), set

H(A, B) = max{sup{d(a, B) : a € A}, sup{d(b,A) : b € B}},
where d(a, B) = inf{d(a,b) : b € B}. Then H is called a generalized Hausdorff

metric since it may have infinite values.

Jachymski recalled a more general form of Nadler’s theorem established by Covitz
and Nadler [6] as follows:

Theorem 5.1 (Nadler). Let (X,d) be a complete metric space andT : X — CI(X).
Assume there is an h € [0,1) such that

H(T(x),T(y)) < hd(x,y) for all z,y € X.

Then T has a fixed point.

Motivated by Theorem 5.1 and Metatheorem, we have the following extended
form of [28, Theorem 3.2]:

Theorem 5.2. Let X be a complete metric space, T : X — ClI(X) be a multimap,
and 0 < h < 1. Then the following equivalent statements hold:
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(i) There exists an element v € X such that H(T (v), T(w)) > hd(v,w) for any
w € X\{v}.

(ii) If T : X —o X is a multimap such that, for any x € X\T(x), there exists a
y € X\{x} satisfying H(T(z),T(y)) < hd(x,y), then T has a fized element v € X,
that is, v € T'(v).

(iii) If f:X — X is a map such that, for any x € X with x # f(x), there exists
ay € X\{z} satisfying d(f(x), f(y)) < hd(x,y), then f has a fized element v € X,
that is, v = f(v).

(iv) If f: X — X is a map such that d(f(z), f*(z)) < hd(x, f(z)) for any
x € X, then f has a fized element v € X, that is, v = f(v).
T(y

(V) If T: X — X is a multimap such that H(T(x),T(y)) < hd(z,y) holds for
any z € X and any y € T(x)\{x}, then T has a stationary element v € X, that is,

{v} =T(v).
(vi) If § is a family of maps f : X — X satisfying d(f(x), f(y)) < hd(z,y)
for all x € X with x # f(x), then § has a common fized element v € A, that is,
= f(v) for all f € F.

(vii) If § is a family of multimaps T : X — X satisfying H(T(x),T(y)) <
hd(xz,y) for all x € X and any y € T(x)\{x}, then § has a common stationary
element v € X, that is, {v} =T (v) for all T € §.

(viii) If Y is a subset of X such that for each x € X\Y there exists a z € X\{z}
satisfying H(T(z),T(z)) < hd(z,z) for a T : X — X, then there exists a v €
Xny=Y.

(ix) Let § be a family of multimaps T : X — X such that, for all x € A with
T(x) # 0, there exists y € X\{z} such that H(T(x),T(y)) < hd(z,y) holds. Then
there exists v € A such that T(v) =0 for all T € §.

Proof. Note that, in Metatheorem, put A = X and let G(v,w) be the statement
H(T(v),T(w)) > hd(v,w). Then each of (i)—(ix) follows from the corresponding
ones in Metatheorem. Note that, when the family consists of a single map f in (vi)
holds, we have a maximal element in (i) by our Brgndsted principle. This completes
our proof. O

Note that (ii) or (iv) extend Nadler’s theorem and (iii) implies the Banach con-
traction principle. Therefore, in some sense, these two theorems are equivalent in
view of Theorem 5.2 .

6. ZERMELO FIXED POINT THEOREM

The following is known; see [16]:
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Theorem 6.1 (Zermelo). Let (P, =) be a partially ordered set in which every chain
has a supremum. Assume that f: P — P is such that

p = f(p) for all pe P.

Then f has a fized point.

The Zermelo fixed point theorem is also known as the Bourbaki fixed point theo-
rem or the Bourbaki-Kneser fixed point theorem. It implies the Caristi fixed point
theorem, the Bernstein-Cantor-Schroder theorem, the Ekeland variational principle,
the Takahashi minimization theorem, and others. Moreover, under the Axiom of
Choice, it implies Zorn’s Lemma.

According to Jachymski [16]: “A map f satisfying p < f(p) is said to be pro-
gressive. The above theorem is attributed to Zermelo, although it does not appear
explicitly in any of his papers. However, a proof of it can be derived from Zermelo’s
proofs of the well-ordering principle. This observation is due to Bourbaki [3], who
was the first to formulate the theorem in the above form.”

“Under the Axiom of Choice, the assumption of Theorem 6.1 can be weakened
to ‘each nonempty well-ordered subset has an upper bound.” This is Kneser’s fixed
point theorem [19], which turns out to be equivalent to the Axiom of Choice as
shown by Abian [1].”

Theorem 6.2. Let (X, =) be a partially ordered set in which either
(a) every chain has a supremum; or
(b) each nonempty well-ordered subset has an upper bound.
Then the following equivalent statements hold:
(i) There exists a mazimal element v € X such that v £ w for any w € X\{v}.

(i) If T : X — X is a multimap such that for any x € X\T(x) there exists a
y € X\{z} satisfying x <y, then T has a fixed element v € X, that is, v € T'(v).

(iii) If f: X — X is a map such that for any x € X with x # f(x), there exists
ay € X\{z} satisfying x <y, then f has a fized element v € X, that is, v = f(v).

(iv) If f:X — X is a map such that x < f(x) for any x € X, then f has a
fized element v € X, that is, v = f(v).

(v) If T: X — X is a multimap such that x <y holds for any x € X and any
y € T(x)\{z}, then T has a stationary element v € X, that is, {v} = T (v).

(vi) If § is a family of maps f: X — X satisfying x =X f(z) for all z € X with
x # f(x), then § has a common fized element v € A, that is, v = f(v) for all f € §.
(vii) If § is a family of multimaps T : X — X satisfying x <y for any z € X

and any y € T(z)\{x}, then § has a common stationary element v € X, that is,
{v}=TW) forall T € 5.
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(viii) If Y is a subset of X such that for each x € X\Y there exists a z € X\{z}
such that x < z, then there exists an elementv € X NY =Y.

(ix) Let § be a family of multimaps T : X — X such that, for all z € X with
T(x) # 0, there exists y € X\{x} such that x <y holds. Then there exists v € X
such that T(v) =0 for all T € §.

Proof. Note that (vi) for a single map f reduces to Theorem 6.1, which implies (i)
the existence of a maximal elements v € X by our Brgndsted Principle [29], Now
the conclusion follows from Theorem 3.1 or Metatheorem. g

Jachymski [16] showed without the Axiom of Choice that the Zermelo theorem
implies directly a restriction of the Caristi fixed point theorem to continuous func-
tions. In particular, Zermelo’s theorem yields the Banach contraction principle.
Under the Axiom of Choice, this restriction is proved to be equivalent to Caristi’s
theorem.

He also showed that Zermelo’s theorem yields Nadler’s theorem for closed-valued
contraction [6]. He added more applications of Zermelo’s theorem.

7. ZORN’S LEMMA
Motivated by Zorn’s Lemma and Theorem 3.1, we have the following:

Theorem 7.1. Let (X, <) be a preordered set in which each nonempty well-ordered
subset has an upper bound. Let zo € X and A= S(xog) ={y € X : xz0 X y}.
Then the following nine statements are equivalent:

(i) There exists a mazimal element v € A, that is, v A w for any w € X\{v}.

(ii) If T : A — X is a multimap such that for any x € A\T(z) there exists a
y € X\{z} satisfying x <y, then T has a fixed element v € A, that is, v € T(v).

(iii) If f: A — X is a map such that for any x € A with x # f(x), there exists
ay € X\{z} satisfying x <y, then f has a fized element v € A, that is, v = f(v).

(iv) If f:A— X is a map such that x = f(x) for any x € A, then f has a fived
element v € A, that is, v = f(v).

(v) If T: A — X is a multimap such that x <y holds for any x € A and any
y € T'(z)\{z}, then T has a stationary element v € A, that is, {v} = T(v).

(vi) If § is a family of maps f: A — X satisfying x < f(z) for all x € A with
x # f(x), then § has a common fized element v € A, that is, v = f(v) for all f € §.

(vii) If § is a family of multimaps T : A — X satisfying x <y for any x € A
and any y € T(x)\{z}, then § has a common stationary element v € A, that is,
{v}=T(v) for allT € F.

(viii) If Y is a subset of X such that for each x € A\Y there exists a z € X \{z}
such that x =< z, then there exists an element v € ANY.



234 SEHIE PARK

(ix) Let § be a family of multimaps T : A — X such that, for all x € A with
T(x) # 0, there exists y € X\{x} such that x <y holds. Then there exists v € A
such that T(v) =0 for all T € F.

Proof. In Metatheorem, put A := S(x¢) and let G(v, w) be the statement v £ w.
Then each of (i)—(ix) follows from the corresponding ones in Theorem 3.1. This
completes our proof. O

Note that if (X, <) is partially ordered set, then (i) is Zorn’s Lemma and (iii)
extends Zermelo’s Theorem 6.1. Moreover, in Theorem 7.1, it is enough to assume
S(zp) has an upper bound.

There are several forms of Zorn’s Lemma equivalent to the Axiom of Choice; see
Suppes [31]. For the consequences of the Axiom of Choice, see Howard-Rubin [11].

8. TARSKI-KANTOROVITCH THEOREM
Jachymski [16] introduced the following after enough preparation:

Theorem 8.1 (Tarski-Kantorovitch). Let (P, <) be a <-complete partially ordered
set and a mapping f 1 P — P be <-continuous. If there exists po € P such that
po =< f(po), then f has a fized point; moreover, p, = sup{f™(po) : n € N} is fized
under f.

This also can have equivalent formulations by applying our Metatheorem.

In 1998, Jachymski [13] showed that the Tarski-Kantorovitch Principle for contin-
uous maps on a partially ordered set yields some fixed point theorems for contractive
maps on a uniform space. His proofs do not depend on the Axiom of Choice.

In 2000, Jachymski et al. [15] applied a slightly different version of the Tarski-
Kantorovitch principle to derive some results of the theory of iterated function
system. See also [33].

9. EDELSTEIN FIXED POINT THEOREM
In this section, we apply Metatheorem to a particular situation:

Theorem 9.1. Let X be a compact metric space, f: X — X be a continuous map

and G(z,y) be d(z, f(z)) < d(y, f(y)) for z,y € X.
Then the following eight equivalent statements hold:

(i) There exists a point v € X such that d(v, f(v)) < d(w, f(w)) for any w €
X\{v}.
(i) If T:X — X is a multimap such that for any x € X\T(x) there exists a

y € X\{z} satisfying d(z, f(x)) > d(y, f(y)), then T has a fized point v € X, that
is, v € T'(v).

(iii) If ¢g: X — X is a map such that for any x € X with x # g(x), there exists
ay € X\{z} satisfying d(z, f(x)) > d(y, f(y)), then g has a fized point v € X, that
is, v = g(v).
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(iv) If g: X — X is a map such thatd(z, f(x)) > d(g(z), f(g(z))) for anyx € X,
then g has a fized point v € X, that is, v = g(v).

(v) If T : A — X is a multimap such that d(z, f(z)) > d(y, f(y)) holds for
any x € X and any y € T(z)\{z}, then T has a stationary point v € X, that is,

{v} =T(v).

(vi) If T is a family of maps g : X — X satisfying d(z, f(z)) > d(f(z), f?(x))
for all x € X with x # g(x), then § has a common fized point v € X, that is,
v=g(v) forall g € F.

(vil) If § is a family of multimaps T : X — X such that d(x, f(x)) > d(y, f(y))

holds for any x € X and any y € T(x)\{z}, then § has a common stationary point
v e X, that is, {v} =T(v) for all T € §.

(viii) If Y is a subset of X such that for each x € X\Y there exists a z € X\{z}
satisfying d(z, f(z)) > d(z, f(2)), then there exists ave X NY =Y.

(ix) Let § be a family of multimaps T : X — X such that, for all z € X with
T(x) # 0, there exists y € X\{z} such that d(z, f(x)) > d(y, f(y)) holds. Then
there exists v € X such that T(v) =0 for all T € §.

Proof. Let a map ¢ : X — R by putting

o(x) = d(z, {(z)), z€X.
Then ¢ is continuous and bounded below, so it has a minimum value at a point

v € X. Hence (i) holds.
Moreover, (ii)—(ix) also hold by Metatheorem. O

Theorem 9.1 has many consequences. The first one is the well-known Edelstein
fixed point theorem.

Definition 9.2. A map f : X — X on a metric space (X, d) is said to be contractive
if

d(f(x), f(y)) <d(z,y)
for all z,y € X with z # y.

Theorem 9.3 (Edelstein). Let (X,d) be a compact metric space and f: X — X
be a contractive map. Then [ has a unique fixed point v € X, and moreover, for
each x € X, we have lim,,_,~ f"(z) = v.

Proof. As in Theorem 9.1(i), ¢(x) = d(z, f(xz)) has a minimum at v € X. If
v # f(v), then

p(f(v)) = d(f(v), f*(v)) < d(v, f(v)) = p(v),

and hence v = f(v). For the proof of lim,_,~ f"(x) = v for any = € X, see W. Kirk
[17]. O

From Theorem 9.1, we can deduce several fixed point theorems on a compact
metric space (X, d) as follows:
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(i) If T : X — X is a multimap such that for any x € X\T(x) there exists a
y € X\{z} satisfying d(x, f(x)) > d(y, f(y)) for a continuous selfmap f of X, then
T has a fized point v € X, that is, v € T(v).

(iii) If g : X — X is a continuous map such that for any x € X with x # g(x),
there exists a y € X\{x} satisfying d(z,g(x)) > d(y,g(y)), then g has a fized point
v e X, that is, v = g(v).

(V) If T: A — X is a multimap and f : X — X is a continuous selfmap such
that d(x, f(x)) > d(y, f(y)) holds for any x € X and any y € T'(x)\{x}, then T has
a stationary point v € X, that is, {v} =T (v).

(vi) If § is a family of continuous maps f : X — X satisfying d(z, f(z)) >
d(f(x), f2(x)) for all x € X with x # f(z), then § has a common fized point
v e X, that is, v = f(v) for all f € F.

(vii) If § is a family of multimaps T; : X — X fori € I with an index set I and
a continuous selfmap f : X — X such that d(x, f(x)) > d(y, f(y)) holds for any
x € X and any y € T;(x)\{x}, then § has a common stationary point v € X, that
is, {v} = T;(v) for allie 1.

Very recently, Kirk and Shahzad gave one open question on Edelstein’s fixed
point theorem. In 2018, Suzuki [32] gave a negative answer to this question, and
extended Edelstein’s theorem to semimetric spaces.
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