ON VON NEUMANN-JORDAN CONSTANT OF GENERALIZED BANAŚ-FRA̧CZEK SPACES II

KEN-ICHI MITANI* AND KICHI-SUKE SAITO

Abstract

In this paper, we calculate von Neumann-Jordan constant of gen eralized Banaś-Fraçczek space $\mathbb{R}_{a, b, p}^{2}$ in the case where $1 \leq p<2$ by using the Banach-Mazur distance.

1. Introduction and preliminaries

The notion of the von Neumann-Jordan (NJ-) constant of Banach spaces was introduced by Clarkson in [3] and recently it has been studied by several authors (cf. $[1,4,5,6,7,8,10,11,12,13]$, etc.). The NJ-constant of a Banach space X is defined by

$$
C_{\mathrm{NJ}}(X)=\sup \left\{\frac{\|x+y\|^{2}+\|x-y\|^{2}}{2\left(\|x\|^{2}+\|y\|^{2}\right)}: x, y \in X,(x, y) \neq(0,0)\right\} .
$$

It is known that $1 \leq C_{\mathrm{NJ}}(X) \leq 2$ for any Banach space X, X is a Hilbert space if and only if $C_{\mathrm{NJ}}(X)=1$, and X is uniformly non-square if and only if $C_{\mathrm{NJ}}(X)<2$. For some other results concerning the NJ-constant, we refer the reader to [5]. Recently, C. Yang and X. Yang introduced the Banaś-Frạczek type space $X_{\lambda, p}$ in [11], i.e., \mathbb{R}^{2} with the norm $\|\cdot\|_{\lambda, p}$ defined by

$$
\|(x, y)\|_{\lambda, p}=\max \left\{\lambda|x|,\|(x, y)\|_{p}\right\},
$$

where $\lambda>1, p \geq 1$ and $\|\cdot\|_{p}$ is ℓ_{p}-norm. In the case where $p=2, X_{\lambda, 2}$ is called Banaś-Fraçzek space ([2, 10]). In [11], they showed that if $p \geq 2$ and $\left(\lambda^{p}-1\right)^{p-2}\left(\lambda^{2}-\right.$ $1)^{p} \geq 1$, then

$$
\begin{equation*}
C_{\mathrm{NJ}}\left(X_{\lambda, p}\right)=1+\left(1-\frac{1}{\lambda^{p}}\right)^{2 / p} . \tag{1.1}
\end{equation*}
$$

Also, Mitani, Saito and Takahashi [6] introduced the generalized Banaś-Fraçczek space $\mathbb{R}_{a, b, p}^{2}$, i.e., \mathbb{R}^{2} with the norm

$$
\|(x, y)\|=\max \left\{a|x|, b|y|,\|(x, y)\|_{p}\right\}
$$

where $a \geq b \geq 1$ and $1 \leq p<\infty$. In the case where $a=\lambda$ and $b=1$, we have $\mathbb{R}_{a, b, p}^{2}=X_{\lambda, p}$. If $a=1$, then $\|\cdot\|=\|\cdot\|_{p}$. If $a^{-p}+b^{-p} \leq 1$, then $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=2$.

[^0]Hence we may assume that $a>1$ and $a^{-p}+b^{-p}>1$. The authors showed that if $p \geq 2$ and $b \leq a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{2 / p}
$$

and if $p \geq 2$ and $b>a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=b^{2}\left(1+\left(\frac{a}{b}\right)^{\frac{2 p}{p-2}}\right)^{1-2 / p}
$$

In particular, if $p \geq 2$ and $1 \leq \lambda\left(\lambda^{p}-1\right)^{\frac{p-2}{2 p}}$, then

$$
C_{\mathrm{NJ}}\left(X_{\lambda, p}\right)=1+\left(1-\frac{1}{\lambda^{p}}\right)^{2 / p} .
$$

This is an improvement of (1.1), since the inequality

$$
\lambda\left(\lambda^{p}-1\right)^{\frac{p-2}{2 p}} \geq\left(\lambda^{p}-1\right)^{\frac{p-2}{2 p}}\left(\lambda^{2}-1\right)^{\frac{1}{2}} \geq 1
$$

holds if $\left(\lambda^{p}-1\right)^{p-2}\left(\lambda^{2}-1\right)^{p} \geq 1$.
In this paper, we consider the constant $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)$ in the case where $1 \leq p<2$ and show that if $1 \leq p<2$ with $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}} \leq 1$, then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{2 / p}
$$

by using the Banach-Mazur distance.
We recall some notations and definitions on geometrical properties of Banach spaces. For isomorphic Banach spaces X and Y, the Banach-Mazur distance between X and Y, denoted by $d(X, Y)$, is defined to be the infimum of $\|T\| \cdot\left\|T^{-1}\right\|$ taken over all bicontinuous linear operators T from X onto Y.

Lemma 1.1 ([5]). If X and Y are isomorphic Banach spaces, then

$$
\frac{C_{\mathrm{NJ}}(X)}{d(X, Y)^{2}} \leq C_{N J}(Y) \leq C_{\mathrm{NJ}}(X) d(X, Y)^{2}
$$

In particular, if X and Y are isometric, then $C_{\mathrm{NJ}}(X)=C_{\mathrm{NJ}}(Y)$.
Lemma 1.2 ([5]). Let $X=(X,\|\cdot\|)$ be a non-trivial Banach space and $X_{1}=$ $\left(X,\|\cdot\|_{1}\right)$, where $\|\cdot\|_{1}$ is an equivalent norm on X satisfying, for $\alpha, \beta>0$,

$$
\alpha\|x\| \leq\|x\|_{1} \leq \beta\|x\|, \quad x \in X .
$$

Then

$$
\frac{\alpha^{2}}{\beta^{2}} C_{\mathrm{NJ}}(X) \leq C_{\mathrm{NJ}}\left(X_{1}\right) \leq \frac{\beta^{2}}{\alpha^{2}} C_{\mathrm{NJ}}(X)
$$

Lemma 1.2 follows immediately from Lemma 1.1 and the fact that $d\left(X, X_{1}\right) \leq \beta / \alpha$. In particular, if $C_{\mathrm{NJ}}\left(X_{1}\right)=\left(\beta^{2} / \alpha^{2}\right) C_{\mathrm{NJ}}(X)$, then $d\left(X, X_{1}\right)=\beta / \alpha$.

A norm $\|\cdot\|$ on \mathbb{R}^{2} is said to be absolute if $\|(|x|,|y|)\|=\|(x, y)\|$ for any $x, y \in \mathbb{R}$. By Lemma 1.2, we have the following formula on NJ-constant for absolute norm.

Lemma $1.3([6])$. Let $\|\cdot\|,\|\cdot\|_{H}$ be absolute norms on \mathbb{R}^{2} satisfying the following conditions:
(i) $\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)$ is an inner product space.
(ii) $\|(x, y)\| \leq\|(x, y)\|_{H}$ for any $(x, y) \in \mathbb{R}^{2}$.
(iii) $\|(1,0)\|=\|(1,0)\|_{H}$ and $\|(0,1)\|=\|(0,1)\|_{H}$.

Then

$$
C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|\right)\right)=\beta^{2}, \text { where } \beta=\max \left\{\frac{\|(x, y)\|_{H}}{\|(x, y)\|}:(x, y) \in \mathbb{R}^{2},(x, y) \neq(0,0)\right\}
$$

Moreover, it follows that

$$
d\left(\left(\mathbb{R}^{2},\|\cdot\|\right),\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)\right)=\beta=\sqrt{C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|\right)\right)}
$$

since $C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|\right)\right)=\beta^{2} C_{\mathrm{NJ}}\left(\left(\mathbb{R}^{2},\|\cdot\|_{H}\right)\right)$.

2. Results

Let $1 \leq p<2$. Let us now calculate the constant $C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)$ by using Lemma 1.3. To do this we will need the following.

Lemma 2.1. Let $a>1, a \geq b \geq 1$ and $1 \leq p<2$ with $a^{-p}+b^{-p}>1$. We define

$$
f(t)=\frac{\left(a^{2} t^{2}+b^{2}\right)^{1 / 2}}{\left(t^{p}+1\right)^{1 / p}} \quad(t \geq 0)
$$

Put $t_{1}=\left(a^{p}-1\right)^{-\frac{1}{p}}, t_{2}=\left(\frac{b}{a}\right)^{\frac{2}{2-p}}, t_{3}=\left(b^{p}-1\right)^{\frac{1}{p}}$ and $\beta_{i}=f\left(t_{i}\right)$ for each i. Then (i) f is non-increasing on $\left(0, t_{2}\right)$ and is non-decreasing on $\left(t_{2}, \infty\right)$. Hence f has the minimum at $t=t_{2}$.
(ii) $\beta_{1} \geq \beta_{3}$ holds.
(iii) If $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}} \leq 1$, then $f(t) \geq 1$ for all $t \geq 0$.

Proof. (i) Since the derivative of f is

$$
f^{\prime}(t)=\left(a^{2} t^{2}+b^{2}\right)^{-1 / 2}\left(t^{p}+1\right)^{-1 / p-1} t\left(a^{2}-b^{2} t^{p-2}\right)
$$

we have (i).
(ii) It is easy to see that

$$
\begin{aligned}
\beta_{1} & =f\left(t_{1}\right)=\frac{\left(a^{2}\left(a^{p}-1\right)^{-\frac{2}{p}}+b^{2}\right)^{\frac{1}{2}}}{\left(\left(a^{p}-1\right)^{-1}+1\right)^{\frac{1}{p}}}=\frac{\left(a^{2}+b^{2}\left(a^{p}-1\right)^{\frac{2}{p}}\right)^{\frac{1}{2}}}{\left(1+\left(a^{p}-1\right)^{\frac{1}{p}}\right.} \\
& =\left(1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}}\right)^{\frac{1}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{3} & =f\left(t_{3}\right)=\frac{\left(a^{2}\left(b^{p}-1\right)^{\frac{2}{p}}+b^{2}\right)^{1 / 2}}{\left(\left(b^{p}-1\right)+1\right)^{1 / p}} \\
& =\left(1+a^{2}\left(1-\frac{1}{b^{p}}\right)^{\frac{2}{p}}\right)^{\frac{1}{2}}
\end{aligned}
$$

As in the proof of Lemma 2.4 in [6] we have the inequality

$$
b\left(1-\frac{1}{a^{p}}\right)^{1 / p} \geq a\left(1-\frac{1}{b^{p}}\right)^{1 / p}
$$

because of the identity

$$
b^{p}\left(1-\frac{1}{a^{p}}\right)-a^{p}\left(1-\frac{1}{b^{p}}\right)=\left(a^{p}-b^{p}\right)\left(\frac{1}{a^{p}}+\frac{1}{b^{p}}-1\right) .
$$

Thus $\beta_{1} \geq \beta_{3}$.
(iii) Let $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}} \leq 1$. By $p<2$,

$$
\begin{aligned}
\beta_{2} & =f\left(t_{2}\right)=\frac{\left(a^{2}\left(\frac{b}{a}\right)^{\frac{4}{2-p}}+b^{2}\right)^{\frac{1}{2}}}{\left(\left(\frac{b}{a}\right)^{\frac{2 p}{2-p}}+1\right)^{\frac{1}{p}}}=\frac{b\left(\left(\frac{b}{a}\right)^{\frac{2 p}{2-p}}+1\right)^{\frac{1}{2}}}{\left(\left(\frac{b}{a}\right)^{\frac{2 p}{2-p}}+1\right)^{\frac{1}{p}}} \\
& =b\left(\left(\frac{b}{a}\right)^{\frac{2 p}{2-p}}+1\right)^{\frac{p-2}{2 p}}=\left(a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}}\right)^{\frac{p-2}{2 p}} \geq 1 .
\end{aligned}
$$

Thus it follows from (i) that $f(t) \geq f\left(t_{2}\right) \geq 1$ for all $t \geq 0$.

Let $a>1, a \geq b \geq 1$ and $1 \leq p<2$ with $a^{-p}+b^{-p}>1$. We define the norms $\|\cdot\|$ and $\|\cdot\|_{H}$ on \mathbb{R}^{2} by

$$
\begin{equation*}
\|(x, y)\|=\max \left\{a|x|, b|y|,\|(x, y)\|_{p}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|(x, y)\|_{H}=\|(a x, b y)\|_{2} . \tag{2.2}
\end{equation*}
$$

It is clear that $\|\cdot\|$ and $\|\cdot\|_{H}$ are absolute norms and satisfy the conditions (i) and (iii) in Lemma 1.3.

Lemma 2.2. Let $a>1, a \geq b \geq 1$ and $1 \leq p<2$ with $a^{-p}+b^{-p}>1$ and $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}} \leq 1$. Let $\|\cdot\|$ and $\|\cdot\|_{H}$ be the norms defined by (2.1) and (2.2), respectively.
(i) $\|(x, y)\| \leq\|(x, y)\|_{H}$ for any $(x, y) \in \mathbb{R}^{2}$.
(ii) Put

$$
\beta=\max \left\{\frac{\|x\|_{H}}{\|x\|}: x \in \mathbb{R}^{2}, x \neq 0\right\} .
$$

Then

$$
\beta=\left(1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}}\right)^{\frac{1}{2}}
$$

Proof. Let t_{i} and $\beta_{i}(i=1,2,3)$ be elements as in Lemma 2.1. We first show $\|(x, y)\| \leq\|(x, y)\|_{H} \leq \beta_{1}\|(x, y)\|$ for all $(x, y) \in \mathbb{R}^{2}$. In the case where $x=0$ or $y=0$, since $\beta_{1} \geq 1$, this is true. Let $x \neq 0$ and $y \neq 0$. Put $t=|x| /|y|$.

We first consider the case $\|(x, y)\|=a|x|$. It is clear that $\|(x, y)\| \leq\|(x, y)\|_{H}$. Since $a|x| \geq\|(x, y)\|_{p}$, we have $a \geq\|(1,1 / t)\|_{p}$ and so $t \geq\left(a^{p}-1\right)^{-1 / p}=t_{1}$. Hence

$$
\begin{aligned}
\frac{\|(x, y)\|_{H}}{\|(x, y)\|} & =\frac{\|(a x, b y)\|_{2}}{a|x|}=\left\|\left(1, \frac{b}{a t}\right)\right\|_{2} \leq\left\|\left(1, \frac{b}{a t_{1}}\right)\right\|_{2} \\
& =\left(1+\frac{b^{2}}{a^{2}}\left(a^{p}-1\right)^{\frac{2}{p}}\right)^{\frac{1}{2}}=\beta_{1},
\end{aligned}
$$

that is, $\|(x, y)\|_{H} \leq \beta_{1}\|(x, y)\|$.
We next consider the case $\|(x, y)\|=b|y|$. It is clear that $\|(x, y)\| \leq\|(x, y)\|_{H}$. Since $b|y| \geq\|(x, y)\|_{p}$, we have $b \geq\|(t, 1)\|_{p}$ and so $t \leq\left(b^{p}-1\right)^{1 / p}=t_{3}$. Hence

$$
\begin{aligned}
\frac{\|(x, y)\|_{H}}{\|(x, y)\|} & =\frac{\|(a x, b y)\|_{2}}{b|y|}=\left\|\left(\frac{a}{b} t, 1\right)\right\|_{2} \leq\left\|\left(\frac{a}{b} t_{3}, 1\right)\right\|_{2} \\
& =\left(\frac{a^{2}}{b^{2}}\left(b^{p}-1\right)^{\frac{2}{p}}+1\right)^{\frac{1}{2}}=\beta_{3} .
\end{aligned}
$$

Since $\beta_{1} \geq \beta_{3}$ holds by Lemma 2.1 (ii), we obtain $\|(x, y)\|_{H} \leq \beta_{1}\|(x, y)\|$.
Finally we consider the case $\|(x, y)\|=\|(x, y)\|_{p}$. Since $\|(x, y)\|_{p} \geq a|x|$ and $\|(x, y)\|_{p} \geq b|y|$, it follows that $|x| \leq\left(a^{p}-1\right)^{-\frac{1}{p}}|y|$ and $\left(b^{p}-1\right)^{\frac{1}{p}}|y| \leq|x|$. Hence $t_{3} \leq t \leq t_{1}$. Then

$$
\frac{\|(x, y)\|_{H}}{\|(x, y)\|}=\frac{\|(a x, b y)\|_{2}}{\|(x, y)\|_{p}}=\frac{\|(a t, b)\|_{2}}{\|(t, 1)\|_{p}}=\frac{\left(a^{2} t^{2}+b^{2}\right)^{1 / 2}}{\left(t^{p}+1\right)^{1 / p}}=: f(t) .
$$

It follows from Lemma 2.1 that $f(t) \geq 1$ and hence $\|(x, y)\|_{H} \geq\|(x, y)\|$. By Lemma 2.1 (i), (ii) we have

$$
\max \left\{f(t): t_{3} \leq t \leq t_{1}\right\}=f\left(t_{1}\right)=\beta_{1}
$$

and so $\|(x, y)\|_{H} \leq \beta_{1}\|(x, y)\|$.
Moreover, we have equality in above for $(x, y)=\left(t_{1}, 1\right)$. Hence $\beta=\beta_{1}$. Thus we obtain (ii).

By Lemma 1.3 and Lemma 2.2 we obtain the main theorem.
Theorem 2.3. Let $a>1, a \geq b \geq 1$ and $1 \leq p<2$ with $a^{-p}+b^{-p}>1$ and $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}} \leq 1$. Then

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=1+b^{2}\left(1-\frac{1}{a^{p}}\right)^{\frac{2}{p}} .
$$

Moreover,

$$
C_{\mathrm{NJ}}\left(\mathbb{R}_{a, b, p}^{2}\right)=d\left(\mathbb{R}_{a, b, p}^{2}, H\right)^{2},
$$

where H is a two-dimensional inner product space.
Remark 2.4. (i) Let $a>b=1$ and $1 \leq p<2$. Then it is clear that $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}}>1$. Hence, using Theorem 2.3 we can not obtain the value of $C_{\mathrm{NJ}}\left(X_{\lambda, p}\right)$ for this case. (ii) The unit sphere of $\mathbb{R}_{\sqrt{2}, \sqrt{2}, 1}^{2}$ is a regular octagon. From Theorem 2.3, we obtain $C_{\mathrm{NJ}}\left(\mathbb{R}_{\sqrt{2}, \sqrt{2}, 1}^{2}\right)=4-2 \sqrt{2}$ (cf. [9]).
(iii) Takahashi [9] showed that for any Banach space X,

$$
\begin{equation*}
1+\frac{\varepsilon_{0}(X)^{2}}{4} \leq C_{\mathrm{NJ}}(X) \tag{2.3}
\end{equation*}
$$

where $\varepsilon_{0}(X)=\sup \left\{\varepsilon \in[0,2]: \delta_{X}(\varepsilon)=0\right\}$ is the characteristic of convexity of X. We consider the case $X=\mathbb{R}_{a, b, p}^{2}$. Let $a>1, a \geq b \geq 1$ with $a^{-p}+b^{-p}>1$. In [6], it was shown that if $p \geq 2$, then we have equality in (2.3) if and only if $b \leq a\left(a^{p}-1\right)^{\frac{p-2}{2 p}}$ holds. Let $1 \leq p<2$. It is easy to see that

$$
\varepsilon_{0}\left(\mathbb{R}_{a, b, p}^{2}\right) \geq 2 b\left(1-\frac{1}{a^{p}}\right)^{1 / p}
$$

This inequality and Theorem 2.3 give that if $a^{\frac{2 p}{p-2}}+b^{\frac{2 p}{p-2}} \leq 1$, then we have equality in (2.3).

References

[1] J. Alonso and P. Martín, A counterexample to a conjecture of G. Zbăganu about the NeumannJordan constant, Rev. Roum. Math. Pures Appl. 51 (2006), 135-141.
[2] J. Banaś and K. Frączek, Deformation of Banach spaces, Comment. Math. Univ. Carolin. 34 (1993), 47-53.
[3] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. $\mathbf{3 8}$ (1937), 114-115.
[4] A. Jiménez-Melado, E. Llorens-Fuster and S. Saejung, The von Neumann-Jordan constant, weak orthogonality and normal structure in Banach spaces, Proc. Amer. Math. Soc. 134 (2006), 355-364.
[5] M. Kato, L. Maligranda and Y. Takahashi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275-295.
[6] K.-I. Mitani, K.-S. Saito and Y. Takahashi, On the von Neumann-Jordan constant of generalized Banaś-Fraczek spaces, Linear Nonlinear Anal. 2 (2016), 311-316.
[7] K.-I. Mitani, K.-S. Saito, Y. Takahashi, Von Neumann-Jordan constant of generalized BanaśFraczek spaces, in: Proceedings of the 10th International Conference on Nonlinear Analysis and Convex Analysis (Chitose, Japan, 2017), Yokohama Publishers, 2019, pp. 227-232.
[8] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normes on \mathbb{C}^{2}, J. Math. Anal. Appl. 244 (2000), 515-532.
[9] Y. Takahashi, Some geometric constants of Banach spaces-a unified approach, in: Banach and function spaces II, Yokohama Publ., Yokohama, 2008, pp. 191-220.
[10] C. Yang, Jordan-von Neumann constant for Banaś-Fraczek space, Banach J. Math. Anal. 8 (2014), 185-192.
[11] C. Yang and X. Yang, On the James type constant and von Neumann-Jordan constant for a class of Banaś-Fraczieck type spaces, J. Math. Inequal. 10 (2016), 551-558.
[12] C. Yang and F. Wang, On a new geometric constant related to the von Neumann-Jordan constant, J. Math. Anal. Appl. 324 (2006), 555-565.
[13] C. Yang and F. Wang, The von Neumann-Jordan constant for a class of Day-James Spaces, Mediterr. J. Math. 13 (2016), 1127-1133.

Ken-Ichi Mitani

Department of Systems Engineering, Okayama Prefectural University, Soja 719-1197, Japan E-mail address: mitani@cse.oka-pu.ac.jp

Kichi-Suke Saito
Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-2181, Japan E-mail address: saito@math.sc.niigata-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. 46B20.
 Key words and phrases. Banach-Mazur distance, von Neumann-Jordan constant
 *Corresponding author. The first author was supported in part by Grants-in-Aid for Scientific Research (No. 21K03275), Japan Society for the Promotion of Science.

