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Hence we may assume that a > 1 and a−p + b−p > 1. The authors showed that if

p ≥ 2 and b ≤ a(ap − 1)
p−2
2p , then

CNJ(R2
a,b,p) = 1 + b2

(
1− 1

ap

)2/p
,

and if p ≥ 2 and b > a(ap − 1)
p−2
2p , then

CNJ(R2
a,b,p) = b2

(
1 +

(a
b

) 2p
p−2
)1−2/p

.

In particular, if p ≥ 2 and 1 ≤ λ(λp − 1)
p−2
2p , then

CNJ(Xλ,p) = 1 +
(
1− 1

λp

)2/p
.

This is an improvement of (1.1), since the inequality

λ(λp − 1)
p−2
2p ≥ (λp − 1)

p−2
2p (λ2 − 1)

1
2 ≥ 1

holds if (λp − 1)p−2(λ2 − 1)p ≥ 1.
In this paper, we consider the constant CNJ(R2

a,b,p) in the case where 1 ≤ p < 2

and show that if 1 ≤ p < 2 with a
2p
p−2 + b

2p
p−2 ≤ 1, then

CNJ(R2
a,b,p) = 1 + b2

(
1− 1

ap

)2/p
,

by using the Banach-Mazur distance.
We recall some notations and definitions on geometrical properties of Banach

spaces. For isomorphic Banach spaces X and Y , the Banach-Mazur distance be-
tween X and Y , denoted by d(X,Y ), is defined to be the infimum of ∥T∥ · ∥T−1∥
taken over all bicontinuous linear operators T from X onto Y .

Lemma 1.1 ([5]). If X and Y are isomorphic Banach spaces, then

CNJ(X)

d(X,Y )2
≤ CNJ(Y ) ≤ CNJ(X)d(X,Y )2.

In particular, if X and Y are isometric, then CNJ(X) = CNJ(Y ).

Lemma 1.2 ([5]). Let X = (X, ∥ · ∥) be a non-trivial Banach space and X1 =
(X, ∥ · ∥1), where ∥ · ∥1 is an equivalent norm on X satisfying, for α, β > 0,

α∥x∥ ≤ ∥x∥1 ≤ β∥x∥, x ∈ X.

Then
α2

β2
CNJ(X) ≤ CNJ(X1) ≤

β2

α2
CNJ(X).

Lemma 1.2 follows immediately from Lemma 1.1 and the fact that d(X,X1) ≤ β/α.
In particular, if CNJ(X1) = (β2/α2)CNJ(X), then d(X,X1) = β/α.

A norm ∥ · ∥ on R2 is said to be absolute if ∥(|x|, |y|)∥ = ∥(x, y)∥ for any x, y ∈ R.
By Lemma 1.2, we have the following formula on NJ-constant for absolute norm.
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Lemma 1.3 ([6]). Let ∥ · ∥, ∥ · ∥H be absolute norms on R2 satisfying the following
conditions:
(i) (R2, ∥ · ∥H) is an inner product space.
(ii) ∥(x, y)∥ ≤ ∥(x, y)∥H for any (x, y) ∈ R2.
(iii) ∥(1, 0)∥ = ∥(1, 0)∥H and ∥(0, 1)∥ = ∥(0, 1)∥H .
Then

CNJ((R2, ∥ · ∥)) = β2, where β = max
{∥(x, y)∥H

∥(x, y)∥
: (x, y) ∈ R2, (x, y) ̸= (0, 0)

}
.

Moreover, it follows that

d
(
(R2, ∥ · ∥), (R2, ∥ · ∥H)

)
= β =

√
CNJ((R2, ∥ · ∥)),

since CNJ((R2, ∥ · ∥)) = β2CNJ((R2, ∥ · ∥H)).

2. Results

Let 1 ≤ p < 2. Let us now calculate the constant CNJ(R2
a,b,p) by using Lemma

1.3. To do this we will need the following.

Lemma 2.1. Let a > 1, a ≥ b ≥ 1 and 1 ≤ p < 2 with a−p + b−p > 1. We define

f(t) =
(a2t2 + b2)1/2

(tp + 1)1/p
(t ≥ 0).

Put t1 = (ap − 1)
− 1

p , t2 = ( ba)
2

2−p , t3 = (bp − 1)
1
p and βi = f(ti) for each i. Then

(i) f is non-increasing on (0, t2) and is non-decreasing on (t2,∞). Hence f has the
minimum at t = t2.
(ii) β1 ≥ β3 holds.

(iii) If a
2p
p−2 + b

2p
p−2 ≤ 1, then f(t) ≥ 1 for all t ≥ 0.

Proof. (i) Since the derivative of f is

f ′(t) = (a2t2 + b2)−1/2(tp + 1)−1/p−1t(a2 − b2tp−2),

we have (i).
(ii) It is easy to see that

β1 = f(t1) =
(a2(ap − 1)

− 2
p + b2)

1
2

((ap − 1)−1 + 1)
1
p

=
(a2 + b2(ap − 1)

2
p )

1
2

(1 + (ap − 1))
1
p

=
(
1 + b2

(
1− 1

ap

) 2
p
) 1

2

and

β3 = f(t3) =
(a2(bp − 1)

2
p + b2)1/2

((bp − 1) + 1)1/p

=
(
1 + a2

(
1− 1

bp

) 2
p
) 1

2
.
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As in the proof of Lemma 2.4 in [6] we have the inequality

b
(
1− 1

ap

)1/p
≥ a

(
1− 1

bp

)1/p
,

because of the identity

bp
(
1− 1

ap

)
− ap

(
1− 1

bp

)
= (ap − bp)

( 1

ap
+

1

bp
− 1
)
.

Thus β1 ≥ β3.

(iii) Let a
2p
p−2 + b

2p
p−2 ≤ 1. By p < 2,

β2 = f(t2) =

(
a2
(
b
a

) 4
2−p + b2

) 1
2

((
b
a

) 2p
2−p + 1

) 1
p

=

b

((
b
a

) 2p
2−p + 1

) 1
2

((
b
a

) 2p
2−p + 1

) 1
p

= b

((
b

a

) 2p
2−p

+ 1

) p−2
2p

=
(
a

2p
p−2 + b

2p
p−2

) p−2
2p ≥ 1.

Thus it follows from (i) that f(t) ≥ f(t2) ≥ 1 for all t ≥ 0.
□

Let a > 1, a ≥ b ≥ 1 and 1 ≤ p < 2 with a−p + b−p > 1. We define the norms
∥ · ∥ and ∥ · ∥H on R2 by

∥(x, y)∥ = max{a|x|, b|y|, ∥(x, y)∥p}(2.1)

and

∥(x, y)∥H = ∥(ax, by)∥2.(2.2)

It is clear that ∥ · ∥ and ∥ · ∥H are absolute norms and satisfy the conditions (i) and
(iii) in Lemma 1.3.

Lemma 2.2. Let a > 1, a ≥ b ≥ 1 and 1 ≤ p < 2 with a−p + b−p > 1 and

a
2p
p−2 + b

2p
p−2 ≤ 1. Let ∥ · ∥ and ∥ · ∥H be the norms defined by (2.1) and (2.2),

respectively.
(i) ∥(x, y)∥ ≤ ∥(x, y)∥H for any (x, y) ∈ R2.
(ii) Put

β = max
{∥x∥H

∥x∥
: x ∈ R2, x ̸= 0

}
.

Then

β =
(
1 + b2

(
1− 1

ap

) 2
p
) 1

2
.

Proof. Let ti and βi (i = 1, 2, 3) be elements as in Lemma 2.1. We first show
∥(x, y)∥ ≤ ∥(x, y)∥H ≤ β1∥(x, y)∥ for all (x, y) ∈ R2. In the case where x = 0 or
y = 0, since β1 ≥ 1, this is true. Let x ̸= 0 and y ̸= 0. Put t = |x|/|y|.
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We first consider the case ∥(x, y)∥ = a|x|. It is clear that ∥(x, y)∥ ≤ ∥(x, y)∥H .

Since a|x| ≥ ∥(x, y)∥p, we have a ≥ ∥(1, 1/t)∥p and so t ≥ (ap − 1)−1/p = t1. Hence

∥(x, y)∥H
∥(x, y)∥

=
∥(ax, by)∥2

a|x|
=

∥∥∥∥(1, b

at

)∥∥∥∥
2

≤
∥∥∥∥(1, b

at1

)∥∥∥∥
2

=
(
1 +

b2

a2
(ap − 1)

2
p

) 1
2
= β1,

that is, ∥(x, y)∥H ≤ β1∥(x, y)∥.
We next consider the case ∥(x, y)∥ = b|y|. It is clear that ∥(x, y)∥ ≤ ∥(x, y)∥H .

Since b|y| ≥ ∥(x, y)∥p, we have b ≥ ∥(t, 1)∥p and so t ≤ (bp − 1)1/p = t3. Hence

∥(x, y)∥H
∥(x, y)∥

=
∥(ax, by)∥2

b|y|
=
∥∥∥(a

b
t, 1
)∥∥∥

2
≤
∥∥∥(a

b
t3, 1

)∥∥∥
2

=

(
a2

b2
(bp − 1)

2
p + 1

) 1
2

= β3.

Since β1 ≥ β3 holds by Lemma 2.1 (ii), we obtain ∥(x, y)∥H ≤ β1∥(x, y)∥.
Finally we consider the case ∥(x, y)∥ = ∥(x, y)∥p. Since ∥(x, y)∥p ≥ a|x| and

∥(x, y)∥p ≥ b|y|, it follows that |x| ≤ (ap − 1)
− 1

p |y| and (bp − 1)
1
p |y| ≤ |x|. Hence

t3 ≤ t ≤ t1. Then

∥(x, y)∥H
∥(x, y)∥

=
∥(ax, by)∥2
∥(x, y)∥p

=
∥(at, b)∥2
∥(t, 1)∥p

=
(a2t2 + b2)1/2

(tp + 1)1/p
=: f(t).

It follows from Lemma 2.1 that f(t) ≥ 1 and hence ∥(x, y)∥H ≥ ∥(x, y)∥. By Lemma
2.1 (i), (ii) we have

max{f(t) : t3 ≤ t ≤ t1} = f(t1) = β1

and so ∥(x, y)∥H ≤ β1∥(x, y)∥.
Moreover, we have equality in above for (x, y) = (t1, 1). Hence β = β1. Thus we

obtain (ii).
□

By Lemma 1.3 and Lemma 2.2 we obtain the main theorem.

Theorem 2.3. Let a > 1, a ≥ b ≥ 1 and 1 ≤ p < 2 with a−p + b−p > 1 and

a
2p
p−2 + b

2p
p−2 ≤ 1. Then

CNJ(R2
a,b,p) = 1 + b2

(
1− 1

ap

) 2
p
.

Moreover,
CNJ(R2

a,b,p) = d(R2
a,b,p,H)2,

where H is a two-dimensional inner product space.

Remark 2.4. (i) Let a > b = 1 and 1 ≤ p < 2. Then it is clear that a
2p
p−2 +b

2p
p−2 > 1.

Hence, using Theorem 2.3 we can not obtain the value of CNJ(Xλ,p) for this case.
(ii) The unit sphere of R2√

2,
√
2,1

is a regular octagon. From Theorem 2.3, we obtain

CNJ(R2√
2,
√
2,1

) = 4− 2
√
2 (cf. [9]).
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(iii) Takahashi [9] showed that for any Banach space X,

1 +
ε0(X)2

4
≤ CNJ(X),(2.3)

where ε0(X) = sup{ε ∈ [0, 2] : δX(ε) = 0} is the characteristic of convexity of X.
We consider the case X = R2

a,b,p. Let a > 1, a ≥ b ≥ 1 with a−p + b−p > 1. In [6], it

was shown that if p ≥ 2, then we have equality in (2.3) if and only if b ≤ a(ap−1)
p−2
2p

holds. Let 1 ≤ p < 2. It is easy to see that

ε0(R2
a,b,p) ≥ 2b

(
1− 1

ap

)1/p
.

This inequality and Theorem 2.3 give that if a
2p
p−2 +b

2p
p−2 ≤ 1, then we have equality

in (2.3).

References

[1] J. Alonso and P. Mart́ın, A counterexample to a conjecture of G. Zbăganu about the Neumann-
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