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EXISTENCE AND CONVERGENCE OF BEST PROXIMITY
POINTS FOR CYCLIC ENRICHED CONTRACTIONS
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In the memory of Prof. Wataru Takahashi

ABSTRACT. In this manuscript, we give some convergence and existence results of
best proximity points for the class of cyclic enriched type contraction mappings.
We also obtain the existence of a fixed point under weaker conditions. Also, some
illustrative examples are provided to show the validity of the results obtained.

1. INTRODUCTION AND PRELIMINARIES

Let Y be a nonempty subset of a metric space (X,d). A mapping T : Y — X is
said to have a fixed point in Y, if the fixed point equation Tx = = has at least one
solution. That is, z € Y is a fixed point of T if d(z,Tx) = 0. The case when fixed
point equation Tx = x does not have a solution, then d(z,Tz) > 0 for all z € Y.
In such circumstances, we are in searching for an element x € Y such that d(z, T'z)
is minimum in some sense. The best approximation theory and best proximity pair
theorems are studied in this direction. Consider a pair of nonempty subsets (A, B)
of a metric space (X,d). A mapping 7' : A — B is said to have a best proximity
point if d(z,Tx) = d(A, B). If d(A, B) = 0, best proximity point is nothing but a
fixed point of T

In this paper, we deal with a problem of optimization which is at par with the
approximate solution of a fixed point equation d(z,Tz) = 0. The problem is of
global minima which has nothing to do with the establishment of such theory of
best approximation while we are inclined to investigate best proximity theorems.
Motivated with enriched type contraction mappings introduced by Berinde et al.
[5, 4], we introduce cyclic enriched type contraction mappings in the setting of
convex metric spaces. We give some convergence and existence results of best
proximity points for the class of cyclic enriched type contraction mappings. We
also illustrate some examples to show the validity of the results obtained.

Definition 1.1. A Banach space X is said to be uniformly convex if there exists
a strictly increasing function § : (0,2] — [0, 1] such that the following implication
holds for all z,y,p € X, R > 0 and r € [0,2R)] such that

lz—pll < R
ly—pll <R — @ +y)/2-pll < (1 -6(r/R))R.
|z —yll =
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Definition 1.2. Let (X, d) be a metric space. A continuous mapping W : X x X x
[0,1] — X is said to be a convex structure on X if for all z,y € X and XA € [0, 1],

holds for all w € X. The metric space (X,d) together with a convex structure W,
that is (X, d, W), is called a convex metric space (see [9]).

Definition 1.3. A nonempty subset A of a convex metric space (X,d, W) is said
to be a convex set [9] if W(z,y,\) € A for all x,y € A and X € [0,1].

A normed linear space and each of its convex subset are simple examples of
convex metric spaces with W given by W (z,y,A) = Ax + (1 — Ny for 2,y € X
and 0 < XA < 1. There are many convex metric spaces which are not normed linear
spaces (see [9]).

The following result present some fundamental properties of a convex metric
space in the sense of Definition 1.2 (see [2, 9] for more details).

Lemma 1.4. Let (X,d,W) be a conver metric space. For each x,y € X and
A A1, A2 € [0, 1], we have the following:
(i) W(z,z,\) =z, W(z,y,0) =y and W(x,y,1) = z.
(11) d(x7 W(l’, Y, )\)) - (1 - /\)d($, y) and d(y7 W(m7 Y, )‘)) - Ad({E, y)
(ili) d(z,y) = d(z, W(z,y,A) + d(W(z,y, ), y).
(IV) ‘)‘1 - )\2|d(.’E, y) < d(W(JI, Y, )‘1)7 W(IL’, Y, )\2))
Definition 1.5. Let (X,d, W) be a convex metric space and 7' : X — X be a self
mapping. Define the mapping Ty : X — X as Thx = W(x,Tx;\), forall z € X. T
is said to be an enriched contraction (see [5]) if there exist ¢ € [0,1) and A € [0,1)
such that
d(Thz, Thy) = d(W (z, Tz; A), Wy, Ty; ) < ¢ d(z,y),
for all x,y € X.
Definition 1.6. Let A and B be nonempty subsets of a metric space X. A map
T:AUB — AU B is a cyclic contraction map if it satisfies:
(i) T(A) € B and T(B) C A4;
(ii) for some k € (0,1) we have
d(Tz,Ty) < k d(z,y) + (1 — k)dist(A, B),
forallz € A, y € B.

2. MAIN RESULTS

2.1. Cyclic enriched contraction map. To start with, we give the following
definition.

Definition 2.1. Let A and B be nonempty subsets of a convex metric space
(X,d,W). Amap T : AUB — AU B is a cyclic enriched contraction map if
it satisfies:

(i) T(A) C B and T(B) C A.
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(ii) there exist ¢ € [0,1) and A € [0,1) such that
d(Thz, Tyy) = d(W (x, Tz; X), W (y, Ty; N) < cd(z,y) + (1 — c) dist(A, B),
forallz € A, y € B.
Here, it is to note that (ii) implies that T" satisfies
d(W(z, Tz; A), W(y, Ty; A)) < d(z,y),
forallz € A, y € B.
Also (ii) can be rewritten as
(dW (x,Tx; N), W (y, Ty; \)) — dist(A, B)) < k (d(x,y) — dist(A, B)),
forallz € A, y € B.
Notice that if F'(T') is the set of fixed points of a cyclic enriched contraction map

T:AUB — AUB, then F(T) C AN B. Also F(T) is convex.
The following approximation result will be needed in what follows.

Theorem 2.2. Let A and B be nonempty subsets of a convex metric space (X,d, W).
Suppose that T : AUB — AU B is a cyclic enriched contraction map. Then
starting with any xo in AU B we have d(xy, Thx,) — dist(A, B), where x,11 =
W (zp, Txn; A) = Thxn, n > 0.

Proof. Now, using definition of cyclic enriched contraction map, we have
d($n+1, xn) = d(T,\xn, T)\iL'n_l)
<cd(xp,tn—1) + (1 —c) dist(A, B)
<c(cd(xp-1,rn-2)+ (1 —c) dist(A, B)) + (1 — ¢)dist(A, B)
=c? d(zp_1,2n—2) + (1 — %) dist(A, B).
Inductively, we have d(xp41, 2n) < " d(xp—1,Tn—2)+(1—c") dist(A, B). Therefore,
d(xp, Thxy) — dist(A, B). O

Proposition 3.1 of [3] and Theorem 3 of [1] are special cases of the above theorem.
Next, we give an existence result for a best proximity point.

Theorem 2.3. Let A and B be nonempty subsets of a convex metric space (X,d, W).
Suppose that T : AUB — AU B is a cyclic enriched contraction map, xg in A and
Tng1 = W(xp, Txn; A) = Tazn, n > 0. If {x2,} has a convergent subsequence in A,
then there erxists x € A such that d(x, Thx) = dist(A, B).

Proof. Let {zon)} be a subsequence of {xa,} converging to = in A. Since T is a
cyclic enriched contraction, it follows that dist(A,B) < d(wa,y),Thar) <
d(Tonk)-1:2) < d(Tank)—1:Tan(r)) + (@20, ). Thus d(zenr)—1,2) — d(A, B)
and d(z, Thz) = d(A, B). O

Proposition 3.2 of [3] and Theorem 4 of [1] are special cases of the above result.
The following result ascertains the boundedness of the Krasnoselskij * s iterates
for a cyclic enriched contraction.
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Theorem 2.4. Let A and B be nonempty subsets of a convex metric space (X,d, W).
Suppose that T : AUB — AU B is a cyclic enriched contraction map, xg in AU B
and xpi1 = W(xn, Txn; N) = Tazpn, n > 0. Then the sequence {xy} is bounded.

Proof. Since T is a cyclic enriched contraction, {d(zay,Z2n+1)} is a decreasing se-
quence of non-negative terms. Therefore, {d(z2y,Z2,+1)} is bounded. Further,
because T is a cyclic enriched contraction, we have

d(z2an+41,x2) = d(Th@on, Thx1)
< cd(zon,x1) + (1 —¢) dist(A, B)
< ¢ [d(zan, ont1) + d(Tant1, x2) + d(z2,21)] + (1 — ¢) dist(A, B).

Therefore, it can be concluded that
c

d((l)gn_H, $2) < 1 [d(l’gn, x2n+1) + d(l’g, :L’l)] + dist(A, B)

Thus, it follows that the sequence {z2,+1} is bounded. Similarly, it can be shown
that the sequence {x2,} is also bounded. Therefore, the sequence {x,} is bounded.
This completes the proof of the proposition. O

The following result furnishes some sufficient conditions under which a cyclic
enriched contraction has a best approximation.

Theorem 2.5. Let A and B be nonempty subsets of a convex metric space (X,d, W).
Suppose that T : AUB — AUB is a cyclic enriched contraction map. If either A or
B is boundedly compact, then there exists x in AU B with d(z,T\z) = dist(A, B).

Proof. The result follows directly from Theorems 2.3 and 2.4. O

Lemma 2.6. Let A be a nonempty convex subset and B be a nonempty subset of a
uniformly convex Banach space X. Suppose that T : AUB — AU B is a map such
that T(A) C B and T(B) C A. Forxo € A, define xy 11 = They, = (1= Nz, + Tz,
for each n > 0. Then ||zon+2 — Ton|| = 0 and ||x2nt+3 — T2nt1|| = 0 as n — co.

Proof. To show that ||z2p12 — z2,|| — 0 as n — oo, assume the contrary. Then
there exists 9 > 0 such that for each n > 1, there exists n(k) > n so that

(2.1) [T an(k)+2 — Tan()|| = €0

Choose 0 < v < 1 such that U dist(A, B).
v

Take ¢ such that 0 < e < min{s—o —dist(A, B),
y
By Theorem 2.2, there exists N7 such that

dist(A, B) 6(7)

)

(2.2) [[Ton(k)+2 — Tan(k)+1l| < dist(A, B) + ¢,
for all n(k) > Nj. Also, there exists Ny such that

(2.3) [ Ton(k) — Tanr)+1l] < dist(A, B) + ¢,
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for all n(k) > Na. Let N = max{Ny, Na}. It follows from the uniform convexity of
X and (2.1)-(2.3) that

€0 .
[(@an(k)+2 + Tank)) /2 — T2nw) 411l < <1 -0 <dZ$t(AaB)+5>) (dist(A, B) +¢),

for all n(k) > N. As (Ton(k)+2 + Tan(k))/2 € A, the choice of ¢ and the fact that ¢
is strictly increasing implies that

[(Zank)+2 + Tonk))/2 — Tanw)+1l| < dist(A, B),
for all n(k) > N, a contradiction.
A similar argument will show that ||x2,+3 — Tont1|| — 0. O

2.2. Cyclic (b,0)-enriched contraction. Now, we introduce the following cyclic
(b, 0)-enriched contraction map for our next results.

Definition 2.7. Let A and B be nonempty subsets of a uniformly convex Banach
space X. Amap T : AUB — AU B is a cyclic (b, #)-enriched contraction map if it
satisfies:
(1) T(A) € Band T(B) C A.
(2) If there exist b € [0, +00) and 6 € [0,b+1) such that ||b(x —y)+Tx—Ty|| <
0 ||z —yl|+ (1 —0) dist(A,B), forall z € A, y € B.
Here, it is to note that (2) implies that 7" is cyclic enriched contraction for A\ =
1 0
b1 b1
For b = 0, if we take A = 1, and ¢ = 6, then for all z € A, y € B, we have
[Tz —Ty|| < c ||z —yl|+ (1 —c) dist(A, B).

For b > 0, if we take A\ = and ¢ = A0, then for all z € A, y € B,

, and choosing ¢ =

b+1’
1

we have ||(X — Dz —y)+Tx—Ty|| <0 |lz—y|ll+(1—0) dist(A,B). Hence

| The — Thyll < c |z —yl|| + (X —¢) dist(A, B) < ¢ ||z — y|| + (1 — ¢) dist(A, B).

Theorem 2.8. Let A and B be nonempty subsets of a uniformly convexr Banach

space X. Suppose that A is conver and T : AUB — AUB is a cyclic (b, 0)-enriched
contraction map. Further, if xyp € A and xp41 = (1 — Nz, + Nz, = Thx, with

= T for each n > 0. Then for each € > 0, there exists a positive integer Ny
such that for all m > n > Ny,

l|z2m — Tont1]| < dist(A, B) + ¢.

Proof. Suppose the contrary. Then there exists g > 0, such that for each & > 1,
there is m(k) > n(k) > k, satisfying
(2.4) |Z2m(k) — Tonr) 111l = dist(A, B) + o
(2.5) [Z2m(k)—2 — Ton(k)+1l] < dist(A, B) + eo.
It follows that

dist(A, B) + €0 < |[Tam k) — Ton(k)+1]



190 SUMIT CHANDOK

< [lz2mk) = Tamm) 21l + [T2mm)—2 — Tang) 11l
< ||Zamk) — Tam(r)—2|| + dist(A, B) + eo.
Taking & — oo, using Lemma 2.6, we have
klgiolo |Z2m k) — Tonk)+1]] = dist(A, B) + eo.
As T is cyclic (b, 0)-enriched contraction map, we obtain

Z2mk) = Tonk)+1 1l < T2m@r) — Tamy+2ll + | T2m@i)+2 — Tonw)+3l]
+ |Z2nk)+3 — Tan(k)+1ll

< [ @2m) = Tamky+ll + EllT2me) — Tan(wy+1l]

+ (1 = P)dist(A, B) + ||Tan()+3 — T2n(k)+1]-

Letting k — oo, we have dist(A, B) +¢e¢ < ¢(dist(A, B) +¢&o) +(1—c?)dist(A, B) =
dist(A, B) + c?cq, a contradiction. This completes the proof. O

Theorem 2.9. Let A and B be nonempty subsets of a uniformly convexr Banach
space X . Suppose that A is closed and T : AUB — AUB is a cyclic (b, 8)-enriched
contraction map. Further, if zg € A and xp11 = (1 — Nz, + NTx,, = Thx, with

1
A= T for each n > 0. If dist(A, B) =0, then T has a fized point x € AN B.
Proof. Let ¢ > 0 be given. By Theorem 2.2, there exists N; such that ||xg, —
Tont1|| < &, for all n > Nj. By Theorem 2.8, there exists Ny such that ||z2m, —
Tont1|| < g, for all m > n > Ny. Take N = max{Nj, Ny}. It follows that

l|Z2m — Tanl] < |lT2m — Tont1l] + [|T2nt1 — z2nl| < 2e,

for all m > n > N. Thus {x2,} is a Cauchy sequence in A. Now, the completeness
of X and closedness of A imply that xo, — = € A. It follows from Theorem 2.3
that ||z — Tz|| = dist(A, B) = 0. So X is a fixed point of T" and hence z € F(T') C
ANB. Il

The following results of Eldred and Veeramani [3] will be required in the sequel.

Lemma 2.10. Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convexr Banach space. Let {x,} and {z,} be sequences
in A and {yn} be a sequence in B satisfying:
(i) ||zn — ynl|| — dist(A, B),
(ii) For every e > 0 there exists Ny such that for allm >n > Ny, ||Tm — yn|| <
dist(A, B) +¢.
Then, for every e > 0 there exists N1 such that for allm > n > Ny, ||xm, — z,|] < €.

Lemma 2.11. Let A be a nonempty closed and convex subset and B be a nonempty
closed subset of a uniformly convexr Banach space. Let {x,} and {z,} be sequences
in A and {yn} be a sequence in B satisfying:

(i) ||z — yn|| — dist(A, B),

(ii) ||zn — ynl| — dist(A, B).
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Then ||xm — zn|| — 0.

Theorem 2.12. Let A and B be nonempty closed and convex subsets of a uniformly
conver Banach space. Suppose that T : AU B — AU B is a cyclic (b,0)-enriched
contraction map, then there exists a unique best proximity point x in A (that is with
||z — Thz|| = dist(A, B)). Further, if xog € A and xp41 = (1 — Ny + A2, = Thay,

with A = b1 then {xan} converges to the best proximity point.

Proof. As T is a cyclic (b, f)-enriched contraction map, there exists b € [0, +00) and
0 € [0,b+ 1) such that ||b(z —y) + Tz — Ty|| < 0 ||z —y|| + (1 — 0) dist(A, B), for
allz € A, y € B.

For b = 0, if we take A = 1, and ¢ = 6, then for all x € A, y € B, we have
| Tz —Ty|| <6 |lx—y||+(1—0) dist(A, B). The result follows from Theorem 3.10
of Eldred and Veeramani.

For b > 0, if we take A\ = , and ¢ = A0, then for all x € A, y € B, we have

b+1
15 = V(& =) + T =Tyl <0l —yl| + (1 - 0) dist(4, B).
Hence ||[Thx —Thy|| < ¢ ||z —y||+(A—c¢) dist(A, B) < ¢ ||z —y||+ (1 —c) dist(A, B).
Assume dist(A, B) # 0. Since ||xa,—Ta@2n || — dist(A, B) and ||TExe,—Th\an|| —
dist(A, B). By Lemma 2.11, [[z2;, — Za(n41)|| — 0.
Similarly, we can show that ||[Thz2n, — ThZa(n41)l| — 0.
Now, we have to show that for every ¢ > 0 there exists Ny such that for all
m >n > Ny,
||zom — Thxan|| < dist(A, B) + e.
Suppose, to the contrary, that there exists € > 0 such that for all £ € N there
exists my > ny > k for which

||zom — Thxan|| > dist(A, B) + ¢,

this my, can be chosen such that it is the least integer greater than n; to satisfy the
above inequality. Now,

dist(A, B) + € < [|zom®) — Trxtanp)l]
< N Zam@k) — Tomi)—2!| + [[T2m)—2 — Tavon@)ll-

Hence lim ||,k — ThTonk)l| = dist(A, B) + ¢. Consequently, we get
k—o0

Z2mk) — TaTon |l < lT2mk) — Zam@)+2!| + Z2mr)+2 — TaTon(r)+2]l
+ [T 2nk)+2 — Taon)l|
< ||@2mr) — Tamm)2ll + CllT2m) — Trnwnml|
+ (1= )dist(A, B) + ||Tazan ) +2 — Tatonm)l-

Hence by taking k — oo, we have dist(A, B) + ¢ < c?(dist(A, B) + ¢) + (1 —
c)dist(A, B) = dist(A,b) + c®c, which is a contradiction. Hence by Lemma 2.10,
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{zan} is a Cauchy sequence and converges to some x € A. From Proposition 2.3, it
follows that ||z — Thz|| = dist(A, B).
Suppose that z,y € A and = # y such that ||z — Thz|| = dist(A, B) and ||y —
T\y|| = dist(A, B). Therefore
ITae = yl| = [[Taz — TRyl| < [la — Thyll

ITay — 2l = ||Thy — TRz < |ly — Thall,

which implies that ||[Thy — z|| = ||y — Thx||. But since ||y — Thz|| > dist(A, B), it
follows that ||Thy — z|| < ||y — Thx||, a contradiction. Therefore 2 = y. Hence the
result. O

Remark 2.13. Theorem 3.10 of Eldred et al. [3] and Theorem 8 of Al-Thagafi et
al. [1] are special cases of Theorem 2.12.

If the convexity assumption is dropped from Theorem 2.12, then the convergence
and uniqueness is not guaranteed even in finite dimensional spaces.

If A= B in Theorem 2.12, then the existence of a fixed point for self-mapping
can be obtained under weaker conditions.

Theorem 2.14. Let A be a nonempty closed subset of a conver metric space
(X,d,W) and T : A — A be an enriched contraction map. Then

(i) F(T) = {p}, for some p € A,
(ii) the sequence {x,} obtained from Krasnoselskij iterative process
(2.6) Tnt1 = W(zp, Tzp, \) = Thap,n > 0,

converges to p, for any xg € X.

Proof. As T is an enriched contraction, we have the mapping T : A — A defined
by Tha = W(x,Tx, \) satisfies
(2.7) d(Thz, Tyy) < cd(z,y),
for all x,y € X. Hence by taking x = =, and y = z,,—1 in (2.7) and using Kras-
noselskij iterative process x,+1 = W(xn, Txp, A) = Thz,,n > 0, we get
d(Tpt1,2n) < d(x1,20),n > 1.
As c€[0,1), we get d(xpt1,2n) — 0 as n — co. For m > n, we have
d(Tp, xm) < d(Tyn, Tne1) + d(Tpt1, Trp2) + oo+ d(Tm—1, Tm)
< (4 e Y d (o, 1)
- 1—-c
Therefore, d(z,, z,) — 0, when m,n — oo. Thus {x,} is a Cauchy sequence in A.
Hence {z,} is convergent and denote

d(xo,x1).

p= lim x,.
n—oo
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Further, we get
d(anrla TAP) = d(W(xn, T'Tna >‘)7 W(p7 Tp7 )‘))
< cd(zn,p).

Taking n — oo, we have Thp = p. Therefore, 0 = d(p, T\p) = d(p, W (p,Tp, \))
(1 —=X)d(p,Tp) and d(p,Tp) = 0. This completes the proof.

O
Corollary 2.15. Let A be a nonempty closed subset of a convexr Banach space X
and T : A — A be a (b,0)-enriched contraction map. Then
(i) F(T') = {p}, for some p € A,
(ii) there exists A € (0, 1] such that the sequence {z,} obtained from Krasnoselskij
iterative process
Tnt1 = (1 = Ny + ATy, = Thzp,n >0,

converges to p, for any xg € X.

Proof. By taking A = and using Theorem 2.14, we get the result. O

1
b+1
2.3. Illustrations. In this section, we provide some examples for the validity of

our results.

Example 1. Consider A = B = [0,1] € X = R with the usual metric wherein
1 1 1
Wi(x,y, =) = 3%t 5u Define T: AUB — AU B by

2
Q_I, 0<:z:<1
Tr = 3 -T2
1 1
-, - <z <.
2 2
Here Tha — W(z, Tz, 2) = 2o 4 L7
ere Thx = 137, x,% =50+ 577
Ingxgg,Tx: ;x.So,Wehave
1 1
d(Tlx;le> = (W($,T$,§),W(y,Ty,§))
2 2
1 1
=~ y) + 5 (Ta—Ty)
1 ly—=x
—’5(95—?4)“‘5 3 |
1 1
= e —yll(1=2
Sl =il - 3)]
< glz—y
—|z —yl.
=5 Yy
1
Also, 1f§ <x<1,Tx=—. So, we have
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= 5@ —y) + 5 (T~ Ty)|
= 5@~

Thus all the conditions of Theorem 2.14 are satisfied.

Example 2. Consider A = B = [1,2] € X = R with the usual metric wherein

1 1 1
W(m,yji):§x+§y. Define T: AUB — AU B by

1
Tx=—,z€[l,2].
x

1 1 1
Here Thx = W(x, Tz, 5) =52 + iTx. So, we have
2

1 1
1 1
—|=(x—y)+-(Tz-T
5@ =)+ 5(Te = Ty)
1 ly—=z
—’5(95—9)4‘5 o \

1 1
= |z — 1—
sl —ull(l= )

< *1‘ — |
x .
=5 Y
[hus all the conditions of Theorem 2.14 are satisfied.

Conclusions. This article focuses on best proximity point theorems for en-
riched contractions, which serve as non-self mapping analogues of contraction self-
mappings. Also, some sufficient conditions are established for a non-self enriched
contraction mapping to have a best proximity point.
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