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weak convergence theorem of Mann’s type [14] for monotone nonexpansive map-
pings in Banach spaces endowed with a partial order (see also [14, 17]). Shukla
and Wísnicki [18] obtained a nonlinear mean convergence theorem for monotone
nonexpansive mappings in such Banach spaces.

In this paper, we prove a nonlinear mean convergence theorem for two monotone
nonexpansive mappings in uniformly convex Banach spaces endowed with a partial
order.

2. Preliminaries and notations

Throughout this paper, we assume that E is a real Banach space with norm ∥ · ∥
and endowed with a partial order ⪯ compatible with the linear structure of E, that
is,

x ⪯ y implies x+ z ⪯ y + z,

x ⪯ y implies λx ⪯ λy

for every x, y, z ∈ E and λ ≥ 0. As usual we adopt the convention x ⪰ y if and
only if y ⪯ x. It follows that all order intervals [x,→] = {z ∈ E : x ⪯ z} and
[←, y] = {z ∈ E : z ∈ E : z ⪯ y} are convex. Moreover, we assume that each order
intervals [x,→] and [←, y] are closed. Recall that an order interval is any of the
subsets

[a,→] = {x ∈ X; a ⪯ x} or [←, a] = {x ∈ X;x ⪯ a}.
for any a ∈ E. As a direct consequence of this, the subset

[a, b] = {x ∈ X; a ⪯ x ⪯ b} = [a,→] ∩ [←, b]

is also closed and convex for each a, b ∈ E.
Let E be a real Banach space with norm ∥ · ∥ and endowed with a partial order

⪯ compatible with the linear structure of E. Let C be a nonempty subset of E. A
mapping T : C → C is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥

for all x, y ∈ C. A mapping T : C → C is called monotone if

Tx ⪯ Ty

for each x, y ∈ C such that x ⪯ y. For a mapping T : C → C, we denote by F (T )
the set of fixed points of T , i.e., F (T ) = {z ∈ C : Tz = z}.

We denote by E∗ the topological dual space of E. We denote by N and Z+ the
set of all positive integers and the set of all nonnegative integers, respectively. We
also denote by R and R+ the set of all real numbers and the set of all nonnegative
real numbers, respectively. We write xn → x (or lim

n→∞
xn = x) to indicate that the

sequence {xn} of vectors in E converges strongly to x. We also write xn ⇀ x (or
w- limn→∞ xn = x) to indicate that the sequence {xn} of vectors in E converges
weakly to x. We also denote by ⟨y, x∗⟩ the value of x∗ ∈ E∗ at y ∈ E. For a subset
A of E, coA and coA mean the convex hull of A and the closure of convex hull of
A, respectively.
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A Banach space E is said to be strictly convex if

∥x+ y∥
2

< 1

for x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. In a strictly convex Banach space, we
have that if

∥x∥ = ∥y∥ = ∥ (1− λ)x+ λy∥
for x, y ∈ E and λ ∈ (0, 1) , then x = y. For every ε with 0 ≤ ε ≤ 2, we define the
modulus δ(ε) of convexity of E by

δ (ε) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ε

}
.

A Banach space E is said to be uniformly convex if δ (ε) > 0 for every ε > 0. If E
is uniformly convex, then for r, ε with r ≥ ε > 0, we have δ

(
ε
r

)
> 0 and∥∥∥∥x+ y

2

∥∥∥∥ ≤ r
(
1− δ

(ε
r

))
for every x, y ∈ E with ∥x∥ ≤ r, ∥y∥ ≤ r and ∥x − y∥ ≥ ε. It is well-known
that a uniformly convex Banach space is reflexive and strictly convex. Let SE =
{x ∈ E : ∥x∥ = 1} be a unit sphere in a Banach space E.

3. Monotone and approximate fixed point sequences

In this section, we study approximate fixed point sequences and monotone se-
quences. Let C be a nonempty subset of E and let T be a mapping of C into E. A
sequence {xn} in C is said to be an approximate fixed point sequence of a mapping
T of C into itself if

lim
n→∞

∥xn − Txn∥ = 0

(see also [13, 19]). A sequence {xn} in E is said to be monotone if

x1 ⪯ x2 ⪯ x3 ⪯ · · ·

(see also [7]). The following lemma was obtained by the author and Takahashi [1]
(see also [2].

Lemma 3.1 ([1]). Let C be a nonempty bounded closed convex subset of an or-
dered uniformly convex Banach space E. Let S and T be monotone nonexpansive
mappings of C into itself with ST = TS. Then,

lim
n→∞

sup
x∈C

∥∥∥∥∥ 1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx− T

(
1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx

)∥∥∥∥∥ = 0

and

lim
n→∞

sup
x∈C

∥∥∥∥∥ 1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx− S

(
1

n2

n−1∑
i=0

n−1∑
i=0

SiT jx

)∥∥∥∥∥ = 0.

The following theorem was proved by Browder [9].
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Theorem 3.2 ([9]). Let C be a nonempty bounded closed convex subset of an ordered
uniformly convex Banach space E and let T be a nonexpansive mapping of C into
itself. Let {xn} be a sequence in C such that it converges weakly to an element u in
C and {xn − Txn} converges strongly to 0. Then, u is a fixed point of T .

Using Theorem 3.2, we can prove the following result which is crucial in this
paper.

Theorem 3.3. Let C be a nonempty bounded closed convex subset of an ordered
uniformly convex Banach space E. Let S and T be monotone nonexpansive map-
pings of C into itself. Let {xn} be a sequence in C which is a monotone, and
approximate fixed point sequence of T and S, i.e.,

lim
n→∞

∥xn − Txn∥ = lim
n→∞

∥xn − Sxn∥ = 0.

Then, then the sequence {xn} converges weakly to a point of F (S) ∩ F (T ).

Proof. Let w be a common fixed point of T and S. Since E is reflexive, {xn}
must contain a subsequence which converges weakly to a point in C. Let z1, z2 be
two weak cluster-points of {xn}. Then, there exists two subsequences of {xni} and
{xnj} of {xn} such that xni ⇀ z1 and xnj ⇀ z2, respectively. By the assumption,
we remark

lim
i→∞
∥xni − Txni∥ = lim

i→∞
∥xni − Sxni∥ = 0

and

lim
j→∞

∥xnj − Txnj∥ = lim
j→∞

∥xnj − Sxnj∥ = 0.

It follows from Theorem 3.2 that z1, z2 ∈ F (T )∩F (S) (see also [1]). Next, we show
z1 = z2 (see also [7]). Fix k ≥ 1. Since {xn} is monotone and the order interval
[xk,→) is weakly closed, we conclude that zi ∈ [xk,→) for i = 1, 2. So, we see that
zi is an upper bound for {xn} for i = 1, 2. Then, we also obtain that {xn} ⊂ (←, zi]
for i = 1, 2. It follows from the same reason that zj ∈ (←, zi] for i, j = 1, 2. So,
we have z1 = z2. Therefore, we obtain that {xn} converges weakly to a point of
F (S) ∩ F (T ). □

4. Nonlinear mean convergence theorems

In this section, we show nonlinear mean convergence theorems for monotone
nonexpansive mappings. Using Lemma 3.1, we can prove the following lemma
which plays an important role in our results.

Lemma 4.1. Let C be a nonempty closed convex subset of an ordered uniformly
convex Banach space E. Let S and T be monotone nonexpansive mappings of C
into itself such that ST = TS and F (S) ∩ F (T ) ̸= ∅. Assume that x ⪯ Sx and
x ⪯ Tx for each x ∈ C. Let x ∈ C. For each n ∈ N and m ∈ Z+, let

U (m)
n x =

1

n2

n−1∑
k=0

n−1∑
l=0

Sk+mT l+mx.
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Then, the sequence {U (m)
n x}∞n=1 in C is an approximate fixed point sequence of S

and T uniformly in m ∈ Z+.

Proof. For x ∈ C and f ∈ F (T ) ∩ F (S), put r = ∥x − f∥ and set X = {u ∈ E :
∥u−f∥ ≤ r}∩C. Then, X is a nonempty bounded closed convex subset of C which
is T , S-invariant and contains x. So, without loss of generality, we may assume that
C is bounded.

Since 1
n2

∑n−1
i=0

∑n−1
i=0 Si+kT j+lx = 1

n2

∑n−1
i=0

∑n−1
i=0 SiT j(SkT lx), from Lemma 3.1,

we have

lim
n→∞

sup
k,l∈Z+

sup
x∈C

∥∥∥∥∥ 1

n2

n−1∑
i=0

n−1∑
i=0

Si+kT j+lx− T

(
1

n2

n−1∑
i=0

n−1∑
i=0

Si+kT j+lx

)∥∥∥∥∥
= lim

n→∞
sup

k,l∈Z+

sup
x∈C

∥∥∥∥∥ 1

n2

n−1∑
i=0

n−1∑
i=0

SiT j(SkT lx)− T

(
1

n2

n−1∑
i=0

n−1∑
i=0

SiT j(SkT lx)

)∥∥∥∥∥(4.1)

= 0

Since U
(m)
n x = 1

n2

∑n−1
i=0

∑n−1
i=0 Si+mT j+mx, from (4.1), we have

lim
n→∞

sup
m∈Z+

∥∥∥U (m)
n x− TU (m)

n x
∥∥∥ = 0.

Similarly, we also have

lim
n→∞

sup
m∈Z+

∥∥∥U (m)
n x− SU (m)

n x
∥∥∥ = 0.

So, we can conclude that {U (m)
n x}∞n=1 is an approximate fixed point sequence of T

and S uniformly in m ∈ Z+. □

Lemma 4.2. Let C be a nonempty closed convex subset of an ordered Banach
space E. Let S and T be monotone nonexpansive mappings of C into itself such
that ST = TS and F (S) ∩ F (T ) ̸= ∅. Assume that x ⪯ Sx and x ⪯ Tx for each
x ∈ C. Let x ∈ C. For each m ∈ Z+, let

U (m)
n x =

1

n2

n−1∑
k=0

n−1∑
l=0

Sk+mT l+mx.

Then, for each m ∈ Z+, the sequence {U (m)
n x}∞n=1 in C is monotone.

Proof. Since a partial order is compatible with the linear structure of X, it is not
difficult to see that

U (1)
n x ⪯ U (2)

n x ⪯ U (3)
n x ⪯ · · ·

for each n ∈ N and we also obtain that

U (m)
n x

=
1

n2

n−1∑
i=0

n−1∑
j=0

Si+mT j+mx
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=
1

(n+ 1)2

n−1∑
i=0

n−1∑
j=0

Si+mT j+mx+

(
1

n2
− 1

(n+ 1)2

) n−1∑
i=0

n−1∑
j=0

Si+mT j+mx

=
1

(n+ 1)2

n−1∑
i=0

n−1∑
j=0

Si+mT j+mx+

(
n

n2(n+ 1)2

)n−1∑
i=0

n−1∑
j=0

Si+mT j+mx

+

(
n

n2(n+ 1)2

)n−1∑
i=0

n−1∑
j=0

Si+mT j+mx+

(
1

n2(n+ 1)2

)n−1∑
i=0

n−1∑
j=0

Si+mT j+mx

⪯ 1

(n+ 1)2

n−1∑
i=0

n−1∑
j=0

Si+mT j+mx+

(
n

n2(n+ 1)2

)n−1∑
i=0

n−1∑
j=0

Sn+mT j+mx

+

(
n

n2(n+ 1)2

)n−1∑
i=0

n−1∑
j=0

Si+mTn+mx+

(
1

n2(n+ 1)2

)n−1∑
i=0

n−1∑
j=0

Sn+mTn+mx

=
1

(n+ 1)2

n−1∑
i=0

n−1∑
j=0

Si+mT j+mx+
n · n

n2(n+ 1)2

n−1∑
j=0

Sn+mT j+mx

+
n · n

n2(n+ 1)2

n−1∑
i=0

Si+mTn+mx+
n · n

n2(n+ 1)2
Sn+mTn+mx

=
1

(n+ 1)2

n∑
i=0

n∑
j=0

Si+mT j+mx = U
(m)
n+1x

for m ∈ Z+ and n ∈ N. So, we can conclude that the sequence {U (m)
n x}∞n=1 in C is

monotone. □
We can prove a nonlinear mean convergence theorem for two monotone nonex-

pansive mappings.

Theorem 4.3. Let C be a nonempty closed convex subset of an ordered uniformly
convex Banach space E. Let S and T be monotone nonexpansive mappings of C
into itself such that ST = TS and F (S) ∩ F (T ) ̸= ∅. Assume that x ⪯ Sx and
x ⪯ Tx for each x ∈ C. Then, {

1

n2

n−1∑
k=0

n−1∑
l=0

SkT lx

}
converges weakly to a point of F (S) ∩ F (T ).

Proof. It follows from Theorem 3.3 and Lemmas 4.1 and 4.2 that for m ∈ Z+,{
1
n2

∑n−1
k=0

∑n−1
l=0 Sk+mT l+mx

}∞

n=1
converges weakly to a point of F (S)∩F (T ). So,

especially, we also have
{

1
n2

∑n−1
k=0

∑n−1
l=0 SkT lx

}∞

n=1
converges weakly to a point of

F (S) ∩ F (T ). □
Using Theorem 4.3, we get some convergence theorems for monotone nonexpan-

sive mappings in ordered uniformly convex Banach spaces (see [18]).
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Theorem 4.4 ([18]). Let C be a nonempty closed convex subset of an ordered
uniformly convex Banach space E and let T be a monotone nonexpansive mapping
of C into itself such that F (T ) ̸= ∅. Assume that x ⪯ Tx for each x ∈ C. Then,

{Snx} = { 1n
∑n−1

k=0 T
kx} converges weakly to a point of F (T ).

Theorem 4.5 ([18]). Let C be a nonempty closed convex subset of an ordered
uniformly convex Banach space E and let T be a monotone nonexpansive mapping
of C into itself such that F (T ) ̸= ∅. Assume that x ⪯ Tx for each x ∈ C. Then,
{Tnx} converges weakly a point of F (T ).
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