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It is clear that Mt are set-valued means and

x = M0(x1, . . . , xn) ⊂ Mt(x1, . . . , xn) ⊂ M1(x1, . . . , xn) = conv{x1, . . . , xn},

for every t ∈ [0, 1] (cf. [7]).
Let mt : I

n → I, t ∈ T , be a family of single-valued means. Then M : In → S(I)
defined by

M(x1, . . . , xn) = {mt(x1, . . . , xn) : t ∈ T}, x1, . . . , xn ∈ I,

is a set-valued mean.
Let m : In → I be a single-valued mean and ε > 0. Then M : In → S(I) defined

by

M(x1, . . . , xn) =
(
m(x1, . . . , xn) + (−ε, ε)

)
∩ [min{x1, . . . , xn},max{x1, . . . , xn}]

is a set-valued mean.

A large and important class of means are the quasi-arithmetic means Af : In → I
defined by

Af (x1, . . . , xn) = f−1
(f(x1) + · · ·+ f(xn)

n

)
,

where the generating function f : I → J is continuous and strictly monotonic and
I, J ⊂ R are intervals. In a similar way we can define a set-valued counterpart of
the quasi arithmetic means putting, for a given set-valued map F : I → S(J),

AF (x1, . . . , xn) = F+
(F (x1) + · · ·+ F (xn)

n

)
,

where F+(B) := {x ∈ I : F (x) ⊂ B}. However, without any additional assump-
tions, AF need not be a set-valued mean (see [7, Examples 2 and 3]).

The following result proved in [7] gives conditions under which AF is a set-valued
mean:

Theorem 1.1. Let f, g : I → J be strictly increasing functions such that f is
concave and g is convex. Assume that f ≤ g on I and F (x) = [f(x), g(x)] for all
x ∈ I. Then, for every n ≥ 2, the map AF : In → S(I) given by

AF (x1, . . . , xn) = F+
( 1

n

n∑
i=1

F (xi)
)
, x1, . . . , xn ∈ I,

is a set-valued mean.

However, it turns out that the assumptions on f and g in the above theorem
are sufficient but not necessary conditions for AF to be a set-valued mean. For
instance, the functions f(x) = −1/x, g(x) = lnx, x > 0, do not satisfy the above
assumptions, but AF generated by F (x) = [f(x), g(x)], x > 0, is a set-valued mean
(see Example 2 below).

The aim of this paper is to present a full characterization of set-valued quasi-
arithmetic means generated by F = [f, g]. Examples and further properties of
set-valued quasi-arithmetic means are also presented.
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2. A characterization

Let us start by recalling the classical comparison property due to Hardy, Little-
wood and Pólya [5, Thm. 92], which will be needed in our investigations.

Lemma 2.1. Let f, g : I → J be continuous and strictly monotonic. If g is increas-
ing (decreasing), then Af ≤ Ag on In if and only if g ◦ f−1 is convex (concave).

The following characterization theorem is the main result of this paper.

Theorem 2.2. Let f, g : I → J be continuous and strictly increasing (strictly
decreasing) functions. Assume that f ≤ g on I and F (x) = [f(x), g(x)], x ∈ I.
Then, the following conditions are equivalent:

1. For every n ≥ 2, the map AF : In → S(I) given by

(2.1) AF (x1, . . . , xn) = F+
( 1

n

n∑
i=1

F (xi)
)
, x1, . . . , xn ∈ I,

is a set-valued mean.
2. 2. The map AF : I2 → S(I) given by

(2.2) AF (x1, x2) = F+
(F (x1) + F (x2)

2

)
, x1, x2 ∈ I,

is a set-valued mean.
3. The function g ◦ f−1 is convex.
4. For every n ≥ 2 and all x1, . . . , xn ∈ I

(2.3)

AF (x1, . . . , xn) =

 [Af (x1, . . . , xn), Ag(x1, . . . , xn)] if f, g are increasing

[Ag(x1, . . . , xn), Af (x1, . . . , xn)] if f, g are decreasing.

Proof. Implication 1 ⇒ 2 is clear.
2 ⇒ 3. Since AF defined by (2.2) is a set-valued mean, AF (x1, x2) ̸= ∅ for all

x1, x2 ∈ I. Fix x1, x2 ∈ I and take any z ∈ AF (x1, x2). Then

[f(z), g(z)] = F (z) ⊂ F (x1) + F (x2)

2
=

[f(x1) + f(x2)

2
,
g(x1) + g(x2)

2

]
,

which implies

(2.4)
f(x1) + f(x2)

2
≤ f(z) and g(z) ≤ g(x1) + g(x2)

2
.

Denote y1 = f(x1), y2 = f(x2). Since f−1 and g are both strictly increasing (or
strictly decreasing), by (2.4) we get

g
(
f−1

(y1 + y2
2

))
≤ g(z) ≤ g(f−1(y1)) + g(f−1(y2))

2
,

which means that the function g ◦f−1 is midconvex. Since it is continuous (because
f and g are continuous), it is also convex.
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To prove that 3 ⇒ 4 assume first that f, g are strictly increasing. Since g ◦ f−1

is convex, by the comparison property (Lemma 2.1) Af ≤ Ag on In. Let z ∈
[Af (x1, . . . , xn), Ag(x1, . . . , xn)]. Then

f−1
( 1

n

n∑
i=1

f(xi)
)
≤ z ≤ g−1

( 1

n

n∑
i=1

g(xi)
)

and, by the monotonicity of f, g

1

n

n∑
i=1

f(xi) ≤ f(z) and g(z) ≤ 1

n

n∑
i=1

g(xi).

Hence

F (z) = [f(z), g(z)] ⊂
[ 1
n

n∑
i=1

f(xi),
1

n

n∑
i=1

g(xi)
]
=

1

n

n∑
i=1

F (xi),

which implies

z ∈ F+
( 1

n

n∑
i=1

F (xi)
)
= AF (x1, . . . , xn),

and shows that

(2.5) [Af (x1, . . . , xn), Ag(x1, . . . , xn)] ⊂ AF (x1, . . . , xn).

To prove the reverse inclusion take any z ∈ AF (x1, . . . , xn) (AF (x1, . . . , xn) ̸= ∅ by
the previous step). Then

F (z) ⊂ 1

n

n∑
i=1

F (xi) =
[ 1
n

n∑
i=1

f(xi),
1

n

n∑
i=1

g(xi)
]
,

which implies

1

n

n∑
i=1

f(xi) ≤ f(z) and g(z) ≤ 1

n

n∑
i=1

g(xi).

and hence

f−1
( 1

n

n∑
i=1

f(xi)
)
≤ z ≤ g−1

( 1

n

n∑
i=1

g(xi)
)
.

This show that

AF (x1, . . . , xn) ⊂ [Af (x1, . . . , xn), Ag(x1, . . . , xn)],

which together with (2.5) proves AF (x1, . . . , xn) = [Af (x1, . . . , xn), Ag(x1, . . . , xn)].

Now, assume that f, g are strictly decreasing. Then g ◦ f−1 is strictly increas-

ing. Since, by the assumption, g ◦ f−1 is convex, f ◦ g−1 =
(
g ◦ f−1

)−1
is con-

cave. Hence, by Lemma 2.1, Ag ≤ Af on In. The proof that AF (x1, . . . , xn) =
[Ag(x1, . . . , xn), Af (x1, . . . , xn)] is analogous as previously.
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The last implication 4 ⇒ 1 is clear. Indeed, if AF is of the form (2.3), then
AF (x1, . . . , xn) ̸= ∅ for all x1, . . . , xn ∈ I, and

AF (x1, . . . , xn) ⊂ [min{x1, . . . , xn},max{x1, . . . , xn}] = conv{x1, . . . , xn},

because, being means,

Af (x1, . . . , xn), Ag(x1, . . . , xn) ∈ [min{x1, . . . , xn},max{x1, . . . , xn}]

for all x1, . . . , xn ∈ I. This shows that AF is a set-valued mean and finishes the
proof.

□

Remark 2.3. The functions f and g in the above theorem must be both strictly
increasing or both strictly decreasing. If this condition is not satisfied, then the
map AF generated by F = [f, g] need not be a set-valued mean. For example, let
f(x) = −x and g(x) = x, x ∈ [0,∞). Then f is strictly decreasing, g is strictly
increasing and g ◦ f−1 is convex. However, AF generated by F (x) = [−x, x], x ≥ 0,
is not a set-valued mean. Indeed, for any x > 0 we have

AF (x, x) = F+
(F (x) + F (x)

2

)
= F+([−x, x]) = [0, x] ⊈ {x} = conv{x, x}.

To present some examples of set-valued quasi-arithmetic means consider the clas-
sical harmonic, geometric, arithmetic and quadratic means defined for x1, . . . , xn >
0 by

H(x1, . . . , xn) =
n

1
x1

+ · · ·+ 1
xn

, G(x1, . . . , xn) = n
√
x1 · · ·xn ,

A(x1, . . . , xn) =
x1 + · · ·+ xn

n
, K(x1, . . . , xn) =

√
x21 + · · ·+ x2n

n
.

All these means are quasi-arithmetic means generated by the functions f(x) =
−1/x, f(x) = lnx, f(x) = x and f(x) = x2, respectively. It is known that

(2.6) H(x1, . . . , xn) ≤ G(x1, . . . , xn) ≤ A(x1, . . . , xn) ≤ K(x1, . . . , xn),

for all x1, . . . , xn > 0.
Given two means M,N : In → I with M ≤ N we denote by MN the set-valued

mean defined by

MN(x1, . . . , xn) =
[
M(x1, . . . , xn), N(x1, . . . , xn)

]
, x1, . . . , xn ∈ I.

Example 2. Let f(x) = −1/x, g(x) = lnx, x > 0 and F1(x) = [f(x), g(x)], x > 0.
Then f, g are strictly increasing, f < g and g ◦ f−1(x) = − ln(−x) is convex on
(−∞, 0). Therefore AF1 is an quasi-arithmetic set-valued mean and

AF1(x1, . . . , xn) = [Af (x1, . . . , xn), Ag(x1, . . . , xn)] = HG(x1, . . . , xn), x1, . . . , xn > 0.

Similarly, taking one by one F2(x) = [ln x, x2], F3(x) =
[
− 1

x , x
]
, F4(x) = [ln x, x],

F5(x) = [x, x2 + 1] and F6(x) = [− 1
x , x

2], x > 0, we obtain

AF2(x1, . . . , xn)) = GK(x1, . . . , xn), AF3(x1, . . . , xn)) = HA(x1, . . . , xn),
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AF4(x1, . . . , xn)) = GA(x1, . . . , xn), AF5(x1, . . . , xn)) = AK(x1, . . . , xn),

and

AF6(x1, . . . , xn)) = HK(x1, . . . , xn), for all x1, . . . , xn > 0.

3. Further properties

In this section we discuss some more results on quasi-arithmetic set-valued means.
In particular we present a comparison property for such means and give conditions
under which the arithmetic mean is a selection of a given set-valued quasi-arithmetic
mean. As a consequence we obtain an alternative proof of certain known inequalities
between classical means.

Theorem 3.1. Let f1, f2, g1, g2 : I → J be continuous and strictly increasing
(strictly decreasing). Assume that f1 ≤ f2 and g1 ≤ g2 on I. Put F (x) =
[f1(x), f2(x)], G(x) = [g1(x), g2(x)], x ∈ I and assume that AF , AG : In → S(I)
are set-valued means. Then

AF (x1, . . . , xn) ⊂ AG(x1, . . . , xn), x1, . . . , xn ∈ I

if and only if f1 ◦ g−1
1 and g2 ◦ f−1

2 are convex.

Proof. Assume first that f1, f2, g1, g2 are strictly increasing. Since AF and AG are
set-valued means, by Theorem 2.2 we obtain AF = [Af1 , Af2 ] and AG = [Ag1 , Ag2 ].
The condition AF ⊂ AG implies that Af1 ≥ Ag1 and Af2 ≤ Ag2 , which, by Lemma

2.1, means that f1 ◦g−1
1 and g2 ◦f−1

2 are convex. Conversely, if f1 ◦g−1
1 and g2 ◦f−1

2

are convex, then, by Lemma 2.1, Af1 ≥ Ag1 and Af2 ≤ Ag2 . Consequently,

AF (x1, . . . , xn) = [Af1(x1, . . . , xn), Af2(x1, . . . , xn)]

⊂ [Ag1(x1, . . . , xn), Ag2(x1, . . . , xn)] = AG(x1, . . . , xn),

for all x1, . . . , xn ∈ I.
Now assume that f1, f2, g1, g2 are strictly decreasing. Then, by Theorem 2.2,

AF = [Af2 , Af1 ] and AG = [Ag2 , Ag1 ]. Since AF ⊂ AG, we have Af2 ≥ Ag2 and

Af1 ≤ Ag1 . Hence, by Lemma 2.1, f2 ◦ g−1
2 and g1 ◦ f−1

1 are concave (and strictly

increasing). Therefore g2 ◦ f−1
2 =

(
f2 ◦ g−1

2

)−1
and f1 ◦ g−1

1 =
(
g1 ◦ f−1

1

)−1
are

convex.
Conversely, if f1 ◦ g−1

1 and g2 ◦ f−1
2 are convex, then g1 ◦ f−1

1 and f2 ◦ g−1
2 are

concave. Therefore by Lemma 2.1, Af1 ≤ Ag1 and Ag2 ≤ Af2 , and hence

AF (x1, . . . , xn) = [Af2(x1, . . . , xn), Af1(x1, . . . , xn)]

⊂ [Ag2(x1, . . . , xn), Ag1(x1, . . . , xn)] = AG(x1, . . . , xn),

for all x1, . . . , xn ∈ I. This completes the proof. □

As an immediate consequence of the above theorem we get the following corollary.

Corollary 3.2. Let f1, f2, g1, g2 : I → J be continuous and strictly increasing
(strictly decreasing). Assume that f1 ≤ f2 and g1 ≤ g2 on I. Put F (x) =
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[f1(x), f2(x)], G(x) = [g1(x), g2(x)], x ∈ I, and assume that AF , AG : In → S(I)
are set-valued means. Then

AF (x1, . . . , xn) = AG(x1, . . . , xn), x1, . . . , xn ∈ I

if and only if f1 ◦ g−1
1 and g2 ◦ f−1

2 are affine.

We say that a mean m : In → I is the selection of a set-valued mean M : In →
S(I) if

m(x1, . . . , xn) ∈ M(x1, . . . , xn), x1, . . . , xn ∈ I.

Theorem 3.3. Let f, g : I → J be continuous and strictly increasing (strictly
decreasing). Assume that f ≤ g on I and put F (x) = [f(x), g(x)], x ∈ I. Then
AF : In → I is a set-valued mean and the arithmetic mean A is a selection of AF

if and only if f is concave and g is convex.

Proof. Assume first that f and g are strictly increasing. If AF is a set-valued mean
and A is its selection, then, by Theorem 2.2, AF = [Af , Ag] and

f−1
(f(x1) + · · ·+ f(xn)

n

)
≤ x1 + · · ·+ xn

n
≤ g−1

(g(x1) + · · ·+ g(xn)

n

)
.

From here

f(x1) + · · ·+ f(xn)

n
≤ f

(x1 + · · ·+ xn
n

)
and

g
(x1 + · · ·+ xn

n

)
≤ g(x1) + · · ·+ g(xn)

n
.

Since f and g are continuous, this imply the concavity of f and the convexity of g.
Conversely, if f is concave and g is convex, then g ◦ f−1 is convex. Thus from
Theorem 2.2 we get that AF is a set-valued mean and AF = [Af , Ag]. Let h(x) =
x, x ∈ I. Then h ◦ f−1 and g ◦ h−1 are convex. Therefore, using Lemma 2.1 we
obtain Af ≤ Ah = A and A = Ah ≤ Ag. Consequently,

A(x1, . . . , xn) ∈ [Af (x1, . . . , xn), Ag(x1, . . . , xn)] = AF (x1, . . . , xn), x1, . . . , xn ∈ I,

which proves that A is a selection of AF .
The proof in the case where f and g are decreasing is similar (note only that
AF = [Ag, Af ] in this case) and we omit it.

□

As an immediate consequence of the above theorem we can obtain in an alterna-
tive way certain known inequalities between classical means.

Example 3. Let f(x) = −1/x, g(x) = x2 and F (x) = [f(x), g(x)], x > 0. Then
AF = HK and, by Theorem 3.3, A is a selection of AF . Hence

n
1
x1

+ · · ·+ 1
xn

≤ x1 + · · ·+ xn
n

≤
√

x21 + · · ·+ x2n
n

, x1, . . . , xn > 0.
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Let f(x) = lnx, g(x) = x2 and F (x) = [f(x), g(x)], x > 0. Then AF = GK and,
by Theorem 3.3, A is a selection of AF . Hence

n
√
x1 · · ·xn ≤ x1 + · · ·+ xn

n
≤

√
x21 + · · ·+ x2n

n
, x1, . . . , xn > 0.
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