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ABSTRACT. The notion of set-valued means is investigated. A characterization
of quasi-arithmetic set-valued means and a comparison property for such means
are presented. Conditions under which the arithmetic mean is the selection of a
quasi-arithmetic set-valued mean are given.

1. INTRODUCTION

Let I C R be an interval and n > 2 be an integer. A function M : I" — [ is
said to be a mean if

(1.1) min{zy,...,xp} < M(z1,...,2,) < max{zy,...,2,},

for all z1,...,2, € I. The theory of means is an extensive mathematical theory
having various applications in mathematics itself as well as in economics, engineer-
ing, social and natural science. There are books, survey papers and and numerous
articles devoted to it (see e.g. [1, 2, 3, 4, 5, 6, 8] and the references given there).

In [7] the above classical definition of mean has been extended to the case of
set-valued means in vector spaces. Since all measurements carried out in reality are
made with some errors, sometimes it is better to replace a single-valued function
by a set-valued one. Therefore such a novel approach to the idea of means seems
to be accurate and may have useful applications.

Let X be a real vector space and D be a convex nonempty subset of X. Denote
by S(D) the family of all nonempty subsets of D. A map M : D" — S(D) is
called the set-valued mean if

(1.2) M(xy,...,2,) C conv{xy, ..., Tpn},

for all x1,...,2, € D.
Clearly, if X =R, D = I and M is single-valued, then condition (1.2) reduces to
(1.1). A few natural examples of set-valued means are presented below.

Example 1. Given z = (z1,...,z,) € D" we put T := %(3:1 + -+ x,) and, for
every t € [0,1], define My : D™ — S(D) by
(1.3) M(z1,...,2n) =1t conv{zy,...,zn}+(1—1) T, x1,...,250 € D.
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It is clear that M; are set-valued means and
T = My(z1,...,2n) C My(x1,...,25) C My(21,...,2,) = conv{zy,..., oy},

for every t € [0,1] (cf. [7]).
Let m; : I™ — I, t € T, be a family of single-valued means. Then M : I™ — S(I)
defined by

M(z1,...,xn) = {mu(z1,...,2pn) : t €T}, x1,...,24 €1,

is a set-valued mean.
Let m : I"™ — I be a single-valued mean and € > 0. Then M : I" — S(I) defined
by

M(z1,...,2,) = (m(z1,...,20) + (—€,€)) N [min{zy, ..., 25}, max{z1, ..., z,}]

is a set-valued mean.

A large and important class of means are the quasi-arithmetic means Ay : I — I
defined by

JH(f(xl) +-+ f(%))
n )
where the generating function f : I — J is continuous and strictly monotonic and

I,J C R are intervals. In a similar way we can define a set-valued counterpart of
the quasi arithmetic means putting, for a given set-valued map F : I — S(J),
F(x1)++F(:Un)>

n

Ap(1,...,20) =

Ap(x1,...,2p) :F+<

where F'*(B) := {x € I : F(z) C B}. However, without any additional assump-
tions, Ar need not be a set-valued mean (see [7, Examples 2 and 3)).

The following result proved in [7] gives conditions under which A is a set-valued
mean:

Theorem 1.1. Let f,g : I — J be strictly increasing functions such that f is
concave and g is conver. Assume that f < g on I and F(x) = [f(z),g(x)] for all
x € I. Then, for every n > 2, the map Ap : I" — S(I) given by

1 n
Ap(z1,. .. o0 :F+(— F ) el
F(xla 7‘7:) n; (13) 1 Ty €

1s a set-valued mean.

However, it turns out that the assumptions on f and g in the above theorem
are sufficient but not necessary conditions for Ar to be a set-valued mean. For
instance, the functions f(z) = —1/z, g(xz) =Inz, x > 0, do not satisfy the above
assumptions, but Ar generated by F'(z) = [f(x),g(z)], z > 0, is a set-valued mean
(see Example 2 below).

The aim of this paper is to present a full characterization of set-valued quasi-
arithmetic means generated by F = [f,g]. Examples and further properties of
set-valued quasi-arithmetic means are also presented.
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2. A CHARACTERIZATION

Let us start by recalling the classical comparison property due to Hardy, Little-
wood and Pélya [5, Thm. 92], which will be needed in our investigations.

Lemma 2.1. Let f,g: I — J be continuous and strictly monotonic. If g is increas-
ing (decreasing), then Ay < Ay on I™ if and only if g o 1 is convex (concave).

The following characterization theorem is the main result of this paper.

Theorem 2.2. Let f,g : I — J be continuous and strictly increasing (strictly
decreasing) functions. Assume that f < g on I and F(z) = [f(z),g(x)], x € I.
Then, the following conditions are equivalent:

1. For every n > 2, the map Ap : I — S(I) given by
1 n
(2.1) Ap(zn,. .. 20) = F+(— ZF(azi)), 1. € 1,

n“
=1

is a set-valued mean.
2. 2. The map Ap : I* — S(I) given by

(2.2) Ap(z1,22) = F* (W) v,a €1
15 a set-valued mean.
3. The function go f~' is convex.
4. For everyn > 2 and all x1,...,xp, € 1
(2.3)
[Afp(z1,...,20), Ag(x1,...,xn)] if f,g are increasing
Ap(x1,...,2pn) =

[Ag(x1,. .. xn), Ap(x1,...,2n)] if f,g are decreasing.

Proof. Implication 1 =-2 is clear.
2 = 3. Since Ap defined by (2.2) is a set-valued mean, Ap(z1,22) # 0 for all
21,29 € I. Fix 21,29 € I and take any z € Ap(r1,22). Then

[f(2),9(2)] = F(z) C F(z1) + F(x2) _ f(z1) + flz2) glz1) + g(:tzg)]7

2 B 2 ’ 2
which implies

f(fﬂl)-;f(l‘z) < f(z) and () < 9(901)-;9(562)‘
Denote y; = f(x1),y2 = f(x2). Since f~! and g are both strictly increasing (or
strictly decreasing), by (2.4) we get

1Yty 9(f M) + 9(f " (y2))
g(f 1(*)) <g(2) < :
2 2
which means that the function go f~! is midconvex. Since it is continuous (because
f and g are continuous), it is also convex.

(2.4)
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To prove that 3 = 4 assume first that f, g are strictly increasing. Since go f~!
is convex, by the comparison property (Lemma 2.1) Ay < Ay on I". Let z €
[Af(x1,...,2n), Ag(x1, ..., 2,)]. Then

S @) <220 (23 0tw)
=1 =1

and, by the monotonicity of f,g

n

LS Fw) <7(2) md gl < 23 g,
i=1 '

Hence

which implies
1 n
A F+<52F(xz)> = AF($1,...,xn),
i=1
and shows that

(2.5) [Af(z1,...,20), Ag(x1, ..., 2n)] T Ap(x1,...,2p).

To prove the reverse inclusion take any z € Ap(x1,...,2,) (Ap(x1,...,2,) # 0 by
the previous step). Then

n

F) €= S R = [ 37 f o D o).
=1 =1

=1

which implies

S @) < f() and g(x) <) g(w)
i=1 i=1
and hence
IR0 T PRERIE Sty
=1 =1

This show that
Ap(x1,...,2n) C[Af(z1, ..., 20), Ag(x1, ..., 20)],
which together with (2.5) proves Ap(x1,...,2n) = [Af(T1,...,20), Ag(x1, ..., 2T0)].
Now, assume that f, g are strictly decreasing. Then g o f~! is strictly increas-
ing. Since, by the assumption, g o f~! is convex, fog™! = (go ffl)f1 is con-

cave. Hence, by Lemma 2.1, A; < Ay on I". The proof that Ap(x1,...,2,) =
[Ag(z1,...,2p), Af(z1,...,2,)] is analogous as previously.
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The last implication 4 = 1 is clear. Indeed, if Ap is of the form (2.3), then
Ap(z1,...,2) # 0 for all x1,..., 2, € I, and

Ap(z1,...,2y) C [min{zy, ..., 2, }, max{z1,...,2,}] = conv{z1,...,zn},
because, being means,
Ap(x1, ... xn), Ag(zr, ... 2p) € min{xy, ..., 2, }, max{zy, ..., z,}]

for all x1,...,x, € I. This shows that Ap is a set-valued mean and finishes the
proof.
d

Remark 2.3. The functions f and ¢ in the above theorem must be both strictly
increasing or both strictly decreasing. If this condition is not satisfied, then the
map Ap generated by F' = [f, g] need not be a set-valued mean. For example, let
f(x) = —z and g(x) = z, € [0,00). Then f is strictly decreasing, g is strictly
increasing and go f~! is convex. However, Ar generated by F(z) = [~x,z], © > 0,
is not a set-valued mean. Indeed, for any x > 0 we have

M) — F+([—x,x]) = [0, 2] g {z} = conv{zx, z}.

AF($,$):F+( 5

To present some examples of set-valued quasi-arithmetic means consider the clas-

sical harmonic, geometric, arithmetic and quadratic means defined for z1,...,x, >
0 by
n
H(zy,...,20) = v+——, G(r1,...,20) = Y120,

2 ... .2
A(:E1,---,l‘n)=xl+n¢, K(mb---,l‘n):ﬁ/xl—i_nﬂ-

All these means are quasi-arithmetic means generated by the functions f(z) =
—1/x, f(z)=Inz, f(x) ==z and f(x)= 2%, respectively. It is known that

(2.6) H(zy,...,zn) <G(z1,...,20) < A(z1,...,25) < K(21,...,%0),

for all z1,...,z, > 0.
Given two means M, N : I" — I with M < N we denote by M N the set-valued
mean defined by

MN(z1,...,2,) = [M(xl,...,:vn),]\f(:cl,...,xn)], T1,...,Tn € 1.
Example 2. Let f(z) = —1/z, g(z) =Inz, z > 0and Fi(z) = [f(z),g9(x)],z > 0.

Then f,g are strictly increasing, f < g and go f~!(z) = —In(—=z) is convex on
(—00,0). Therefore Ap, is an quasi-arithmetic set-valued mean and

Ap (z1, ... xn) = [Af(z1, ... 2p), Ag(z1, ..., 20)] = HG (21, ..., 2n), Z1,..., 25 > 0.

Similarly, taking one by one Fy(z) = [Inz,2?], F3(z) = [—1,2], Fi(z) = [Inz, 2],
F5(z) = [z,2° + 1] and Fg(z) = [-1,2?%], 2 > 0, we obtain

Ap,(z1,...,20)) = GK(z1,...,20), Ap,(1,...,25)) = HA(z1,...,2p),
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Ap,(z1,...,20)) = GA(x1, ..., 20n), Ap(T1,...,2,)) = AK(x1,...,2y),
and
Ap,(z1,...,20)) = HK(x1,...,2y), forall zi,...,2, > 0.

3. FURTHER PROPERTIES

In this section we discuss some more results on quasi-arithmetic set-valued means.
In particular we present a comparison property for such means and give conditions
under which the arithmetic mean is a selection of a given set-valued quasi-arithmetic
mean. As a consequence we obtain an alternative proof of certain known inequalities
between classical means.

Theorem 3.1. Let fi, fo,g1,92 : I — J be continuous and strictly increasing
(strictly decreasing). Assume that fi < fo and g1 < g2 on I. Put F(z) =
[fi(z), fo(z)], G(x) = [g1(x),92(x)],z € I and assume that Ap,Ag : I" — S(I)
are set-valued means. Then

Ap(z1,...,zn) C Ag(x1, ... 20), T1,...,2n €1
if and only if f10 gfl and gs © f;l are conver.

Proof. Assume first that fi, f2, g1, go are strictly increasing. Since Ap and Ag are
set-valued means, by Theorem 2.2 we obtain Ar = [Af, Ap] and Ag = [Ag,, Ay, ).
The condition Ap C Ag implies that Ay > A, and Ay, < Ay,, which, by Lemma
2.1, means that f; ogf1 and go of{1 are convex. Conversely, if f; ogf1 and go Of;1
are convex, then, by Lemma 2.1, Ay, > Ay and Ay, < Ay,. Consequently,

Ap(ar,. . mn) = [Ap(@n. . wn) Ap (o, 2)
C [Ag (1, 2n), Agy (21, ... 2n)] = Ag(21, ..., 20),

for all z1,...,2, € 1.

Now assume that fi, fs, g1, g2 are strictly decreasing. Then, by Theorem 2.2,
Ap = [Ayf,, Ay | and Ag = [Ay,, Ay, ]. Since Ap C Ag, we have Ay, > Ay, and
Ap < Ay . Hence, by Lemma 2.1, fa0 gy Land gp o fi L are concave (and strictly
increasing). Therefore gy o fy ' = (f20 951)—1 and fiog; ! = (910 ffl)_l are
convex.

Conversely, if fi o g; Land g9 0 fy L are convex, then g; o f1 Land fo0 95 L are
concave. Therefore by Lemma 2.1, Ay, < Ay and Ay, < Ay,, and hence

Ap(xy,... xp) = [Ap(x1,. . 20), Af (21, ..., 2p)]
C [Ag(z1,... 2n), Ag (z1,...,20)] = Ac(z1, ..., 20),
for all z1,...,2, € I. This completes the proof. O

As an immediate consequence of the above theorem we get the following corollary.

Corollary 3.2. Let fi1, f2,91,92 : I — J be continuous and strictly increasing
(strictly decreasing). Assume that fi1 < fo and g1 < g2 on I. Put F(x) =
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[f1(z), fa(2)], G(x) = [91(x), 92(2)], = € I, and assume that Ap, Ag : I" — S(I)

are set-valued means. Then
AF(J}l,...,.%'n) :Ag(xl,...,xn), Tly.e..,Xp €1

if and only if f10 gfl and go © f2’1 are affine.

We say that a mean m : I™ — [ is the selection of a set-valued mean M : [ —
S(I) if
m(x1,...,xn) € M(x1,...,20), T1,...,2, € I.

Theorem 3.3. Let f,g : I — J be continuous and strictly increasing (strictly
decreasing). Assume that f < g on I and put F(x) = [f(z),g(x)], © € I. Then
Ap : I™ — I is a set-valued mean and the arithmetic mean A is a selection of Ap
if and only if f is concave and g is conver.

Proof. Assume first that f and g are strictly increasing. If Ap is a set-valued mean
and A is its selection, then, by Theorem 2.2, Ap = [Af, Ay] and

f_l(f(x1)+~--—|—f(a:n)> < Tty <g_1<g(:1:1)+~~+g(xn)).

n o n - n

From here

fla) + -+ flan)

n

1+ -+ Ty
<s(*—)
and

g(1) + -+ glen)

n

<

T4+ Ty

o )
n

Since f and g are continuous, this imply the concavity of f and the convexity of g.

Conversely, if f is concave and ¢ is convex, then g o f~! is convex. Thus from

Theorem 2.2 we get that Ap is a set-valued mean and Ap = [Af, Ay]. Let h(z) =

x, © € I. Then ho f~' and g o h~! are convex. Therefore, using Lemma 2.1 we

obtain Ay < Ay = A and A = A) < A,;. Consequently,

Az, ..., xzn) € [Ap(21,. . 20), Ag(x1, ..., 2n)] = Ap(z1, ..., 2n), T1,...,2n €1,

which proves that A is a selection of Ap.
The proof in the case where f and g are decreasing is similar (note only that
Ap = [Ag, Ay] in this case) and we omit it.

O

As an immediate consequence of the above theorem we can obtain in an alterna-
tive way certain known inequalities between classical means.

Example 3. Let f(z) = —1/z, g(z) = 2% and F(z) = [f(x),g(x)], 2 > 0. Then
Ar = HK and, by Theorem 3.3, A is a selection of Ar. Hence
n T4+, zi+ -+ ad

< < T1y...,Tn > 0.
iﬁ—‘--—i—i_ n = n ) 1, s b
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Let f(z) = Inz, g(x) = 22 and F(x) = [f(x),g(x)], £ > 0. Then Ar = GK and,
by Theorem 3.3, A is a selection of Ap. Hence

T+t x4+ a2
VT, < 2y A L

n n

T1y.-y Xy > 0.
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