s,
Y Livear and Wonliear \)@aﬁeﬁ& S’ SN 2ieaaler CoPyriant 2022

Volume 8, Number 1, 2022, 95-126

STRONG CONVERGENCE ANALYSIS OF A SELF ADAPTIVE
METHOD FOR SOLVING SPLIT FEASIBILITY PROBLEM WITH
MULTIPLE OUTPUT SETS
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ABSTRACT. In 2020, Reich et al [34] studied the split feasibility problem with
multiple output sets in Hilbert spaces. They proposed two new algorithms for
solving this problem which mainly requires estimation of the operator norm and
computation of projections onto closed convex sets, which is not easy to do so in
general. This paper studies the split feasibility problem with multiple output sets
in general Hilbert spaces. For solving the aforementioned problem, we propose a
new self-adaptive relaxed C'Q algorithm which involves computing of projections
onto relaxed sets (half-spaces) instead of computing onto the closed convex sets,
and it does not require calculating the operator norm. In addition, we present
some newly derived results for solving the split feasibility problem. We establish
a strong convergence theorem for our proposed algorithm. Finally, we provide
some numerical experiments to illustrate the implementation and applicability of
our proposed algorithm compared to some existing results. Our results extend
and improve some methods in the literature.

1. INTRODUCTION

Let Hy and Hs be two real Hilbert spaces. Let C' and @) be nonempty, closed and
convex subsets of H; and Hs, respectively. Let B : Hy — H> be a nonzero bounded
linear operator and let B* : Hy — Hi be its adjoint. The split feasibility problem
(SFP) is formulated to find a point z* € H; satisfying

(1.1) x* € C such that Bz* € Q.

The SFP was first introduced in 1994 by Censor and Elfving [10] in finite-dimensional
Hilbert spaces for modeling certain inverse problems and has received a great at-
tention since then. This is because the SFP can be used to model several inverse
problems arising from, for example, phase retrievals and in medical image recon-
struction [10, 5], intensity-modulated radiation therapy (IMRT) [11, 9, 13], gene
regulatory network inference [45], just to mention but few, for more details one can,
see, e.g., [1, 50, 6, 43, 49, 51, 23, 37| and references therein. In the span of the
last twenty five years, focusing on real world applications, several iterative meth-
ods for solving the SFP (1.1) have been introduced and analyzed. Among them,
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Byrne [5, 6] introduced the first applicable and most celebrated method called the
well-known C'Q-algorithm as follows: for any initial guess xzg € Hy;

(1.2) Tpt1 = Po(xn — 7,B*(I — Pg)Bxy)),

where Pc and FPg are the metric projections onto C' and @), respectively and 7,, €
(0, ﬁ) where || B||? is the spectral radius of the matrix B*B. The CQ algorithm
proposed by Byrne [5, 6], requires the computation of metric projection onto the
sets C' and @ (in some cases, it is impossible or is too expensive to exactly compute
the metric projection). In addition, the determination of the stepsize depends on
the operator norm in which computation (or at least estimation) of operator norm

is not an easy task. In practical applications, the sets C and @) are usually the level
sets of convex functions which are given by

(1.3) C:={xeH :c(r) <0} and Q ={y € Ha: q(y) <0},
where ¢ : Hy — R and ¢ : Hy — R are convex and subdifferentiable functions on

H, and Ho, respectively, and that (generalized gradients) dc(x) and dq(y) of ¢ and
q, respectively, defined by

Oc(x) :={¢£ € Hy : c(z) > c(z)+ ({,z — z), foreach z € Hy}
and
9q(y) :={n € Hz: q(u) = q(y) + (n,u —y), for cach u € Hy}
are bounded operators (i.e., bounded on bounded sets).
Later, in 2004, Yang [51] generalized the C'QQ method to the so-called relaxed

CQ algorithm, needing computation of the metric projection onto (relaxed sets)
half-spaces Cy, and Q,,, where

(1.4) Cp:={z € Hy:c(xy) < (&n,zn — )},
where &, € dc(zy,) and
(1.5) Qn = {y € Hy: ¢(Bxy) < (M, Brn — y)}

where 7, € 9q(Bx,). It is easy to see that C;, O C and @, 2 @ for all n > 1.
Moreover, it is known that projections onto half-spaces C, and @), have closed
forms. In what follows, define

1

(1.6) fulan) =S~ Pq,.)BaalP?,

where @), is given as in (1.5) and f,, is a convex and differentiable function with its
gradient V f,, defined by

(1.7) V fa(zn) == B*(I — Pg,,)Bxy.

More precisely, Yang [51] introduced the following relaxed C'Q algorithm for solving
the SFP (1.1) in a finite-dimensional Hilbert space: for any initial guess z¢ € Hy;

(1.8) T+l = PCn (xn - Tnvfn(lin))’

where 7, € (0, ﬁ) Since Pg,, and Pg,, are easily calculated, this method appears
to be very practical. However, to compute the norm of B turns out to be complicated
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and costly. To overcome this difficulty, in 2012, Lépez et al. [30] introduced a relaxed
CQ algorithm for solving the SFP (1.1) with a new adaptive way of determining
the stepsize sequence 7, defined as follows:

pnfn(xn)

1.9 Ty o= ndnitn)

) IVl

where {p,} € (0,4),Vn > 1 such that lirginf pn(4 — pp) > 0. It was proved that
n—od

the sequence {z,} generated by (1.8) with 7,, defined by (1.9) converges weakly to
a solution of the SEP (1.1). That is, their algorithm has only weak convergence in
the framework of infinite-dimensional Hilbert spaces.

Many authors also proposed algorithms that generate a sequence {x,} converges
strongly to a point in the solution set of the SFP (1.1), see, e.g., [30, 19, 25, 52, 40].
In particular, Deepho and Kumam [19] proposed a modified Halpern’s iterative
scheme for solving the SFP (1.1) in the setting of infinite-dimensional Hilbert spaces
as follows: for any fixed point w € H; and any initial guess xg € Hy;

(1.10) Tp+l = Bt + SnTy + Y Po (a:n — 1, B*(I — PQ)B:cn),Vn > 1,

where 7, € (0, ﬁ) and {0n}, {on}, and {v,} are three sequences in [0, 1] such
that 3, +0d,+7, = 1. Assuming that the SFP (1.1) is consistent, it was proved that,

if {Bn}, {0n}, and {v,} satisfy the assumptions: (c1) li_)m Bn =0and > 5, =4o0;

n=1
(c2) limsupd, < 1; (€3) D07 |But1 — Bnl < 00, D02 [0n41 — 0n| < o0, and
n—oo

Yool mt1 — | < oo, then the sequence {z,} generated by (1.10) converges
strongly to a solution of the SFP (1.1). However, their algorithm also requires to
compute the operator norm, and the projections onto the sets C' and @) which is not
easy to do so. In 2012, Lépez et al. [30] proposed a Halpern’s iterative scheme for
solving the SFP (1.1) in the setting of infinite-dimensional Hilbert spaces as follows:
for any fixed point v € H; and any initial guess x¢ € Hi;

(111) Tn+1 = Bru + (1 - ﬂn)PCn (:En - Tnvfn(xn)>7vn >1,

and in 2013, He et al. [25] also introduced the following relaxed C'Q algorithm
for solving the SFP (1.1) such that strong convergence is guaranteed in infinite-
dimensional Hilbert space: for any fixed point u € H; and any initial guess xg € Hy;

(1.12) Tni1 = Pe, (ﬂnu + (1= B) (wn — Tann(.Z‘n))>,
where C), (half-space) and 7,, (variable step size) are given as in (1.4) and (1.9), re-

o0
spectively, and the sequence {8,} C (0,1) such that T}Lrgo Bp =0 and 21 B = +00.
n=
Under certain suitable conditions, it was shown that the sequence {z,,} generated by
(1.11) and (1.12) converges strongly to the point p = Pr(u). One can see that other
related works can be found for example in [16, 22, 30, 17] and references therein.
Some generalizations of the SFP have also been studied by many authors. We
mention, for instance, the multiple-sets SFP (MSSFP) [11, 54, 55, 29, 18, 28, 26, 27,
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38, 41, 46, 32, 4, 53, 47, 42], the split common fixed point problem (SFPP) [14, 33],
the split variational inequality problem (SVIP) [12] and the split common null point
problem (SCNPP) [7, 44].

In 2020, Reich and Tuyen [35] first introduced and studied the following general-
ized split feasibility problem (GSFP).

Let H;, i =1,..., N, be real Hilbert spaces and C;, i = 1,..., N, be closed and
convex subsets of H;, respectively. Let A; : H; — H;y1,¢ = 1,...,N — 1, be
bounded linear operators such that

(113)  S=CnATG)n - nar (450 (A3 (0n)) # 0.
The generalized split feasibility problem (GSFP) is to find an element
(1.14) ptes.

Reich and Tuyen in [35] proved a strong convergence theorem for a modification
of the CQ method which solves the GSFP (1.14). For more details on the GSFP
(1.14), one can read the paper [35].

Very recently, Reich et al. [34] considered and studied the following split feasi-
bility problem with multiple output sets in Hilbert spaces: Let H, H;, i =1,..., N,
be real Hilbert spaces and let B; : H — H;, i =1,..., N, be bounded linear opera-
tors. Let C'and Q;, i = 1,..., N, be nonempty, closed and convex subsets of H and
H;,i =1,...,N, respectively. Given H, H; and B; as above, the split feasibility
problem with multiple output sets (in short, SFPMOS) is to find an element p* such
that

(1.15) pel:=Cn (miNzl B[I(QZ-)> £0.
Reich et al. [34], defined the function g : H — R by

| N
(1.16) 9(x) = z_; (I — Pg,)Bix|?, for all x € H.

It is not difficult to see that an element p* is a solution to the SFPMOS (1.15) if
and only if it is a solution to the problem

1.1 i
(1.17) gggg(fc),

This is equivalent to
(1.18) 0€ Vg(p") + Ne(p),

where N¢ () is the normal cone of C' at the point x [Recall: Let C' C H be a closed
convex subset of a real Hilbert space H. The Normal cone of C' at x denoted by
Ne(x) is given by No(z) ={z € H: (2, y—z) <0, Yy € C}} Which implies

N
b= P (p* ~AY BT - PQi)Bip*),
i=1
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where A is an arbitrary positive real number. Motivated by these characterizations,
Reich et al. [34] introduced the following two methods for solving the SEPMOS
(1.15). For any given points xo,yo € H, {z,} and {y,} are sequences generated by

N
(1.19) Tnp1 = Po (xn A > BT - PQZ,)BZ-Q:TJ,
=1
N
(1.20) it = anfyn) + (1= ) Po(yn = A > Bi (I = Po,)Bign)
=1

where f : C' — C is a strict contraction mapping of H into itself with the contraction
constant 6 € [0,1), A\, C (0,00) and {a,} C (0,1). It was proved that if the
sequence {\,} satisfies the condition:

O<a< A\, <b< for all n > 1,

N maxj—1 2. .~ {[|Bil]*}
then the sequence {x,} generated by (1.19) converges weakly to a solution point
p* € T of the SFPMOS (1.15). Furthermore, if the sequence {«,} satisfies the
conditions:

o
lim o, =0 and E Qp = 00,
n—oo 1

-

then the sequence {y,} generated by (1.20) converges strongly to a solution point
p* € T" of the SFPMOS (1.15), which is a unique solution of the variational inequality

(I-fp*,z—p*) >0V el.

An important observation here is that the iterative methods given by Scheme
(1.19) and Scheme (1.20) introduced by Reich et al. [34] requires to compute the
metric projections on to the sets C' and @);. Moreover, it needs to compute the
operator norm. Due to this reason, the following question naturally arises.

Question: Can we have a strongly convergent algorithm for solving the SFPMOS
(1.15) which mainly involves a self-adaptive step-size and requires to compute the
projections onto half-spaces so that the algorithm is easily implementable?.

We have a positive answer for the above question which is motivated by the algo-
rithms proposed by Reich et al. [34] for solving the SFPMOS (1.15), the iterative
methods given by schemes (1.10)-(1.12) proposed for solving the SFP (1.1), and
other similar results in the literature. In this paper, we propose a new self adaptive
relaxed C'Q algorithm for solving the SFPMOS (1.15) in general Hilbert spaces.

This paper is organized as follows. In the next section, we recall some necessary
tools which will be used in establishing our main results. In Section 3, we propose a
self-adaptive relaxed C'Q algorithm for solving the SFPMOS (1.15), and we establish
and analyze a strong convergence theorem for the proposed algorithm. Also, in
this section, we present some newly derived results for solving the SFP (1.1). In
Section 4, we present the application of our proposed method to solve the GSFP
(1.14). Finally, in Section 5, we provide some numerical experiments including
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an application to signal recovery to illustrate the implementation of our proposed
method and we compare with some similar existing results.

2. PRELIMINARIES

In this section, we recall some preliminaries which are needed in the sequel. Let
H be a real Hilbert space with the inner product (., .), and induced norm ||.||. Let I
stands for the identity operator on H. We denote the fixed point set of an operator
T :H — H (if T has fixed point) by Fiz(T), i.e., Fiz(T) = {x € H : Tz = z}. Let
the symbols “ — 7 and “ — 7, denote the weak and strong convergence, respectively.
For any sequence {x,} C H,

wy(zn) ={z € H : I{x,, } C {z,} such that z,, — =}
denotes the weak w-limit set of {z,}.
Definition 2.1. ([3]) Let H be a real Hilbert space with inner product (,) and

induced norm ||.||. Let C' be a nonempty closed convex subset of H. Let T : C — H
be a given operator. Then T is called

(1): Lipschitz continuous with constant o > 0 on C' if
(2.1) [Te =Tyl < ollz —yl,Va,y € C;
(2): nonexpansive on C' if
(2.2) [Tz =Tyl < llz —yll, e,y € C;
(3): firmly nonexpansive on C' if
(2.3) 1T — Ty|* < |lz = ylI* = |(I = T)z — (I = T)y|*,Va,y € C,
which is equivalent to
(24) 1T = Ty||* < (Tz — Ty« —y),Va,y € C;

(4): averaged if there exist a number o € (0,1) and a nonexpansive operator
F : C — H such that

(2.5) T =0F + (1 —0)I, where I is the identity operator.
In this case, we say that T is og-averaged.

Definition 2.2. ([3]) Let C' C H be a nonempty, closed and convex set. For every
element x € H, there exists a unique nearest point in C, denoted by Pc(x) such
that

(2.6) |2 = Po(z)|| = minf|lz — || : y € C}.

The operator Po : H — C'is called a metric projection of H onto C' and it has the
following well-known properties.

Lemma 2.3. ([3, 24]) Let C C H be a nonempty, closed and convex set. Then, the
following assertions hold for any x,y € H and z € C :

(1): (x — Po(z),z — Po(z)) < 0;
(2): [[Pe(x) — Po(y)ll < [l —yll;
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(3): [|1Po(z) — Pe()l® < (Po(z) — Poly), = — y);
(4): [|[Po(z) — 2|* < [z — 2|* — |l — Po(x)|*.

Lemma 2.4. ([6, 3]) Let C C H be a nonempty closed convex subset. Then, I — Pc
is firmly nonexpansive and so is nonexpansive.
Definition 2.5. Let f : H — (—o0, +0o0] be a proper function. Then
(1) : fis convex if
fOz+(1—-0)y) <df(x)+(1—9)f(y),¥d € (0,1) and Vx,y € H.

(2) : f is strongly conver with constant o, where o > 0, if
F(6+ (1= 0)y) + 2001 ~8) e~y < 6(x) +(1-0)f(4). Y8 € (0.1) and Va,y € H.
(3) : A vector w € H is a subgradient of f at a point z if

(4) : The set of all subgradients of a convex function f : H — R at x € H,
denoted by 0f(x), is called the subdifferential of f, and is defined by
Of(x)={we H: f(y) > f(x) + (w,y — x), for each y € H}.
(5) : If Of(x) # 0, f is said to be subdifferentiable at x. If the function f is
continuously differentiable then df(z) = {V f(x)}.
Definition 2.6. Let f: H — (—o0, +0o0] be a proper function.

(1) : f is lower semicontinuous (Isc) at x if x,, — x implies
f(z) <liminf f(x,).
n—oo
(2) : fis weakly lower semicontinuous (w-lsc) at z if x, — = implies
f(z) < liminf f(x,).
n— o0

(3) : f is lower semicontinuous on H if it is lower semicontinuous at every
point x € H and f is weakly lower semicontinuous on H if it is weakly lower
semicontinuous at every point z € H.

Lemma 2.7. ([50]) Let C' and Q be closed convex subsets of real Hilbert spaces Hy
i

and Ho, respectively, and f : Hy — R is given by f(x) = 5|/(I — Pg)Az||?, where
A : Hy — Hy be a bounded linear operator. Then for § > 0 and x* € Hy, the
following statements are equivalent.
(1): The point x* solves the SFP (1.1), i.e, z* € {x € C': Ax € Q}.
(2): The point x* is the fized point of the mapping Po(I — 6V f).
(3): The point z* solves the variational inequality problem with respect to the
Vf, that is find a point x* € C such that

(Vf(z"),x —z*) > 0,Vz € C.

Lemma 2.8. ([15]) Let Hy and Ha be real Hilbert spaces and f : Hi — R is given
by f(z) = ||(I — Po)Az|* where Q is closed convex subset of Hy and A : Hy — Ho
be a bounded linear operator. Then the following assertions hold:
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(1) : f is convex and differentiable;

(2) : f is weakly lower semicontinuous on Hy;

(8) : Vf(z) = A*(I — Pg)Az, for x € Hy;

(4) : V[ is[|A|*-Lipschitz, i.e., [|Vf(2)=V @)l < |AI*[la—yll, Y,y € Hi.

Definition 2.9. Let {A,} be a real sequence. Then, {A,} decrease at infinity if
there exists ng € N such that A,+1 < A,, for n > ng. In other words, the sequence
{A,,} does not decrease at infinity, if there exists a subsequence {Ay, }+>1 of {A,}
such that A,, < Ay, 41, for all t > 1.

Lemma 2.10. ([31]) Let {A,,} be a sequence of real numbers that does not decrease
at infinity. Also consider the sequence of integers {¢(n)}n>n, defined by

p(n) =max{m e N:m <n,A,, < Apy1}.

Then {p(n)}n>n, i a nondecreasing sequence verifying lim ¢(n) = oo, and for all
- n—oo

n > ng, the following two estimates hold:
Apn) < Apmy+1 and An < Ayt

Lemma 2.11. (48] ) Let {s,} be a sequence of nonnegative real numbers satisfying
the following relation:

Sn+1 < (]- - Un)sn + opiln + 6n’n > 1,

where {0y}, {pn} and {Bn} satisfying the conditions: (1) {0y} C [0,1], > 27 0p =
Q3 (2) lim sup p1,, < 0; (3) Bn =0, 220:1 Bn < 0.

n—oo
Then, lim s, = 0.
n—oo

3. MAIN RESULTS

In this section, we propose a new self adaptive relaxed C'Q-method for solving
the SFPMOS (1.15), and we prove a strong convergence theorem of the proposed
algorithm. We consider a general case of the SFPMOS (1.15), where the nonempty,
closed and convex sets C' and Q;(i = 1,...,N) are given by level sets of convex
functions. Throughout this section, we assume that ¢ : H — R and ¢; : H; — R are
lower semicontinuous convex functions and the sets C' and @; are given by

(3.1) C:={zx€H:c(x)<0}and Q; :=={y € H; : ¢i(y) <O0}.

We assume that ¢ and each ¢; are subdifferentiable on H and H;, respectively,
with subdifferential Oc and Jg;, respectively. Moreover, we suppose that for any
x € H a subgradient &, € dc(z) can be calculated, and for any y € H; and for each
i€{l,...,N}, asubgradient n!" € J¢;(y) can be calculated. Again, we assume that
both dc and J¢;(i = 1,...,N) are bounded operators (i.e., bounded on bounded
set).

In this situation, the projections onto C' and @); are not easily implemented in
general. To avoid this difficulty, we introduce a relaxed projection gradient methods,
in which the projections onto the half-spaces are adopted in stead of the projections
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onto C and @;. In particular for n € N, we define the relaxed sets (half-spaces) C,,
and Q7(i=1,...,N) of C and Q;, respectively at z,, as follows:

(3.2) Cp={z € H:c(zy) < (&, xn— 1)},
where &, € Oc(x,,) is subgradient of ¢ at x,, and
(3:3) Qi =={y € H; : ¢i(Bixy) < (0", Bizn — y) },

where n' € 0¢;(Bjzy). By the definition of subgradient, it follows that C' C C,
and Q; € Q7 (see [21]) hold for every n > 0. Moreover, in order to remove the
requirement of estimating the value of operator norm, in which finding operator
norm is not easy, we now introduce a new way of selecting the step sizes for solving
the SFPMOS (1.15). Now, we define the following (relaxed) proximity function: for
x € H,

1 N

(3.4) gule) i= 5 D7 I = Pop) B,
=1

We note that g,(.) is differentiable with its gradient given by

N
(3.5) Vgn(x) :=>_ B;(I - Pon)Bix,
=1

where each Q7 are half-spaces given in (3.3). We note that g, is weakly lower semi-
continuous, convex and differentiable function [2] and Vg, is Lipschitz continuous.

Next, we present a self-adaptive relaxed C'@Q) algorithm, that we wish to propose
for solving the SFPMOS (1.15).

Algorithm 1: Strongly convergent self-adaptive relaxed C'QQ algorithm for
the SFPMOS (1.15)

Initialization: Choose positive sequences {p,} C (0,4), {5,} C (0,1),
{6n} C [0,1) and {e,} C (0,1) such that 3, + 0, + &, = 1. Let u € H be a
fixed point. Select an arbitrary starting point zg € H, and set n = 0.

Step 1: Given the current iterate z,, € H. If Vg,(x,) = 0 for some n € N,
then stop. Otherwise, continue and calculate

Pngn(Tn)

IV gn(zn)|[*
Step 2: Compute the next iterate as

(3.7) ZTny1 = Po, (ﬂnu 4+ Onpn + €0 (a:n - Tann(xn))),

where C), is the half-space given as in (3.2).

(3.6) Tp i=

We can see that Algorithm 1 terminates at some iterate (say n) when Vg, (z,) =
0; otherwise, if Algorithm 1 does not stop, then we have the following strong con-
vergence theorem for approximating the solution of the SFPMOS (1.15).
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Theorem 3.1. Let H, H;, i = 1,...,N, be real Hilbert spaces and let B; : H —
H;,i = 1,...,N, be bounded linear operators. Let C' and Q;, 1 = 1,...,N, be
nonempty, closed and convexr subsets of H and H;, i = 1,..., N, respectively. As-
sume that the SEPMOS (1.15) is consistent. Suppose the sequences {pn}, {Bn},
{0n}, and {e,} in Algorithm 1 satisfy the following conditions:
o
(A1): lim B, =0 and Y B, = +oo;
n—o0 n=1
(A2): 0 < liminfe, <limsupe, < 1;
n—00 n—00
(A3): liminf p,(4 — pp) > 0.
n—o0
Then, the sequence {x,} generated by Algorithm 1 strongly converges to the solution
p € I, where p = Pr(u).

Proof. We may assume that the sequence {x,} is infinite, that is, Algorithm 1 does
not terminate in a finite number of iterations. Thus Vg, (z,) # 0 for all n > 0.
Recall that T is the solution set of the problem (1.15). In the consistent case of the
problem (1.15), I' is nonempty, closed and convex. Thus, the metric projection Pr
is well-defined.

Let p € I and set z, = x,, — 7, Vgn(zy). Note that I — Pgn foreachi=1,..., N
is firmly nonexpansive and Vg, (p) = 0. Hence, we have from Lemma 2.3 that

N
(Van(xn),xn —p) = < Z B (I — PQ;L)BiJJn, Ty — p>

i=1

Il
.MZ

@
Il
—

(B: (I - Pop)Bian 2~ p)

I
.MZ

@
I
—

((I = Pap)Bin, Biwn — Bip)

2
= 2971(1'71)7

M-

s
Il
—_

(3.8) H(I — Por)Biay

which implies that

Hzn—pH2 = ||(5Un—p>_7'nv9n($n)”2
= |lzn — p”2 + Tgvan("En)HQ — 27(Vgn(2n), T — p)
2 2
PnYn (Tn) 20n9n(Tn)
< len —pl* + — (29n(zn))
bon =P 9 gz 2 W gnCam) 22
2 2 n 4 " 2 n
— ||56n*p||2+ pngn(x )2 . P gn(x )2
IVgn(@a)lI? [[Vgn(zn)l
2
3.9 = o —pl* = pu(d — pn) s

Using the condition (A3), we have
(3.10) [z =PI < llzn = pII?, ¥n > 0.
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Next, we show {z,} is bounded. Since p € I' C C,, and the projection operator P,
is nonexpansive, we obtain from (3.7) and (3.10) that

|41 *p”2 = |[Pc, (Bt + 6nTn + Enzn) *p||2
< [[(Bnau + SnTn + €nzn) _pH2
< ﬁnHU—pHZ+‘5”H35n—pH2+€nHZn—pH2
< 571““_10”2+5onn_pH2+5onn_pHQ

Bullw = plI* + (1 = Ba) | zs — p|I?
max { |u — plf*, |z — pl|*}

IN

(3.11)

IN

max { |lu — pl|*, [|zo — p[*}.

Hence, {x,} is bounded. Consequently, {z,} and {B;x,}Y, are also bounded. The
rest of the proof will be divided in to two parts.

Case 1: Suppose that there exists ng € N such that {||z, — p|*}3Z,, is non-
increasing. Then {|z, — p|?}52; converges and |z, — p|> — [|[xns1 — p||> — 0, as
n — 0o. Then from (3.9), we obtain

(3.12) puld — p) =) R —
[V gn(zn)|
Since By, + 6, + &, = 1, also, from (3.11), we have the following estimation

1_571

I} 1
lzn = plI* = llzn = plI* < llu—pl*+ lzn = pI* = —llzn+1 —plI?
En En

B
= u—pl* = Zllen —pl?
5n n

1
+— [l = pII? = llwns1 = pI?]

n

B 1
< Pu—pl? + = lzn = I = a1 ~ 2l
En En
1
(3.13) = = [Ballu =PI+ [llew = pI* = Nz - pI?)]-
n

Combining (3.12) and (3.13) together, we obtain

g%(xn)
IV gn ()2

(4 — p) [z = plI* = |20 — pI?

(3.14)

IN

1 2 2 2
= Bl = oI+ [llza = pI* = llnsn = pl1?] -
By conditions (A2) and (A3) and (3.14), we have as n — oo

97% (zn)

: 2 2 il
1V gn ()] e o - - — -0
Non(za)2 = gn[ﬂn”u P2+ [len = pI? = 2ns1 — o ,

0< pn(4 - pn)
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which implies that

2
3.15 lim ——————— =0
( ) n—00 [|Vgn(zn)|?

We note that for each i = 1,..., N, Bf (I — Pgr)Bi(.) is Lipschitz continuous. Since
the sequence {z,} is bounded and

HB;(I—PQ?)BZ-xn

= HBZ‘(I—PQy)Bixn—BE‘(I—PQ?)Bip

< Bi|? —
E (;2%11 i )rxn ol

for all i = 1,..., N, we have the sequence {||B;(I — Pgr)B;z[/};2; is bounded.
Hence, {||Vgn(xn)|}22, is bounded. Consequently, we have from (3.15) that

(3.16) lim [[(1 — Pop)Biay| = 0
for each i =1,..., N. Since z, = z,, — 7,V gn(x,), then we have from (3.16) that

Iz — znll < 70l|Vgn(zn)| — 0, as n — oc.

That is
(3.17) lim ||z, — z,|| = 0.
n—oo
(3.18) nh_}rr;o | B (I — Pgr)Bizn| =0
for each i = 1,..., N. Furthermore, we have the following estimations.
Let
(319) Yn = Bnu + 5n33n +enzn = Bnu + (1 - Bn)vna
where
On €n
o= 1 _ann"' 1 _anw
This gives,
€
lon —zn| < = l|zn — x| = 0, n — o0,
1- Bn
lyn —vnll < Ballu—vn|| = 0, n— .
and
”yn - xn” < ||yn - UnH + ||’Un — CCnH — 0, n— oo.
Hence,

(3.20) lim |y — zp|| = lIm |lyn, — o] = lim |Jv, — z,] = 0.
n— 00 n—00 n—00



SELF ADAPTIVE METHOD 107

Since the P, is firmly nonexpansive, by Lemma 2.3 (4), we have the following
estimation

HxTL—O—I _pH2 = ”PCn Yn Pcn p)

(yn) — Po, 0)]1?

1Pc,,(yn) = Pe, (xa) + Pe,(zn) — Pe, (o)
(
(

< |IPc, (zn) = Po,®)|* +2(Pc, (yn) — Po, (%), Tnt1 — p)
< |IPc,(zn) = Po,®)II* + 2] Pe, (yn) — Po, (zn)|zn+1 = pl
< |Pe,(zn) = Po,®)II” + 2llyn — zalllznss — pll

(3.21) < lan = pl* = 1T = Pe,)zal® + 2]lyn — zallllzn — 2l

Noting that {z,} is bounded, we have from (3.21) that

(322) I~ Pe)eal® < D — ol ~ s — ol + 2 — 2l

where M is some positive constant. Due to the fact that (||, —p||* — || zns1 —p||* +
2||yn, — zp||M) — 0, as n — oo, we get from (3.22) that

(3.23) lim ||(I — Pg,)zn||> = 0.
n—oo

We claim here that wy,(x,) C I'. Since {x,} is bounded, there exists a subse-
quence {xy, } of {z,} such that {x,,} — p* € wy(z,). Next we show that p* € I.
That is, we need to show p* € C and B;p* € Q; for each i =1,..., N. Since {z,} is
bounded and from the boundedness assumption of the subdifferential operator dc,
the sequence {&,, }7° is bounded. Indeed, by (3.2) and (3.23), we obtain

(3.24) (@) < Ens Ty, = e, (@ny)) < NEnillllen, — Pon, (n)] = 0
The weak lower semi-continuity of ¢(.) and (3.24) implies that
c(p*) < liminf ¢(zy,, ) = 0.
k—o0
Consequently, p* € C.
Since {z,} is bounded and from the boundedness assumption of the subdiffer-

ential operator dg;, the sequence {n;*}?°, is bounded. This together with (3.16)
gives

q; (Bz$nk) < <77?’“7B2-:Enk - PQ:-% (le'nk)>
(3.25) < ‘nyk ‘(I—PQ%)BZ-:UW 0, k— oo,
for all 7 = 1,...,N. Since z,, — p*, we have B;z,, — B;p*. The weak lower

semi-continuity of ¢;(.) and (3.25) implies that
¢i(Bip”) < liminf ¢;(Bizn,) < limsup ¢i(Bizy,) < 0,

k—o00

forallt=1,...,N. That is, B;p* € Q; for alli =1,..., N. Hence, p* € T'.
Moreover, for p = Pru, we can see that

limsup(y, —p,u —p) = lim (y,, —p,u—p)
n—00 k—oo
(3.26) < (" —pu—p) <0.
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By Lemma 2.3 and (3.19), we have

lzns1 — o> = |[Po(yn) —pl

lyn — plI?

= (Bnu+ (1= Bn)vn — D, Yn — p)

Bl = p,yn —p) + (1 = Bn){vn — P, Yn — p)
Bnlu = p,yn —p) + (1 = Bn)lvn — pll[lyn — pll
(1= Bo)llzn — plI* + Bulu — p,yn — p).

Using (3.26) in (3.27) and applying Lemma 2.11, we obtain

IN

IN A

(3.27)

lim ||z, —p|* = 0.
n—oo
Therefore, as n — oo, , — p = Pru.

Case 2: Set A, = ||z, — p||>. Assume that {A,} is not decreasing at infinity. Let
¢ : N — N be a mapping for all n > ng (for some ng large enough) defined by
¢p(n) =max{t e N:t <mn, Ay <Ay}

By Lemma 2.10, {¢(n)};2,,, is a nondecreasing sequence such that ¢(n) — oo as
n — oo and

(3.28) max{Agy), An} < Agmy+1, Vn > ng.
After a similar conclusion from (3.16), it is easy to see that
(3.29) T (T~ Pyuc0) Bi g | = 0.

By the similar argument as above in Case 1, we conclude immediately that

lim {| B} (I = Pyot) Biw gy || = 0

n—oo
and
lim sup(yn) — pr 11— p) < 0.
n—oo
Since {zy(n)} is bounded, there exists a subsequence of {xg(,)}, still denoted by
{®4(n)} which converges weakly to p*. By similar argument as above in Case 1, we
conclude immediately that p* € C' and B;p* € Q; = p* € I
From (3.27) we have that
Zpmy+1 — 2IIF < (1= Bom)llZam) — pII” + Bom) (4 — Dy Yo(n) — p)
which implies by Lemma (2.11)
. . 2 _
Jim [|zgm) — pl|” = 0.
and

. 2 =
Jim [z )41 = p[" =0
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Moreover, for n > no, it is easy to see that Ag,) — Agny41 < 0 if n # @(n) (that
is n > ¢(n)), because for ¢(n) +1 < m < n, A, > Apy1. As a consequence, we
obtain,

0< An < maX{A¢(n), A(b(n)—i-l} = A¢(n)+17 n > no.
Therefore, we obtain TLILH;O A, = 0, that is, {x,} converges strongly to p. This

completes the proof. O

Remark 3.2. For the special case, where N = 1, the SFPMOS (1.15) becomes the
SFP (1.1). Thus, it is worth to mention that, we have the following corollary for
solving the SFP (1.1), an immediate consequence of Theorem 3.1.

Corollary 3.3. Let H; and Hsy be two real Hilbert spaces and let B : Hi — Hy be
bounded linear operator. Let C' and @) be nonempty, closed and convex subsets of
Hy and Hs, respectively. Assume that Q= C N B~ YQ) # (. Let u € Hy be a fized
point. For any starting point xog € Hy, let {x,} be the sequence generated by

(3.30) Tni1 := Po, (Bnu 4+ Onxpn +n (xn — Tann(ZUn)))

where Cy,, T, and V f, are given by (1.4), (1.9) and (1.7), respectively. Suppose
the sequences {Bn}, {0n} and {e,} satisfy the conditions in Theorem 3.1. Then, the
sequence {xy} converges strongly to the solution p € Q, where p = Pq(u).

Remark 3.4. The iterative scheme (27) in [38] was reduced to the iterative scheme
(43) in [42]. Here we note that our iterative scheme (3.30) extends the mentioned
iterative scheme to self-adaptive relaxed method.

We note also the following results regarding to the SFPMOS (1.15).

Corollary 3.5. Let H, H;, i = 1,..., N, be real Hilbert spaces and let B; : H —
H;,i = 1,...,N, be bounded linear operators. Let C' and Q;, i = 1,...,N, be
nonempty, closed and convexr subsets of H and H;, 1 = 1,..., N, respectively. As-
sume that the problem (1.15) is consistent. For any initial guess xo € H, let {xy}
be the sequence generated by

(3.31) ZTny1 = Po, (ano + 0pXn + En (xn — Tann(xn)))

where Cy, T, and Vg, are given by (3.2), (3.6) and (3.5)), respectively. Suppose
the sequences {Bn}, {0n} and {e,} satisfy the conditions in Theorem 3.1. Then, the
sequence {xy} generated by (3.31) strongly converges to the solution p = Pr(xg) € T

Remark 3.6. We note that by letting 6, = 0 of in Algorithm 1, we obtain the
following result regarding the SFPMOS (1.15).

Corollary 3.7. Let H, H;, i = 1,..., N, be real Hilbert spaces and let B; : H —
H;,i = 1,...,N, be bounded linear operators. Let C' and Q;,© = 1,...,N, be
nonempty, closed and conver subsets of H and H;, i = 1,..., N, respectively. As-
sume that the problem (1.15) is consistent. For a fixed point u € H and any initial
guess xo € H, let {x,} be the sequence generated by

(3.32) i1 = Pe. (Bnu + (1= B (zn — Tann(l'n)))
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where Cy, T, and Vg, are given by (3.2), (3.6) and (3.5)), respectively. Suppose
the sequence {5y} is as in Algorithm 1 and satisfies the conditions (A1) in Theorem
3.1. Then, the sequence {x,} generated by (3.32) strongly converges to the solution
p= Pp(u) erl.

Corollary 3.8. Let H, H;, i = 1,..., N, be real Hilbert spaces and let B; : H —
H;;i = 1,...,N, be bounded linear operators. Let C and Q;, ¢ = 1,...,N, be
nonempty, closed and convexr subsets of H and H;, i = 1,..., N, respectively. As-
sume that the problem (1.15) is consistent. For any initial guess xo € H, let {xy}
be the sequence generated by

(3.33) Tut1 = Po, (Buwo + (1= Ba) (20 = 7 Vga(2n))

where Cy, T, and Vg, are given by (3.2), (3.6) and (3.5)), respectively. Suppose the
sequence {B,} satisfies the condition (A1) in in Theorem 3.1. Then, the sequence
{zn} generated by (3.33) strongly converges to the solution p = Pp(u) € .

Remark 3.9. In Corollary 3.7 above, for the particular case, where N = 1, the
iterative scheme (3.32) reduced exactly to iterative scheme (1.12) proposed by He
et al. [25, Theorem 3.2].

4. APPLICATION TO THE GENERALIZED SPLIT FEASIBILITY PROBLEM

In this section, we present an application of Theorem 3.1 for solving the GSFP
(1.14) in Hilbert spaces. We first recall the GSFP.

Let H;, 7 =1,..., N, be the real Hilbert spaces and Cj, i = 1,..., N, be closed
and convex subsets of H;, respectively. Let A; : H; — H;y1,i=1,...,N — 1, be
bounded linear operators such that

S:=CLNATHCY) N - N AT (A;l . (A;Vl_l(cN))) £ 0.
The GSFP [35] is to find an element
p e,
that is p* € Cq, A1p* € Cy, ..., AN_1AN_2... A1p* € Cy.
Remark 4.1. ([34, Remark 1.1]) Letting H = H,,C = C1,Q; = Ci+1,1 < i <

N —1,B; =A1,By = AsA4,...,and By_1 = AN_1AN_2AN_3...A5A1, then the
SFPMOS (1.15) becomes (1.14).

Using Theorem 3.1 and Remark 4.1, we note the following theorem for solving
the GSFP (1.14).

Theorem 4.2. Let H = Hl,C = Cl,QZ' = i+171 S /) S N — 1, Bl = Al,BQ =
A2A1, ..., and By_1 = AN_1AN_9AN_3... A3Aq. Let U, Ty € Cl, and let {%n} be
the sequence generated by

N-1
(41) T = Pop (Bnu + 60t + en (w0 — 0 Y BE(I — PQ?)BZ-J:”)>,

=1
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where CT and Cf',; are half-spaces of C1 and Ciy1 (at the nth iterate ), respectively,
and can be defined by (3. 2) and (8.3), respectively, and
,1 2
I Pon ) Bixy,
H C7,+l> H Q,VTLZO.
N 1 "
B; (I B PCZLH)Bimn

Tn :

Suppose the sequences {pn}, {Bn}, {0n} and {En} satisfy the following conditions:

(C1): {Bn} C (0,1) with hm Bn =0 and Z Bn = +00;
(C2): {en} C (0,1) with 0 < hmmfen < hmsupz—:n <1

n—o0
(C3): {6,} C[0,1) with B, + 5n +en=1;
(C4): {pn} C (0,400) with linginf pn(4—pn) > 0.

Then, the sequence {x,} generated by iterative scheme (4.1) converges strongly to
the solution p € S, where p = Pg(u).

5. NUMERICAL EXPERIMENTS

In this section, we provide some numerical experiments to illustrate the imple-
mentation of our proposed methods compared to many existing results by solving
three problems. In Example 5.1, we study the behavior and implementation of
Algorithm 1 and compare it with the Scheme (1.19), Scheme (1.20), and Scheme
(5.4) by solving a problem adopted from [34]. In Example 5.2, we compare Scheme
(3.30) with that of Scheme (1.11) and Scheme (1.12) by solving a problem in infinite-
dimensional real Hilbert spaces. In Example 5.3, we apply Scheme (3.30) for signal
recovery and we compare its performance with Scheme (1.11) and Scheme (1.12).
The numerical results are completed on a standard TOSHIBA laptop with Intel(R)
Core(TM) i5-2450M CPU@2.5GHz with memory 4GB. The code is implemented in
MATLAB R2020a.

In these numerical experiments, Iter. (n) stands for the number of iterations and
CPU(s) for the Elapsed time-run in seconds. For the sake of convenience, we denote
e1 = (1,1,...,1)T e R,

Example 5.1. ([34]) Consider H = R, H; = R?°, Hy = R30 and H3 = R0, Find
a point p* € R!° such that

(5.1) p* €T :=CNBH(Q1)N B, (Q2) N By (Qs) # 0,

where the closed convex sets C' and Q; (i = 1,2, 3) are defined by

C={zeR: |z —-c|?<r?},

Q1= {Bix e R*: | Biz — c1* < ri},

Q2 = {Box € R : || Byx — co|* < r3},
Qs = {Bsz € R : || Bsz — c3* < r3}.

(5.2)

where c € R0, ¢; € R?, ¢y € R, ¢35 € R, r, 11,19, r3 € R, and the linear bounded
operators B; are defined by By : R1" - R? B, : R0 - R30 B3 : R1Y - R0, In
this case, for any z € R, we have ¢(z) = ||z—c||?*~r? and ¢;(B;x) = ||Biz—c;||*—r?
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for i = 1,2,3. According to (3.2) and (3.3), the half-spaces Cy, and Q] (i =1,2,3),
respectively of the sets C' and @Q; are determined at a point x,, and B;x,,, respectively
as follows:

Cp={reRY: ||z, —c|*>-r?<2(x
Q' ={y e R*: | Bizy, — 1| — 17
Q3 = {y € R* : || By, — ¢l — 13
Q3 = {y € R : || B3z, — c3|* — r3

n—CyTp—1T)},

2<len —C1, len — y)},
2(Box,, — c2, Boxy — y)},
2(Bsx, — c3, B3z, —¥)}.

(5.3)

Then, the metric projections onto the half-spaces C, and QP (i = 1,2,3), can
be easily calculated. The elements of the representing matrices B; are randomly
generated in the closed interval [—5,5]. The coordinates of the centers c, ¢y, co,c3
are randomly generated in the closed interval [—1,1]. The radii r,ry,ro,rg are
randomly generated in the closed intervals [10,20], [20,40], [30,60] and [40,80],
respectively.

In this example, we examine the convergence of the sequence {z,, } which is defined
by Algorithm 1 and compare it with that of Scheme (1.19), Scheme (1.20), and with
the following viscosity approximation an optimization approach method proposed
by Reich et al. [36] for solving the SFPMOS (1.15). For any given point zo € H,
{z,} is a sequence generated by the iterative method

(5.4)  Tpi1 = anf(zn) + (1 — an)Pe (xn A > B - PQi)Bixn),

where f : C — C is a strict contraction mapping of H into itself with the con-
traction constant 6 € [0,1), {an} C (0,1), I(z,) = {i : |Bizn — Po,Bizy| =
max;—12, N || Bitn — PQiBZ‘ZCnH}, Yin > 0 for all i € I(x,) with Eie[(xn) Yin = 1,
and for {p,} C [a,a] C (0,2) {A\,} C [0, 00) such that

(5.5)

(maxi—12,... .~ | Bitn—Pq, Bizn||)?

PN TS cxoy 2im B U—Po Bian2 > 1 | 2ier(a) YinBi (I = Po,) Bian|| > 0,

0, otherwise ,

A =

by solving problem (5.1).

First, we examine the convergence of the sequence {z,} generated by Algorithm
1. Here, we take u = 10e; and zg = 100eq, G, = Tlﬂ’ Op = €p = ﬁ, and we
consider different choices of the sequence p,. We use E, = ||[zn11 — z4]|* < € as
stopping criteria, where € is a small enough positive number (note that if at the
nth step, F, = 0, then z,, € I'). The numerical outcomes of the experiments are

reported in Table 1.
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TABLE 1. Numerical results of Algorithm 1 for different choices of

prn and e
e=10"1 e=10"" e=10"°

Iter. (n) CPU(s) Iter. (n) CPU(s) Iter. (n) CPU(s)
Pn = 3.98 72 0.022767 111 0.024639 224 0.035905
pn = 3.00 88 0.022052 172 0.02908 356 0.029861
pn = 2.00 189 0.026134 206 0.022539 345 0.026904
pn = 1.00 243 0.007429 384 0.025907 550 0.031092
pn = 0.01 16 0.019556 38 0.023237 6802  0.120587

The behavior of the function F,, in Table 1 is described in Figure 1.

TABLE 2. Comparison of Algorithm 1 with Scheme (1.19), Scheme
(1.20), and Scheme (5.4)

Xrog = 1061
e=10"° e=10""% e=10""
Iter. (n) CPU(s) Iter. (n) CPU(s) Iter. (n) CPU(s)
Algorithm 1 20 0.019655 39 0.026011 83 0.00455
Scheme (1.19) 69 0.042288 53 0.045127 206 0.007512
Scheme (1.20) 35 0.062453 407 0.060721 3363  0.033598
Scheme (5.4) 34 0.024152 378 0.026378 3044 0.049601
e=10"°
Trog = €1 g — 10061 g — 3061
Iter. (n) CPU(s) Iter. (n) CPU(s) Iter. (n) CPU(s)
Algorithm 1 89 0.006857 108 0.004559 65 0.00224
Scheme (1.19) 147 0.010925 112 0.006441 91 0.003845
Scheme (1.20) 298 0.016471 451 0.014648 409 0.008438

Scheme (5.4) 278 0.009539 419 0.01584 379 0.007924
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e p, = 3.98

. =398
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FIGURE 1. Numerical results of Algorithm 1 for different choices of
pn and €

Next, we compare Algorithm 1 with that of Scheme (1.19), Scheme (1.20), and
Scheme (5.4) by solving the same problem (5.1). For Algorithm 1, we choose u =
10eq, By = Tlﬂ, 0n = €n = 5,77 For Scheme (1.19) and Scheme (1.20), we take
An = 0.0005. For Scheme (1.20) and Scheme (5.4), we take f(z) = 0.975z and

oy = ﬁ For Algorithm 1 and Scheme (5.4), we take p, = jgm,77. Moreover, we
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take y1, = %, Yon = %, Y3n = % for Scheme (5.4). Using E,, = ||zp11 — zn]|?> < €
as stopping criteria, for different choices of the initial point zg and different values
of €, the results of numerical experiments are reported in Table 2 and Figure 2.

10
Algorithm 1
—6—Scheme (1.19)
102§ —e— Scheme (1.20)
Scheme (5.4)

0 10 20 30 40 50 60 70
Iter. (n)
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Scheme (5.4)
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Algorithm 1
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Scheme (5.4)
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Algorithm 1
10? —6—Scheme (1.19)

—©— Scheme (1.20)
Scheme (5.4)

50 100 150 200 250 300 350 400 450
Iter. (n)

(f) e =1078, xo = 30¢,

FIGURE 2. Comparison of Algorithm 1 with Scheme (1.19), Scheme

(1.20), and Scheme (5.4)
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It is readily seen from Table 2 and Figure 2 that, for each choices of the ini-
tial point xy and each values of €, Algorithm 1 has better performance interms of
less number of iterations and small CPU-run time in seconds than the compared
methods.

Example 5.2. Let Hy = Hy = Ly([0,27]) with the inner product (.) defined by

2T
(z,5) = /0 £(t)y()dt, Yo,y € La([0,2n])

and with the norm ||.|| defined by

2
]l = ,//0 w(t)|2dt, Y,y € L2(0, 2x)).

Further, we consider the following half-spaces

€= {x € Lo([0,27]) - /O%:U(t)dt < 1}
and
Q= {y € Lo((0,27)) : /0% ly(t) — sin(t)%dt < 16}.

In addition, we consider a linear continuous operator A : Ly([0,27]) — L2([0, 27]),
where (Ax)(t) = z(t). Then, (A*z)(t) = x(t) and ||A|| = 1. That is, A is an identity
operator. The metric projection onto C' and @ have an explicit formula (see [8]).
We can also write the projections onto C' and the projections onto @ as follows:

27
Po(a(t)) = 4 ¥+ o g0 i 27 a(t)dt > 1,
] 4(y(t)—sin(t)) . o ' ,
Po(y(t) = st VIET y(t)—sin(t) 2dt it Jo" ly(t) = sin(t)]
y(t)a if f027r |y(t) _ Sin(t)|2dt <16,

Now, we solve the following problem
(5.6) find p* € C such that Ap* € Q.

We see here that our iterative method can be implemented to solve the problem
(5.6) considered in this example. In this example, we compare Scheme (3.30) with
the strong convergence results given by Scheme (1.11) and Scheme (1.12). For all

t
methods, we choose u = %,an = By = n%q, Ep = ﬁ, 0 = 1 — B — &p,
Pn = 10+n+1 for different choices of xg € H;.
The error of the iterative algorithms is denoted by E,, = ||zn11 — 2n|?. We use
E, < 107% as stopping criteria for all methods and the outcomes of the numerical

experiment of the compared methods are reported in Table 3 and Figure 3.
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TABLE 3. Comparison of Scheme (3.30) with Scheme (1.11) and
Scheme (1.12) for different choices of

Scheme (3.30)  Scheme (1.11)  Scheme (1.12)

z = t? Iter. (n) 37 117 107
CPU(s)  315.75445 878.604041 734.067342
E, 9.69942E-05 9.81776E-05 9.92371E-05

rg =1t —2t+1 Tter. (n) 25 117 107
CPU(s)  154.638795 814.225934 758.915085
E, 8.9232E-05 9.79585E-05 9.89244E-05

xo = sin(t)e!  Tter. (n) 142 149 145
CPU(s)  909.102986 1050.792024 1021.03839
E, 9.78966E-05 9.96792E-05 9.89159E-05

vo=2% — 25 Iter. (n) 18 117 107
CPU(s)  118.03319 815.592689 764.397045
E, 9.64645E-05 9.78326E-05 9.87446E-05

—6— Scheme (3.30)
—©— Scheme (1.11)
—©— Scheme (1.12)

—O— Scheme (3.30)
—O— Scheme (1.11)
—©— Scheme (1.12)

0 20 v40 60 80 100 120 0 50 100 150
Iter. (n) Iter. (n)

(@) xo =1 (b) xo=1-2t+1

~—6— Scheme (3.30)
—6— Scheme (1.11)
—6— Scheme (1.12) 10°

—&— Scheme (3.30)
—6— Scheme (1.11)
—O— Scheme (1.12) | 4

0 50 100 150 0 20 40 60 80 100 120
Iter. (n) Iter. (n)
— o t _ 2 3!
(¢) xo = sin(t)e d) xo =%~ 5%

F1GURE 3. Comparison of Scheme (3.30) with Scheme (1.11) and
Scheme (1.12) for different choices of xg
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It is observed from the numerical experiment outcomes reported in Table 3 and
Figure 3 that Scheme (3.30) is easily implementable and has better performance
than Scheme (1.11) and Scheme (1.12) in terms of less number of iterations and
small CPU-time run in seconds.

Example 5.3. Compressed Sensing: In this section, we consider numerical ex-
periments to illustrate the application of the proposed algorithm to inverse problems
arising from signal processing. Compressed sensing is a very active domain of re-
search and applications, based on the fact that an N-sample signal = with exactly
L nonzero components can be recovered from L < M < N measurements as long
as the number of measurements is smaller than the number of signal samples and at
the same time much larger than the sparsity level of x. Likewise, the measurements
are required to be incoherent, which means that the information contained in the
signal is spread out in the domain. Since M < N, the problem of recovering = from
M measurements is ill conditioned because we encounter an underdeterminated sys-
tem of linear equations. But, using a sparsity prior, it turns out that reconstructing
x from b is possible as long as the number of nonzero elements is small enough
(see [39]). More specifically, compressed sensing can be formulated as inverting the
equation system

(5.7) b= Ax 4+ 0O,

where z € RV is a vector with L nonzero components to be recovered, b € RM is
the vector of noisy observations or measurements (the measured data) with noisy
© (when © = 0, it means that there is no noise to the observed data), and A :
RY — RM is a bounded linear observation operator, often ill-conditioned because
it models a process with loss of information. A powerful approach for problem
(5.7) consists in considering a solution x represented by a sparse expansion, that is,
represented by a series expansion with respect to an orthonormal basis that has only
a small number of large coefficients. When attempting to find sparse solutions to
linear inverse problems of type (5.7), successful model is the convex unconstrained
minimization problem

1
5.8 min - || Az — b||3 + @||z|1,
(58) min [l 4z b3 + el

where w is positive parameter and ||.||; is the ¢; norm. Problem (5.8) consists in
minimizing an objective function, which includes a quadratic error term combined
with a sparseness-including ¢; regularization term, which is to make small compo-
nent of x to become zero. Problem (5.7) can be seen as the following least absolute
shrinkage and selection operator (LASSO), which is commonly used in the theory
of signal processing (see [22])

1
5.9 min - || Az — b||3 subject to ||z < t,
(59) min 2 Az — bl subject to ] <

where t > 0 is a given constant. By the theory of convex analysis, one is able to
show that a solution to the LASSO problem (5.9), for appropriate choices ¢t > 0, is a
minimizer of (5.8) (see [20]). It can be observed that (5.9) indicates the potential of
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finding a sparse solution of the SFP (1.1) due to the ¢; constraint. More precisely,
it is readily seen that problem (5.9) is a particular case of the SFP (1.1) with
C:={x:||z|p <t} and Q = {b}, and thus can be solved by Scheme (3.30) and the
iterative methods given by Scheme (1.11) and Scheme (1.12). We define the convex
function ¢(z) = ||z||1 — ¢, and according (1.4), the level set C,, is defined by

Cp={z e RN : ¢c(x,) + (€n, x — z,) < 0},

where &, € Ow(zy). Observe that the metric projection onto C), can be computed
by the following manner,

z, if  e(xn) 4+ (€ny 2z — xn) <0,
PCn (Z)> = z <C(mn)+ Envz "ETL E’n

— otherwise .
llenll?,

We choose a subgradient &, € dc(xy,) as

1 it (€); >0
(&)i=10 if (&) =0,
-1 if ()i <0

In a special case where Q = @, = {b}, Scheme (3.30) converges to the solution
of (5.9). Moreover, Scheme (3.30) can be implemented easily, because the projec-
tion onto the level set has an explicit formula. In order to show the efficacy of
Scheme (3.30), a comparative sparse signal recovery experiments were carried-out
with Scheme (1.11) and Scheme (1.12).

The vector x is a L sparse signal with non-zero L elements that are generated
from uniform distribution within an interval of [—2, 2], A is a matrix generated from
normal distribution with mean zero and variance of one and b is an observation
generated by white Gaussian noise with signal-to-noise ratio SNR = 40. The
process of sparse signal recovery start by randomly generating ¢ = L and u, x¢ are
N x1 vectors. The main target is then to recover the L sparse signal by solving (5.9)
for z. The restoration accuracy is then measured by mean squared error (MSE) as
follows:

(5.10) msp = =l
N
where x,, is an estimated signal of z, and € > 0 is a given small constant. We choose
_ _ 1 _ 1 1 _ 1 _
the parameters an = B0 = {55,575 On = 5 — Toon) En = 3+ 100n(100n+1)° Pn =
3.5. In our numerical experiments, for u = ones ([N, 1]) and xy = ones ([N, 1]),
we consider four choices: Choice 1: L = 20,N = 22, M = 219; Choice 2

L = 40,N = 212, M = 2'9; Choice 3: L = 20,N = 214,]\/[ = 212 Choice 4:
L =40,N =2Y M =22, We use MSE < € = 107* as stopping criterion for all
methods. The results of the numerical experiments interms of number of iterations
(Iter. (n)) and the CPU-run time in seconds (CPU(s)) are reported in Table 4 and
Figures 4-8.
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Original signal (N=2'2, M=2"°, L=20)
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FIGURE 4. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 1

Original signal (N=2'2, M=2"°, L.=40)

-

0 ||I i I ! Y A I||'| i
P gL AT 1] |, | A .
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Recovered signal by Scheme (1.12)
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Recovered signal by Scheme (1.11)
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-1
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FIGURE 5. Original L-sparse signal versus recovered sparse signals by
compared methods for Choice 2
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1 ~ Original signal (NI=2]4, M.=2]2’ L=20) B
o s 1 l L
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FIGURE 6. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 3
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FIGURE 7. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 4
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10" ¢ 10° ¢ 3
f *— Scheme (3.30) £ # Scheme (3.30) ||

I *— Scheme (1.11) ¢ ——Scheme (1.11) ||
Scheme (1.12) s +—Scheme (1.12) ||

o 10 5]
107
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0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160 180
Iter. (n) Iter. (n)
(a) Choice 1 (b) Choice 2
100 ¢ = 10°F 3
E Scheme (3.30) Scheme (3.30)1
——Scheme (1.11) s —— Scheme (1.11)|]
~+— Scheme (1.12) [ ——— Scheme (1.12)|]
107! 107!
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1073 103 F
10 10 5 |
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Iter. (n) Iter. (n)
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FiGure 8. MSE against Iter. (n) for comparison of Scheme (3.30)
with Scheme (1.11) and Scheme (1.12)

It can be observed from Table 4 and Figures 4-8 that the recovered signal by the
proposed method has less number of iterations and small CPU(s) time to converge
than by the compared methods.

TABLE 4. The experiments of compressed sensing via Scheme (3.30),
Scheme (1.11), and Scheme (1.12)

Scheme (3.50) Scheme (1.11) Scheme (1.12)
Iter. (n) CPU(s) MSE Iter. (n) CPU(s) MSE Iter. (n) CPU(s) MSE
Choice 1 64 0.9348 9.95E-05 112 1.6343 9.79E-05 111 1.6464 9.88E-05
Choice 2 99 1.5069  9.83E-05 166 2.6089  9.94E-05 167 2.5307 9.79E-05
Choice 3 30 6.3471  9.60E-05 61 13.0252 9.52E-05 60 12.5858 9.54E-05
Choice 4 43 9.83767  9.49E-05 81 17.245  9.73E-05 81 17.8173 9.83E-05
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