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Byrne [5, 6] introduced the first applicable and most celebrated method called the
well-known CQ-algorithm as follows: for any initial guess x0 ∈ H1;

(1.2) xn+1 := PC(xn − τnB
∗(I − PQ)Bxn)),

where PC and PQ are the metric projections onto C and Q, respectively and τn ∈(
0, 2

∥B∥2

)
where ∥B∥2 is the spectral radius of the matrix B∗B. The CQ algorithm

proposed by Byrne [5, 6], requires the computation of metric projection onto the
sets C and Q (in some cases, it is impossible or is too expensive to exactly compute
the metric projection). In addition, the determination of the stepsize depends on
the operator norm in which computation (or at least estimation) of operator norm
is not an easy task. In practical applications, the sets C and Q are usually the level
sets of convex functions which are given by

(1.3) C := {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0},
where c : H1 → R and q : H2 → R are convex and subdifferentiable functions on
H1 and H2, respectively, and that (generalized gradients) ∂c(x) and ∂q(y) of c and
q, respectively, defined by

∂c(x) := {ξ ∈ H1 : c(z) ≥ c(x) + ⟨ξ, z − x⟩, for each z ∈ H1}
and

∂q(y) := {η ∈ H2 : q(u) ≥ q(y) + ⟨η, u− y⟩, for each u ∈ H2}
are bounded operators (i.e., bounded on bounded sets).

Later, in 2004, Yang [51] generalized the CQ method to the so-called relaxed
CQ algorithm, needing computation of the metric projection onto (relaxed sets)
half-spaces Cn and Qn, where

(1.4) Cn := {x ∈ H1 : c(xn) ≤ ⟨ξn, xn − x⟩},
where ξn ∈ ∂c(xn) and

(1.5) Qn := {y ∈ H2 : q(Bxn) ≤ ⟨ηn, Bxn − y⟩},
where ηn ∈ ∂q(Bxn). It is easy to see that Cn ⊇ C and Qn ⊇ Q for all n ≥ 1.
Moreover, it is known that projections onto half-spaces Cn and Qn have closed
forms. In what follows, define

(1.6) fn(xn) :=
1

2
∥(I − PQn)Bxn∥2,

where Qn is given as in (1.5) and fn is a convex and differentiable function with its
gradient ∇fn defined by

(1.7) ∇fn(xn) := B∗(I − PQn)Bxn.

More precisely, Yang [51] introduced the following relaxed CQ algorithm for solving
the SFP (1.1) in a finite-dimensional Hilbert space: for any initial guess x0 ∈ H1;

(1.8) xn+1 := PCn(xn − τn∇fn(xn)),

where τn ∈
(
0, 2

∥B∥2

)
. Since PCn and PQn are easily calculated, this method appears

to be very practical. However, to compute the norm of B turns out to be complicated
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and costly. To overcome this difficulty, in 2012, López et al. [30] introduced a relaxed
CQ algorithm for solving the SFP (1.1) with a new adaptive way of determining
the stepsize sequence τn defined as follows:

(1.9) τn :=
ρnfn(xn)

∥∇fn(xn)∥2
,

where {ρn} ∈ (0, 4), ∀n ≥ 1 such that lim inf
n→∞

ρn(4 − ρn) > 0. It was proved that

the sequence {xn} generated by (1.8) with τn defined by (1.9) converges weakly to
a solution of the SEP (1.1). That is, their algorithm has only weak convergence in
the framework of infinite-dimensional Hilbert spaces.

Many authors also proposed algorithms that generate a sequence {xn} converges
strongly to a point in the solution set of the SFP (1.1), see, e.g., [30, 19, 25, 52, 40].
In particular, Deepho and Kumam [19] proposed a modified Halpern’s iterative
scheme for solving the SFP (1.1) in the setting of infinite-dimensional Hilbert spaces
as follows: for any fixed point u ∈ H1 and any initial guess x0 ∈ H1;

(1.10) xn+1 := βnu+ δnxn + γnPC

(
xn − τnB

∗(I − PQ)Bxn

)
, ∀n ≥ 1,

where τn ∈
(
0, 2

∥B∥2

)
and {βn}, {δn}, and {γn} are three sequences in [0, 1] such

that βn+δn+γn = 1. Assuming that the SFP (1.1) is consistent, it was proved that,

if {βn}, {δn}, and {γn} satisfy the assumptions: (c1) lim
n→∞

βn = 0 and
∞∑
n=1

βn = +∞;

(c2) lim sup
n→∞

δn < 1; (c3)
∑∞

n=1 |βn+1 − βn| < ∞,
∑∞

n=1 |δn+1 − δn| < ∞, and∑∞
n=1 |γn+1 − γn| < ∞, then the sequence {xn} generated by (1.10) converges

strongly to a solution of the SFP (1.1). However, their algorithm also requires to
compute the operator norm, and the projections onto the sets C and Q which is not
easy to do so. In 2012, López et al. [30] proposed a Halpern’s iterative scheme for
solving the SFP (1.1) in the setting of infinite-dimensional Hilbert spaces as follows:
for any fixed point u ∈ H1 and any initial guess x0 ∈ H1;

(1.11) xn+1 = βnu+ (1− βn)PCn

(
xn − τn∇fn(xn)

)
, ∀n ≥ 1,

and in 2013, He et al. [25] also introduced the following relaxed CQ algorithm
for solving the SFP (1.1) such that strong convergence is guaranteed in infinite-
dimensional Hilbert space: for any fixed point u ∈ H1 and any initial guess x0 ∈ H1;

(1.12) xn+1 := PCn

(
βnu+ (1− βn)

(
xn − τn∇gn(xn)

))
,

where Cn (half-space) and τn (variable step size) are given as in (1.4) and (1.9), re-

spectively, and the sequence {βn} ⊂ (0, 1) such that lim
n→∞

βn = 0 and
∞∑
n=1

βn = +∞.

Under certain suitable conditions, it was shown that the sequence {xn} generated by
(1.11) and (1.12) converges strongly to the point p = PΓ(u). One can see that other
related works can be found for example in [16, 22, 30, 17] and references therein.

Some generalizations of the SFP have also been studied by many authors. We
mention, for instance, the multiple-sets SFP (MSSFP) [11, 54, 55, 29, 18, 28, 26, 27,
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38, 41, 46, 32, 4, 53, 47, 42], the split common fixed point problem (SFPP) [14, 33],
the split variational inequality problem (SVIP) [12] and the split common null point
problem (SCNPP) [7, 44].

In 2020, Reich and Tuyen [35] first introduced and studied the following general-
ized split feasibility problem (GSFP).

Let Hi, i = 1, . . . , N, be real Hilbert spaces and Ci, i = 1, . . . , N, be closed and
convex subsets of Hi, respectively. Let Ai : Hi → Hi+1, i = 1, . . . , N − 1, be
bounded linear operators such that

(1.13) S := C1 ∩A−1
1 (C2) ∩ · · · ∩ A−1

1

(
A−1

2 . . .
(
A−1

N−1(CN )
))

̸= ∅.

The generalized split feasibility problem (GSFP) is to find an element

(1.14) p∗ ∈ S.

Reich and Tuyen in [35] proved a strong convergence theorem for a modification
of the CQ method which solves the GSFP (1.14). For more details on the GSFP
(1.14), one can read the paper [35].

Very recently, Reich et al. [34] considered and studied the following split feasi-
bility problem with multiple output sets in Hilbert spaces: Let H, Hi, i = 1, . . . , N,
be real Hilbert spaces and let Bi : H → Hi, i = 1, . . . , N, be bounded linear opera-
tors. Let C and Qi, i = 1, . . . , N, be nonempty, closed and convex subsets of H and
Hi, i = 1, . . . , N , respectively. Given H, Hi and Bi as above, the split feasibility
problem with multiple output sets (in short, SFPMOS) is to find an element p∗ such
that

(1.15) p∗ ∈ Γ := C ∩
(
∩N
i=1 B

−1
i (Qi)

)
̸= ∅.

Reich et al. [34], defined the function g : H → R by

(1.16) g(x) :=
1

2

N∑
i=1

∥(I − PQi)Bix∥2, for all x ∈ H.

It is not difficult to see that an element p∗ is a solution to the SFPMOS (1.15) if
and only if it is a solution to the problem

(1.17) min
x∈C

g(x),

This is equivalent to

(1.18) 0 ∈ ∇g(p∗) +NC(p
∗),

where NC(x) is the normal cone of C at the point x
[
Recall: Let C ⊆ H be a closed

convex subset of a real Hilbert space H. The Normal cone of C at x denoted by

NC(x) is given by NC(x) = {z ∈ H : ⟨z, y − x⟩ ≤ 0, ∀y ∈ C}
]
. Which implies

p∗ = PC

(
p∗ − λ

N∑
i=1

B∗
i (I − PQi)Bip

∗
)
,
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where λ is an arbitrary positive real number. Motivated by these characterizations,
Reich et al. [34] introduced the following two methods for solving the SFPMOS
(1.15). For any given points x0, y0 ∈ H, {xn} and {yn} are sequences generated by

(1.19) xn+1 := PC

(
xn − λn

N∑
i=1

B∗
i (I − PQi)Bixn

)
,

(1.20) yn+1 := αnf(yn) + (1− αn)PC

(
yn − λn

N∑
i=1

B∗
i (I − PQi)Biyn

)
,

where f : C → C is a strict contraction mapping of H into itself with the contraction
constant θ ∈ [0, 1), λn ⊂ (0,∞) and {αn} ⊂ (0, 1). It was proved that if the
sequence {λn} satisfies the condition:

0 < a ≤ λn ≤ b <
2

N maxi=1,2,...,N{∥Bi∥2}
for all n ≥ 1,

then the sequence {xn} generated by (1.19) converges weakly to a solution point
p∗ ∈ Γ of the SFPMOS (1.15). Furthermore, if the sequence {αn} satisfies the
conditions:

lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞,

then the sequence {yn} generated by (1.20) converges strongly to a solution point
p∗ ∈ Γ of the SFPMOS (1.15), which is a unique solution of the variational inequality

⟨(I − f)p∗, x− p∗⟩ ≥ 0 ∀x ∈ Γ.

An important observation here is that the iterative methods given by Scheme
(1.19) and Scheme (1.20) introduced by Reich et al. [34] requires to compute the
metric projections on to the sets C and Qi. Moreover, it needs to compute the
operator norm. Due to this reason, the following question naturally arises.

Question: Can we have a strongly convergent algorithm for solving the SFPMOS
(1.15) which mainly involves a self-adaptive step-size and requires to compute the
projections onto half-spaces so that the algorithm is easily implementable?.

We have a positive answer for the above question which is motivated by the algo-
rithms proposed by Reich et al. [34] for solving the SFPMOS (1.15), the iterative
methods given by schemes (1.10)-(1.12) proposed for solving the SFP (1.1), and
other similar results in the literature. In this paper, we propose a new self adaptive
relaxed CQ algorithm for solving the SFPMOS (1.15) in general Hilbert spaces.

This paper is organized as follows. In the next section, we recall some necessary
tools which will be used in establishing our main results. In Section 3, we propose a
self-adaptive relaxed CQ algorithm for solving the SFPMOS (1.15), and we establish
and analyze a strong convergence theorem for the proposed algorithm. Also, in
this section, we present some newly derived results for solving the SFP (1.1). In
Section 4, we present the application of our proposed method to solve the GSFP
(1.14). Finally, in Section 5, we provide some numerical experiments including



100 G. H. TADDELE, P. KUMAM, J. ABUBAKAR, A. M. AWWAL, AND K. SITTHITHAKERNGKIET

an application to signal recovery to illustrate the implementation of our proposed
method and we compare with some similar existing results.

2. Preliminaries

In this section, we recall some preliminaries which are needed in the sequel. Let
H be a real Hilbert space with the inner product ⟨., .⟩, and induced norm ∥.∥. Let I
stands for the identity operator on H. We denote the fixed point set of an operator
T : H → H (if T has fixed point) by Fix(T ), i.e., F ix(T ) = {x ∈ H : Tx = x}. Let
the symbols “ ⇀ ” and “ → ”, denote the weak and strong convergence, respectively.
For any sequence {xn} ⊂ H,

ωω(xn) = {x ∈ H : ∃{xnk
} ⊂ {xn} such that xnk

⇀ x}
denotes the weak ω-limit set of {xn}.

Definition 2.1. ([3]) Let H be a real Hilbert space with inner product ⟨, ⟩ and
induced norm ∥.∥. Let C be a nonempty closed convex subset of H. Let T : C → H
be a given operator. Then T is called

(1): Lipschitz continuous with constant σ > 0 on C if

(2.1) ∥Tx− Ty∥ ≤ σ∥x− y∥, ∀x, y ∈ C;

(2): nonexpansive on C if

(2.2) ∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C;

(3): firmly nonexpansive on C if

(2.3) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ||(I − T )x− (I − T )y∥2, ∀x, y ∈ C,

which is equivalent to

(2.4) ∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩, ∀x, y ∈ C;

(4): averaged if there exist a number σ ∈ (0, 1) and a nonexpansive operator
F : C → H such that

(2.5) T = σF + (1− σ)I, where I is the identity operator.

In this case, we say that T is σ-averaged.

Definition 2.2. ([3]) Let C ⊆ H be a nonempty, closed and convex set. For every
element x ∈ H, there exists a unique nearest point in C, denoted by PC(x) such
that

(2.6) ∥x− PC(x)∥ = min{∥x− y∥ : y ∈ C}.
The operator PC : H → C is called a metric projection of H onto C and it has the
following well-known properties.

Lemma 2.3. ([3, 24]) Let C ⊆ H be a nonempty, closed and convex set. Then, the
following assertions hold for any x, y ∈ H and z ∈ C :

(1): ⟨x− PC(x), z − PC(x)⟩ ≤ 0;
(2): ∥PC(x)− PC(y)∥ ≤ ∥x− y∥;
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(3): ∥PC(x)− PC(y)∥2 ≤ ⟨PC(x)− PC(y), x− y⟩;
(4): ∥PC(x)− z∥2 ≤ ∥x− z∥2 − ∥x− PC(x)∥2.

Lemma 2.4. ([6, 3]) Let C ⊆ H be a nonempty closed convex subset. Then, I−PC

is firmly nonexpansive and so is nonexpansive.

Definition 2.5. Let f : H → (−∞,+∞] be a proper function. Then

(1) : f is convex if

f(δx+ (1− δ)y) ≤ δf(x) + (1− δ)f(y), ∀δ ∈ (0, 1) and ∀x, y ∈ H.

(2) : f is strongly convex with constant σ, where σ > 0, if

f(δx+(1−δ)y)+
σ

2
δ(1−δ)∥x−y∥2 ≤ δf(x)+(1−δ)f(y), ∀δ ∈ (0, 1) and ∀x, y ∈ H.

(3) : A vector w ∈ H is a subgradient of f at a point x if

f(y) ≥ f(x) + ⟨w, y − x⟩, ∀y ∈ H.

(4) : The set of all subgradients of a convex function f : H → R at x ∈ H,
denoted by ∂f(x), is called the subdifferential of f , and is defined by

∂f(x) = {w ∈ H : f(y) ≥ f(x) + ⟨w, y − x⟩, for each y ∈ H}.
(5) : If ∂f(x) ̸= ∅, f is said to be subdifferentiable at x. If the function f is

continuously differentiable then ∂f(x) = {∇f(x)}.

Definition 2.6. Let f : H → (−∞,+∞] be a proper function.

(1) : f is lower semicontinuous (lsc) at x if xn → x implies

f(x) ≤ lim inf
n→∞

f(xn).

(2) : f is weakly lower semicontinuous (w-lsc) at x if xn ⇀ x implies

f(x) ≤ lim inf
n→∞

f(xn).

(3) : f is lower semicontinuous on H if it is lower semicontinuous at every
point x ∈ H and f is weakly lower semicontinuous on H if it is weakly lower
semicontinuous at every point x ∈ H.

Lemma 2.7. ([50]) Let C and Q be closed convex subsets of real Hilbert spaces H1

and H2, respectively, and f : H1 → R is given by f(x) = 1
2∥(I − PQ)Ax∥2, where

A : H1 → H2 be a bounded linear operator. Then for δ > 0 and x∗ ∈ H1, the
following statements are equivalent.

(1): The point x∗ solves the SFP (1.1), i.e, x∗ ∈ {x ∈ C : Ax ∈ Q}.
(2): The point x∗ is the fixed point of the mapping PC(I − δ∇f).
(3): The point x∗ solves the variational inequality problem with respect to the

∇f , that is find a point x∗ ∈ C such that

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ C.

Lemma 2.8. ([15]) Let H1 and H2 be real Hilbert spaces and f : H1 → R is given
by f(x) = 1

2∥(I−PQ)Ax∥2 where Q is closed convex subset of H2 and A : H1 → H2

be a bounded linear operator. Then the following assertions hold:
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(1) : f is convex and differentiable;
(2) : f is weakly lower semicontinuous on H1;
(3) : ∇f(x) = A∗(I − PQ)Ax, for x ∈ H1;
(4) : ∇f is ∥A∥2-Lipschitz, i.e., ∥∇f(x)−∇f(y)∥ ≤ ∥A∥2∥x−y∥, ∀x, y ∈ H1.

Definition 2.9. Let {Λn} be a real sequence. Then, {Λn} decrease at infinity if
there exists n0 ∈ N such that Λn+1 ≤ Λn, for n ≥ n0. In other words, the sequence
{Λn} does not decrease at infinity, if there exists a subsequence {Λnt}t≥1 of {Λn}
such that Λnt < Λnt+1, for all t ≥ 1.

Lemma 2.10. ([31]) Let {Λn} be a sequence of real numbers that does not decrease
at infinity. Also consider the sequence of integers {φ(n)}n≥n0 defined by

φ(n) = max{m ∈ N : m ≤ n,Λm ≤ Λm+1}.

Then {φ(n)}n≥n0 is a nondecreasing sequence verifying lim
n→∞

φ(n) = ∞, and for all

n ≥ n0, the following two estimates hold:

Λφ(n) ≤ Λφ(n)+1 and Λn ≤ Λφ(n)+1.

Lemma 2.11. ([48] ) Let {sn} be a sequence of nonnegative real numbers satisfying
the following relation:

sn+1 ≤ (1− σn)sn + σnµn + βn, n ≥ 1,

where {σn}, {µn} and {βn} satisfying the conditions: (1) {σn} ⊂ [0, 1],
∑∞

n=1 σn =
∞; (2) lim sup

n→∞
µn ≤ 0; (3) βn ≥ 0,

∑∞
n=1 βn < ∞.

Then, lim
n→∞

sn = 0.

3. Main results

In this section, we propose a new self adaptive relaxed CQ-method for solving
the SFPMOS (1.15), and we prove a strong convergence theorem of the proposed
algorithm. We consider a general case of the SFPMOS (1.15), where the nonempty,
closed and convex sets C and Qi(i = 1, . . . , N) are given by level sets of convex
functions. Throughout this section, we assume that c : H → R and qi : Hi → R are
lower semicontinuous convex functions and the sets C and Qi are given by

(3.1) C := {x ∈ H : c(x) ≤ 0} and Qi := {y ∈ Hi : qi(y) ≤ 0}.

We assume that c and each qi are subdifferentiable on H and Hi, respectively,
with subdifferential ∂c and ∂qi, respectively. Moreover, we suppose that for any
x ∈ H a subgradient ξn ∈ ∂c(x) can be calculated, and for any y ∈ Hi and for each
i ∈ {1, . . . , N}, a subgradient ηni ∈ ∂qi(y) can be calculated. Again, we assume that
both ∂c and ∂qi(i = 1, . . . , N) are bounded operators (i.e., bounded on bounded
set).

In this situation, the projections onto C and Qi are not easily implemented in
general. To avoid this difficulty, we introduce a relaxed projection gradient methods,
in which the projections onto the half-spaces are adopted in stead of the projections
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onto C and Qi. In particular for n ∈ N, we define the relaxed sets (half-spaces) Cn

and Qn
i (i = 1, . . . , N) of C and Qi, respectively at xn as follows:

(3.2) Cn := {x ∈ H : c(xn) ≤ ⟨ξn, xn − x⟩},

where ξn ∈ ∂c(xn) is subgradient of c at xn and

(3.3) Qn
i := {y ∈ Hi : qi(Bixn) ≤ ⟨ηni , Bixn − y⟩},

where ηni ∈ ∂qi(Bixn). By the definition of subgradient, it follows that C ⊆ Cn

and Qi ⊆ Qn
i (see [21]) hold for every n ≥ 0. Moreover, in order to remove the

requirement of estimating the value of operator norm, in which finding operator
norm is not easy, we now introduce a new way of selecting the step sizes for solving
the SFPMOS (1.15). Now, we define the following (relaxed) proximity function: for
x ∈ H,

(3.4) gn(x) :=
1

2

N∑
i=1

∥(I − PQn
i
)Bix∥2.

We note that gn(.) is differentiable with its gradient given by

(3.5) ∇gn(x) :=

N∑
i=1

B∗
i (I − PQn

i
)Bix,

where each Qn
i are half-spaces given in (3.3). We note that gn is weakly lower semi-

continuous, convex and differentiable function [2] and ∇gn is Lipschitz continuous.
Next, we present a self-adaptive relaxed CQ algorithm, that we wish to propose

for solving the SFPMOS (1.15).

Algorithm 1: Strongly convergent self-adaptive relaxed CQ algorithm for
the SFPMOS (1.15)

Initialization: Choose positive sequences {ρn} ⊂ (0, 4), {βn} ⊂ (0, 1),
{δn} ⊂ [0, 1) and {εn} ⊂ (0, 1) such that βn + δn + εn = 1. Let u ∈ H be a
fixed point. Select an arbitrary starting point x0 ∈ H, and set n = 0.
Step 1: Given the current iterate xn ∈ H. If ∇gn(xn) = 0 for some n ∈ N,
then stop. Otherwise, continue and calculate

(3.6) τn :=
ρngn(xn)

∥∇gn(xn)∥2
.

Step 2: Compute the next iterate as

(3.7) xn+1 := PCn

(
βnu+ δnxn + εn

(
xn − τn∇gn(xn)

))
,

where Cn is the half-space given as in (3.2).

We can see that Algorithm 1 terminates at some iterate (say n) when ∇gn(xn) =
0; otherwise, if Algorithm 1 does not stop, then we have the following strong con-
vergence theorem for approximating the solution of the SFPMOS (1.15).
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Theorem 3.1. Let H, Hi, i = 1, . . . , N, be real Hilbert spaces and let Bi : H →
Hi, i = 1, . . . , N, be bounded linear operators. Let C and Qi, i = 1, . . . , N, be
nonempty, closed and convex subsets of H and Hi, i = 1, . . . , N , respectively. As-
sume that the SFPMOS (1.15) is consistent. Suppose the sequences {ρn}, {βn},
{δn}, and {εn} in Algorithm 1 satisfy the following conditions:

(A1): lim
n→∞

βn = 0 and
∞∑
n=1

βn = +∞;

(A2): 0 < lim inf
n→∞

εn ≤ lim sup
n→∞

εn < 1;

(A3): lim inf
n→∞

ρn(4− ρn) > 0.

Then, the sequence {xn} generated by Algorithm 1 strongly converges to the solution
p ∈ Γ, where p = PΓ(u).

Proof. We may assume that the sequence {xn} is infinite, that is, Algorithm 1 does
not terminate in a finite number of iterations. Thus ∇gn(xn) ̸= 0 for all n ≥ 0.
Recall that Γ is the solution set of the problem (1.15). In the consistent case of the
problem (1.15), Γ is nonempty, closed and convex. Thus, the metric projection PΓ

is well-defined.
Let p ∈ Γ and set zn = xn − τn∇gn(xn). Note that I −PQn

i
for each i = 1, . . . , N

is firmly nonexpansive and ∇gn(p) = 0. Hence, we have from Lemma 2.3 that

⟨∇gn(xn), xn − p⟩ =

〈
N∑
i=1

B∗
i (I − PQn

i
)Bixn, xn − p

〉

=
N∑
i=1

〈
B∗

i (I − PQn
i
)Bixn, xn − p

〉
=

N∑
i=1

〈
(I − PQn

i
)Bixn, Bixn −Bip

〉
≥

N∑
i=1

∥∥∥(I − PQn
i
)Bixn

∥∥∥2 = 2gn(xn),(3.8)

which implies that

∥zn − p∥2 = ∥(xn − p)− τn∇gn(xn)∥2

= ∥xn − p∥2 + τ2n∥∇gn(xn)∥2 − 2τn⟨∇gn(xn), xn − p⟩

≤ ∥xn − p∥2 + ρ2ng
2
n(xn)

∥∇gn(xn)∥2
− 2ρngn(xn)

∥∇gn(xn)∥2
(2gn(xn))

= ∥xn − p∥2 + ρ2ng
2
n(xn)

∥∇gn(xn)∥2
− 4ρng

2
n(xn)

∥∇gn(xn)∥2

= ∥xn − p∥2 − ρn(4− ρn)
g2n(xn)

∥∇gn(xn)∥2
.(3.9)

Using the condition (A3), we have

(3.10) ∥zn − p∥2 ≤ ∥xn − p∥2, ∀n ≥ 0.
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Next, we show {xn} is bounded. Since p ∈ Γ ⊆ Cn and the projection operator PCn

is nonexpansive, we obtain from (3.7) and (3.10) that

∥xn+1 − p∥2 = ∥PCn(βnu+ δnxn + εnzn)− p∥2

≤ ∥(βnu+ δnxn + εnzn)− p∥2

≤ βn∥u− p∥2 + δn∥xn − p∥2 + εn∥zn − p∥2

≤ βn∥u− p∥2 + δn∥xn − p∥2 + εn∥xn − p∥2

= βn∥u− p∥2 + (1− βn)∥xn − p∥2

≤ max
{
∥u− p∥2, ∥xn − p∥2

}
...

≤ max
{
∥u− p∥2, ∥x0 − p∥2

}
.(3.11)

Hence, {xn} is bounded. Consequently, {zn} and {Bixn}Ni=1 are also bounded. The
rest of the proof will be divided in to two parts.
Case 1: Suppose that there exists n0 ∈ N such that {∥xn − p∥2}∞n=n0

is non-

increasing. Then {∥xn − p∥2}∞n=1 converges and ∥xn − p∥2 − ∥xn+1 − p∥2 → 0, as
n → ∞. Then from (3.9), we obtain

ρn(4− ρn)
g2n(xn)

∥∇gn(xn)∥2
≤ ∥xn − p∥2 − ∥zn − p∥2.(3.12)

Since βn + δn + εn = 1, also, from (3.11), we have the following estimation

∥xn − p∥2 − ∥zn − p∥2 ≤ βn
εn

∥u− p∥2 + 1− βn
εn

∥xn − p∥2 − 1

εn
∥xn+1 − p∥2

=
βn
εn

∥u− p∥2 − βn
εn

∥xn − p∥2

+
1

εn

[
∥xn − p∥2 − ∥xn+1 − p∥2

]
≤ βn

εn
∥u− p∥2 + 1

εn

[
∥xn − p∥2 − ∥xn+1 − p∥2

]
=

1

εn

[
βn∥u− p∥2 +

[
∥xn − p∥2 − ∥xn+1 − p∥2

]]
.(3.13)

Combining (3.12) and (3.13) together, we obtain

ρn(4− ρn)
g2n(xn)

∥∇gn(xn)∥2
≤ ∥xn − p∥2 − ∥zn − p∥2

≤ 1

εn

[
βn∥u− p∥2 +

[
∥xn − p∥2 − ∥xn+1 − p∥2

]]
.(3.14)

By conditions (A2) and (A3) and (3.14), we have as n → ∞

0 < ρn(4− ρn)
g2n(xn)

∥∇gn(xn)∥2
≤ 1

εn

[
βn∥u− p∥2 +

[
∥xn − p∥2 − ∥xn+1 − p∥2

]]
→ 0,
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which implies that

(3.15) lim
n→∞

g2n(xn)

∥∇gn(xn)∥2
= 0.

We note that for each i = 1, . . . , N , B∗
i (I−PQn

i
)Bi(.) is Lipschitz continuous. Since

the sequence {xn} is bounded and∥∥∥B∗
i (I−PQn

i
)Bixn

∥∥∥ =
∥∥∥B∗

i (I−PQn
i
)Bixn−B∗

i (I−PQn
i
)Bip

∥∥∥ ≤

(
max
1≤i≤N

∥Bi∥2
)
∥xn−p∥,

for all i = 1, . . . , N , we have the sequence {∥B∗
i (I − PQn

i
)Bixn∥}∞n=1 is bounded.

Hence, {∥∇gn(xn)∥}∞n=1 is bounded. Consequently, we have from (3.15) that

(3.16) lim
n→∞

∥(I − PQn
i
)Bixn∥ = 0

for each i = 1, . . . , N . Since zn = xn − τn∇gn(xn), then we have from (3.16) that

∥zn − xn∥ ≤ τn∥∇gn(xn)∥ → 0, as n → ∞.

That is

(3.17) lim
n→∞

∥zn − xn∥ = 0.

(3.18) lim
n→∞

∥B∗
i (I − PQn

i
)Bixn∥ = 0

for each i = 1, . . . , N . Furthermore, we have the following estimations.
Let

(3.19) yn = βnu+ δnxn + εnzn = βnu+ (1− βn)vn,

where

vn =
δn

1− βn
xn +

εn
1− βn

zn.

This gives,

∥vn − xn∥ ≤ εn
1− βn

∥zn − xn∥ → 0, n → ∞,

∥yn − vn∥ ≤ βn∥u− vn∥ → 0, n → ∞.

and

∥yn − xn∥ ≤ ∥yn − vn∥+ ∥vn − xn∥ → 0, n → ∞.

Hence,

lim
n→∞

∥yn − xn∥ = lim
n→∞

∥yn − vn∥ = lim
n→∞

∥vn − xn∥ = 0.(3.20)
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Since the PCn is firmly nonexpansive, by Lemma 2.3 (4), we have the following
estimation

∥xn+1 − p∥2 = ∥PCn(yn)− PCn(p)∥2

= ∥PCn(yn)− PCn(xn) + PCn(xn)− PCn(p)∥2

≤ ∥PCn(xn)− PCn(p)∥2 + 2⟨PCn(yn)− PCn(xn), xn+1 − p⟩
≤ ∥PCn(xn)− PCn(p)∥2 + 2∥PCn(yn)− PCn(xn)∥∥xn+1 − p∥
≤ ∥PCn(xn)− PCn(p)∥2 + 2∥yn − xn∥∥xn+1 − p∥
≤ ∥xn − p∥2 − ∥(I − PCn)xn∥2 + 2∥yn − xn∥∥xn+1 − p∥.(3.21)

Noting that {xn} is bounded, we have from (3.21) that

(3.22) ∥(I − PCn)xn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2∥yn − xn∥M,

where M is some positive constant. Due to the fact that (∥xn−p∥2−∥xn+1−p∥2+
2∥yn − xn∥M) → 0, as n → ∞, we get from (3.22) that

(3.23) lim
n→∞

∥(I − PCn)xn∥2 = 0.

We claim here that ωω(xn) ⊆ Γ. Since {xn} is bounded, there exists a subse-
quence {xnk

} of {xn} such that {xnk
} ⇀ p∗ ∈ ωω(xn). Next we show that p∗ ∈ Γ.

That is, we need to show p∗ ∈ C and Bip
∗ ∈ Qi for each i = 1, . . . , N . Since {xn} is

bounded and from the boundedness assumption of the subdifferential operator ∂c,
the sequence {ξnk

}∞k=1 is bounded. Indeed, by (3.2) and (3.23), we obtain

(3.24) c(xnk
) ≤ ⟨ξnk

, xnk
− PCnk

(xnk
)⟩ ≤ ∥ξnk

∥∥xnk
− PCnk

(xnk
)∥ → 0

The weak lower semi-continuity of c(.) and (3.24) implies that

c(p∗) ≤ lim inf
k→∞

c(xnk
) = 0.

Consequently, p∗ ∈ C.
Since {xn} is bounded and from the boundedness assumption of the subdiffer-

ential operator ∂qi, the sequence {ηnk
i }∞k=1 is bounded. This together with (3.16)

gives

qi
(
Bixnk

)
≤

〈
ηnk
i , Bixnk

− PQ
nk
i

(
Bixnk

)〉
≤

∥∥∥ηnk
i

∥∥∥∥∥∥(I − PQ
nk
i
)Bixnk

∥∥∥→ 0, k → ∞,(3.25)

for all i = 1, . . . , N . Since xnk
⇀ p∗, we have Bixnk

⇀ Bip
∗. The weak lower

semi-continuity of qi(.) and (3.25) implies that

qi(Bip
∗) ≤ lim inf

k→∞
qi(Bixnk

) ≤ lim sup
k→∞

qi(Bixnk
) ≤ 0,

for all i = 1, . . . , N . That is, Bip
∗ ∈ Qi for all i = 1, . . . , N . Hence, p∗ ∈ Γ.

Moreover, for p = PΓu, we can see that

lim sup
n→∞

⟨yn − p, u− p⟩ = lim
k→∞

⟨ynk
− p, u− p⟩

≤ ⟨p∗ − p, u− p⟩ ≤ 0.(3.26)
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By Lemma 2.3 and (3.19), we have

∥xn+1 − p∥2 = ∥PC(yn)− p∥2

≤ ∥yn − p∥2

= ⟨βnu+ (1− βn)vn − p, yn − p⟩
= βn⟨u− p, yn − p⟩+ (1− βn)⟨vn − p, yn − p⟩
≤ βn⟨u− p, yn − p⟩+ (1− βn)∥vn − p∥∥yn − p∥
≤ (1− βn)∥xn − p∥2 + βn⟨u− p, yn − p⟩.(3.27)

Using (3.26) in (3.27) and applying Lemma 2.11, we obtain

lim
n→∞

∥xn − p∥2 = 0.

Therefore, as n → ∞, xn → p = PΓu.

Case 2: Set Λn = ∥xn − p∥2. Assume that {Λn} is not decreasing at infinity. Let
ϕ : N → N be a mapping for all n ≥ n0 (for some n0 large enough) defined by

ϕ(n) = max{t ∈ N : t ≤ n,Λt ≤ Λt+1}.

By Lemma 2.10, {ϕ(n)}∞n=n0
is a nondecreasing sequence such that ϕ(n) → ∞ as

n → ∞ and

(3.28) max{Λϕ(n), Λn} ≤ Λϕ(n)+1, ∀n ≥ n0.

After a similar conclusion from (3.16), it is easy to see that

(3.29) lim
n→∞

∥(I − P
Q

ϕ(n)
i

)Bixϕ(n)∥ = 0.

By the similar argument as above in Case 1, we conclude immediately that

lim
n→∞

∥B∗
i (I − P

Q
ϕ(n)
i

)Bixϕ(n)∥ = 0

and

lim sup
n→∞

⟨yϕ(n) − p, u− p⟩ ≤ 0.

Since {xϕ(n)} is bounded, there exists a subsequence of {xϕ(n)}, still denoted by
{xϕ(n)} which converges weakly to p∗. By similar argument as above in Case 1, we
conclude immediately that p∗ ∈ C and Bip

∗ ∈ Qi ⇒ p∗ ∈ Γ.
From (3.27) we have that

∥xϕ(n)+1 − p∥2 ≤ (1− βϕ(n))∥xϕ(n) − p∥2 + βϕ(n)⟨u− p, yϕ(n) − p⟩

which implies by Lemma (2.11)

lim
n→∞

∥xϕ(n) − p∥2 = 0.

and

lim
n→∞

∥xϕ(n)+1 − p∥2 = 0.
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Moreover, for n ≥ n0, it is easy to see that Λϕ(n) − Λϕ(n)+1 ≤ 0 if n ̸= ϕ(n) (that
is n > ϕ(n)), because for ϕ(n) + 1 ≤ m ≤ n, Λm > Λm+1. As a consequence, we
obtain,

0 ≤ Λn ≤ max{Λϕ(n), Λϕ(n)+1} = Λϕ(n)+1, ∀n ≥ n0.

Therefore, we obtain lim
n→∞

Λn = 0, that is, {xn} converges strongly to p. This

completes the proof. □
Remark 3.2. For the special case, where N = 1, the SFPMOS (1.15) becomes the
SFP (1.1). Thus, it is worth to mention that, we have the following corollary for
solving the SFP (1.1), an immediate consequence of Theorem 3.1.

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces and let B : H1 → H2 be
bounded linear operator. Let C and Q be nonempty, closed and convex subsets of
H1 and H2, respectively. Assume that Ω = C ∩B−1(Q) ̸= ∅. Let u ∈ H1 be a fixed
point. For any starting point x0 ∈ H1, let {xn} be the sequence generated by

(3.30) xn+1 := PCn

(
βnu+ δnxn + εn

(
xn − τn∇fn(xn)

))
where Cn, τn, and ∇fn are given by (1.4), (1.9) and (1.7), respectively. Suppose
the sequences {βn}, {δn} and {εn} satisfy the conditions in Theorem 3.1. Then, the
sequence {xn} converges strongly to the solution p ∈ Ω, where p = PΩ(u).

Remark 3.4. The iterative scheme (27) in [38] was reduced to the iterative scheme
(43) in [42]. Here we note that our iterative scheme (3.30) extends the mentioned
iterative scheme to self-adaptive relaxed method.

We note also the following results regarding to the SFPMOS (1.15).

Corollary 3.5. Let H, Hi, i = 1, . . . , N, be real Hilbert spaces and let Bi : H →
Hi, i = 1, . . . , N, be bounded linear operators. Let C and Qi, i = 1, . . . , N, be
nonempty, closed and convex subsets of H and Hi, i = 1, . . . , N , respectively. As-
sume that the problem (1.15) is consistent. For any initial guess x0 ∈ H, let {xn}
be the sequence generated by

(3.31) xn+1 := PCn

(
βnx0 + δnxn + εn

(
xn − τn∇gn(xn)

))
where Cn, τn, and ∇gn are given by (3.2), (3.6) and (3.5)), respectively. Suppose
the sequences {βn}, {δn} and {εn} satisfy the conditions in Theorem 3.1. Then, the
sequence {xn} generated by (3.31) strongly converges to the solution p = PΓ(x0) ∈ Γ.

Remark 3.6. We note that by letting δn ≡ 0 of in Algorithm 1, we obtain the
following result regarding the SFPMOS (1.15).

Corollary 3.7. Let H, Hi, i = 1, . . . , N, be real Hilbert spaces and let Bi : H →
Hi, i = 1, . . . , N, be bounded linear operators. Let C and Qi, i = 1, . . . , N, be
nonempty, closed and convex subsets of H and Hi, i = 1, . . . , N , respectively. As-
sume that the problem (1.15) is consistent. For a fixed point u ∈ H and any initial
guess x0 ∈ H, let {xn} be the sequence generated by

(3.32) xn+1 := PCn

(
βnu+ (1− βn)

(
xn − τn∇gn(xn)

))
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where Cn, τn, and ∇gn are given by (3.2), (3.6) and (3.5)), respectively. Suppose
the sequence {βn} is as in Algorithm 1 and satisfies the conditions (A1) in Theorem
3.1. Then, the sequence {xn} generated by (3.32) strongly converges to the solution
p = PΓ(u) ∈ Γ.

Corollary 3.8. Let H, Hi, i = 1, . . . , N, be real Hilbert spaces and let Bi : H →
Hi, i = 1, . . . , N, be bounded linear operators. Let C and Qi, i = 1, . . . , N, be
nonempty, closed and convex subsets of H and Hi, i = 1, . . . , N , respectively. As-
sume that the problem (1.15) is consistent. For any initial guess x0 ∈ H, let {xn}
be the sequence generated by

(3.33) xn+1 := PCn

(
βnx0 + (1− βn)

(
xn − τn∇gn(xn)

))
where Cn, τn, and ∇gn are given by (3.2), (3.6) and (3.5)), respectively. Suppose the
sequence {βn} satisfies the condition (A1) in in Theorem 3.1. Then, the sequence
{xn} generated by (3.33) strongly converges to the solution p = PΓ(u) ∈ Γ.

Remark 3.9. In Corollary 3.7 above, for the particular case, where N = 1, the
iterative scheme (3.32) reduced exactly to iterative scheme (1.12) proposed by He
et al. [25, Theorem 3.2].

4. Application to the generalized split feasibility problem

In this section, we present an application of Theorem 3.1 for solving the GSFP
(1.14) in Hilbert spaces. We first recall the GSFP.

Let Hi, i = 1, . . . , N, be the real Hilbert spaces and Ci, i = 1, . . . , N, be closed
and convex subsets of Hi, respectively. Let Ai : Hi → Hi+1, i = 1, . . . , N − 1, be
bounded linear operators such that

S := C1 ∩A−1
1 (C2) ∩ · · · ∩ A−1

1

(
A−1

2 . . .
(
A−1

N−1(CN )
))

̸= ∅.

The GSFP [35] is to find an element

p∗ ∈ S,

that is p∗ ∈ C1, A1p
∗ ∈ C2, . . . , AN−1AN−2 . . . A1p

∗ ∈ CN .

Remark 4.1. ([34, Remark 1.1]) Letting H = H1, C = C1, Qi = Ci+1, 1 ≤ i ≤
N − 1, B1 = A1, B2 = A2A1, . . . , and BN−1 = AN−1AN−2AN−3 . . . A2A1, then the
SFPMOS (1.15) becomes (1.14).

Using Theorem 3.1 and Remark 4.1, we note the following theorem for solving
the GSFP (1.14).

Theorem 4.2. Let H = H1, C = C1, Qi = Ci+1, 1 ≤ i ≤ N − 1, B1 = A1, B2 =
A2A1, . . . , and BN−1 = AN−1AN−2AN−3 . . . A2A1. Let u, x0 ∈ C1, and let {xn} be
the sequence generated by

(4.1) xn+1 := PCn
1

(
βnu+ δnxn + εn

(
xn − τn

N−1∑
i=1

B∗
i (I − PQn

i
)Bixn

))
,
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where Cn
1 and Cn

i+1 are half-spaces of C1 and Ci+1 (at the nth iterate ), respectively,
and can be defined by (3.2) and (3.3), respectively, and

τn :=
ρn
∑N−1

i=1

∥∥(I − PCn
i+1

)
Bixn

∥∥2
2
∥∥∥∑N−1

i=1 B∗
i

(
I − PCn

i+1

)
Bixn

∥∥∥2 , ∀n ≥ 0.

Suppose the sequences {ρn}, {βn}, {δn} and {εn} satisfy the following conditions:

(C1): {βn} ⊂ (0, 1) with lim
n→∞

βn = 0 and
∞∑
n=1

βn = +∞;

(C2): {εn} ⊂ (0, 1) with 0 < lim inf
n→∞

εn ≤ lim sup
n→∞

εn < 1;

(C3): {δn} ⊂ [0, 1) with βn + δn + εn = 1;
(C4): {ρn} ⊂ (0,+∞) with lim inf

n→∞
ρn(4− ρn) > 0.

Then, the sequence {xn} generated by iterative scheme (4.1) converges strongly to
the solution p ∈ S, where p = PS(u).

5. Numerical experiments

In this section, we provide some numerical experiments to illustrate the imple-
mentation of our proposed methods compared to many existing results by solving
three problems. In Example 5.1, we study the behavior and implementation of
Algorithm 1 and compare it with the Scheme (1.19), Scheme (1.20), and Scheme
(5.4) by solving a problem adopted from [34]. In Example 5.2, we compare Scheme
(3.30) with that of Scheme (1.11) and Scheme (1.12) by solving a problem in infinite-
dimensional real Hilbert spaces. In Example 5.3, we apply Scheme (3.30) for signal
recovery and we compare its performance with Scheme (1.11) and Scheme (1.12).
The numerical results are completed on a standard TOSHIBA laptop with Intel(R)
Core(TM) i5-2450M CPU@2.5GHz with memory 4GB. The code is implemented in
MATLAB R2020a.

In these numerical experiments, Iter. (n) stands for the number of iterations and
CPU(s) for the Elapsed time-run in seconds. For the sake of convenience, we denote
e1 = (1, 1, . . . , 1)T ∈ R10.

Example 5.1. ([34]) Consider H = R10, H1 = R20, H2 = R30, and H3 = R40. Find
a point p∗ ∈ R10 such that

(5.1) p∗ ∈ Γ := C ∩B−1
1 (Q1) ∩B−1

2 (Q2) ∩B−1
3 (Q3) ̸= ∅,

where the closed convex sets C and Qi (i = 1, 2, 3) are defined by

(5.2)

C = {x ∈ R10 : ∥x− c∥2 ≤ r2},
Q1 = {B1x ∈ R20 : ∥B1x− c1∥2 ≤ r21},
Q2 = {B2x ∈ R30 : ∥B2x− c2∥2 ≤ r22},
Q3 = {B3x ∈ R40 : ∥B3x− c3∥2 ≤ r23}.

where c ∈ R10, c1 ∈ R20, c2 ∈ R30, c3 ∈ R40, r, r1, r2, r3 ∈ R, and the linear bounded
operators Bi are defined by B1 : R10 → R20, B2 : R10 → R30, B3 : R10 → R40. In
this case, for any x ∈ R10, we have c(x) = ∥x−c∥2−r2 and qi(Bix) = ∥Bix−ci∥2−r2i
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for i = 1, 2, 3. According to (3.2) and (3.3), the half-spaces Cn and Qn
i (i = 1, 2, 3),

respectively of the sets C and Qi are determined at a point xn and Bixn, respectively
as follows:

(5.3)

Cn = {x ∈ R10 : ∥xn − c∥2 − r2 ≤ 2⟨xn − c, xn − x⟩},
Qn

1 = {y ∈ R20 : ∥B1xn − c1∥2 − r21 ≤ 2⟨B1xn − c1, B1xn − y⟩},
Qn

2 = {y ∈ R30 : ∥B2xn − c2∥2 − r22 ≤ 2⟨B2xn − c2, B2xn − y⟩},
Qn

3 = {y ∈ R40 : ∥B3xn − c3∥2 − r23 ≤ 2⟨B3xn − c3, B3xn − y⟩}.

Then, the metric projections onto the half-spaces Cn and Qn
i (i = 1, 2, 3), can

be easily calculated. The elements of the representing matrices Bi are randomly
generated in the closed interval [−5, 5]. The coordinates of the centers c, c1, c2, c3
are randomly generated in the closed interval [−1, 1]. The radii r, r1, r2, r3 are
randomly generated in the closed intervals [10, 20], [20, 40], [30, 60] and [40, 80],
respectively.

In this example, we examine the convergence of the sequence {xn} which is defined
by Algorithm 1 and compare it with that of Scheme (1.19), Scheme (1.20), and with
the following viscosity approximation an optimization approach method proposed
by Reich et al. [36] for solving the SFPMOS (1.15). For any given point x0 ∈ H,
{xn} is a sequence generated by the iterative method

(5.4) xn+1 := αnf(xn) + (1− αn)PC

(
xn − λn

∑
i∈I(xn)

γi,nB
∗
i (I − PQi)Bixn

)
,

where f : C → C is a strict contraction mapping of H into itself with the con-
traction constant θ ∈ [0, 1), {αn} ⊂ (0, 1), I(xn) =

{
i : ∥Bixn − PQiBixn∥ =

maxi=1,2,...,N ∥Bixn − PQiBixn∥
}
, γi,n ≥ 0 for all i ∈ I(xn) with

∑
i∈I(xn)

γi,n = 1,

and for {ρn} ⊂ [
¯
a, ā] ⊂ (0, 2) {λn} ⊂ [0,∞) such that

(5.5)

λn =

ρn
(maxi=1,2,...,N ∥Bixn−PQi

Bixn∥)2
∥
∑

i∈I(xn) γi,nB
∗
i (I−PQi

)Bixn∥2 , if ∥
∑

i∈I(xn)
γi,nB

∗
i (I − PQi)Bixn∥ > 0,

0, otherwise ,

by solving problem (5.1).
First, we examine the convergence of the sequence {xn} generated by Algorithm

1. Here, we take u = 10e1 and x0 = 100e1, βn = 1
2n+1 , δn = εn = n

2n+1 , and we

consider different choices of the sequence ρn. We use En = ∥xn+1 − xn∥2 < ϵ as
stopping criteria, where ϵ is a small enough positive number (note that if at the
nth step, En = 0, then xn ∈ Γ). The numerical outcomes of the experiments are
reported in Table 1.
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Table 1. Numerical results of Algorithm 1 for different choices of
ρn and ϵ

ϵ = 10−4 ϵ = 10−5 ϵ = 10−6

Iter. (n) CPU(s) Iter. (n) CPU(s) Iter. (n) CPU(s)
ρn = 3.98 72 0.022767 111 0.024639 224 0.035905
ρn = 3.00 88 0.022052 172 0.02908 356 0.029861
ρn = 2.00 189 0.026134 206 0.022539 345 0.026904
ρn = 1.00 243 0.007429 384 0.025907 550 0.031092
ρn = 0.01 16 0.019556 38 0.023237 6802 0.120587

The behavior of the function En in Table 1 is described in Figure 1.

Table 2. Comparison of Algorithm 1 with Scheme (1.19), Scheme
(1.20), and Scheme (5.4)

x0 = 10e1
ϵ = 10−6 ϵ = 10−8 ϵ = 10−10

Iter. (n) CPU(s) Iter. (n) CPU(s) Iter. (n) CPU(s)
Algorithm 1 20 0.019655 39 0.026011 83 0.00455
Scheme (1.19) 69 0.042288 53 0.045127 206 0.007512
Scheme (1.20) 35 0.062453 407 0.060721 3363 0.033598
Scheme (5.4) 34 0.024152 378 0.026378 3044 0.049601

ϵ = 10−8

x0 = e1 x0 = 100e1 x0 = 30e1

Iter. (n) CPU(s) Iter. (n) CPU(s) Iter. (n) CPU(s)
Algorithm 1 89 0.006857 108 0.004559 65 0.00224
Scheme (1.19) 147 0.010925 112 0.006441 91 0.003845
Scheme (1.20) 298 0.016471 451 0.014648 409 0.008438
Scheme (5.4) 278 0.009539 419 0.01584 379 0.007924
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Figure 1. Numerical results of Algorithm 1 for different choices of
ρn and ϵ

Next, we compare Algorithm 1 with that of Scheme (1.19), Scheme (1.20), and
Scheme (5.4) by solving the same problem (5.1). For Algorithm 1, we choose u =
10e1, βn = 1

2n+1 , δn = εn = n
2n+1 . For Scheme (1.19) and Scheme (1.20), we take

λn = 0.0005. For Scheme (1.20) and Scheme (5.4), we take f(x) = 0.975x and
αn = 1

2n+1 . For Algorithm 1 and Scheme (5.4), we take ρn = n
1010n+1

. Moreover, we
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take γ1,n = 1
6 , γ2,n = 1

3 , γ3,n = 1
2 for Scheme (5.4). Using En = ∥xn+1 − xn∥2 < ϵ

as stopping criteria, for different choices of the initial point x0 and different values
of ϵ, the results of numerical experiments are reported in Table 2 and Figure 2.

Figure 2. Comparison of Algorithm 1 with Scheme (1.19), Scheme
(1.20), and Scheme (5.4)
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It is readily seen from Table 2 and Figure 2 that, for each choices of the ini-
tial point x0 and each values of ϵ, Algorithm 1 has better performance interms of
less number of iterations and small CPU-run time in seconds than the compared
methods.

Example 5.2. Let H1 = H2 = L2([0, 2π]) with the inner product ⟨.⟩ defined by

⟨x, y⟩ =
∫ 2π

0
x(t)y(t)dt, ∀x, y ∈ L2([0, 2π])

and with the norm ∥.∥ defined by

∥x||2 :=

√∫ 2π

0
|x(t)|2dt, ∀x, y ∈ L2([0, 2π]).

Further, we consider the following half-spaces

C :=

{
x ∈ L2([0, 2π]) :

∫ 2π

0
x(t)dt ≤ 1

}
and

Q :=

{
y ∈ L2([0, 2π]) :

∫ 2π

0
|y(t)− sin(t)|2dt ≤ 16

}
.

In addition, we consider a linear continuous operator A : L2([0, 2π]) → L2([0, 2π]),
where (Ax)(t) = x(t). Then, (A∗x)(t) = x(t) and ∥A∥ = 1. That is, A is an identity
operator. The metric projection onto C and Q have an explicit formula (see [8]).
We can also write the projections onto C and the projections onto Q as follows:

PC(x(t)) =

{
x(t) +

1−
∫ 2π
0 x(t)dt

4π2 , if
∫ 2π
0 x(t)dt > 1,

x(t), if
∫ 2π
0 x(t)dt ≤ 1.

PQ(y(t)) =

sin(t) + 4(y(t)−sin(t))√∫ 2π
0 |y(t)−sin(t)|2dt

, if
∫ 2π
0 |y(t)− sin(t)|2dt > 16,

y(t), if
∫ 2π
0 |y(t)− sin(t)|2dt ≤ 16.

Now, we solve the following problem

(5.6) find p∗ ∈ C such that Ap∗ ∈ Q.

We see here that our iterative method can be implemented to solve the problem
(5.6) considered in this example. In this example, we compare Scheme (3.30) with
the strong convergence results given by Scheme (1.11) and Scheme (1.12). For all

methods, we choose u = 2t

2 , αn = βn = 1
n+1 , εn = n

2(n+1) , δn = 1 − βn − εn,

ρn = n
1010n+1

for different choices of x0 ∈ H1.

The error of the iterative algorithms is denoted by En = ∥xn+1 − xn∥2. We use
En < 10−4 as stopping criteria for all methods and the outcomes of the numerical
experiment of the compared methods are reported in Table 3 and Figure 3.
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Table 3. Comparison of Scheme (3.30) with Scheme (1.11) and
Scheme (1.12) for different choices of x0

Scheme (3.30) Scheme (1.11) Scheme (1.12)

x0 = t2 Iter. (n) 37 117 107
CPU(s) 315.75445 878.604041 734.067342

En 9.69942E-05 9.81776E-05 9.92371E-05

x0 = t2 − 2t+ 1 Iter. (n) 25 117 107
CPU(s) 154.638795 814.225934 758.915085

En 8.9232E-05 9.79585E-05 9.89244E-05

x0 = sin(t)et Iter. (n) 142 149 145
CPU(s) 909.102986 1050.792024 1021.03839

En 9.78966E-05 9.96792E-05 9.89159E-05

x0 =
2t

2 − 3t

200 Iter. (n) 18 117 107
CPU(s) 118.03319 815.592689 764.397045

En 9.64645E-05 9.78326E-05 9.87446E-05

Figure 3. Comparison of Scheme (3.30) with Scheme (1.11) and
Scheme (1.12) for different choices of x0
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It is observed from the numerical experiment outcomes reported in Table 3 and
Figure 3 that Scheme (3.30) is easily implementable and has better performance
than Scheme (1.11) and Scheme (1.12) in terms of less number of iterations and
small CPU-time run in seconds.

Example 5.3. Compressed Sensing: In this section, we consider numerical ex-
periments to illustrate the application of the proposed algorithm to inverse problems
arising from signal processing. Compressed sensing is a very active domain of re-
search and applications, based on the fact that an N -sample signal x with exactly
L nonzero components can be recovered from L ≪ M < N measurements as long
as the number of measurements is smaller than the number of signal samples and at
the same time much larger than the sparsity level of x. Likewise, the measurements
are required to be incoherent, which means that the information contained in the
signal is spread out in the domain. Since M < N , the problem of recovering x from
M measurements is ill conditioned because we encounter an underdeterminated sys-
tem of linear equations. But, using a sparsity prior, it turns out that reconstructing
x from b is possible as long as the number of nonzero elements is small enough
(see [39]). More specifically, compressed sensing can be formulated as inverting the
equation system

(5.7) b = Ax+Θ,

where x ∈ RN is a vector with L nonzero components to be recovered, b ∈ RM is
the vector of noisy observations or measurements (the measured data) with noisy
Θ (when Θ = 0, it means that there is no noise to the observed data), and A :
RN → RM is a bounded linear observation operator, often ill-conditioned because
it models a process with loss of information. A powerful approach for problem
(5.7) consists in considering a solution x represented by a sparse expansion, that is,
represented by a series expansion with respect to an orthonormal basis that has only
a small number of large coefficients. When attempting to find sparse solutions to
linear inverse problems of type (5.7), successful model is the convex unconstrained
minimization problem

(5.8) min
x∈RN

1

2
∥Ax− b∥22 +ϖ∥x∥1,

where ϖ is positive parameter and ∥.∥1 is the ℓ1 norm. Problem (5.8) consists in
minimizing an objective function, which includes a quadratic error term combined
with a sparseness-including ℓ1 regularization term, which is to make small compo-
nent of x to become zero. Problem (5.7) can be seen as the following least absolute
shrinkage and selection operator (LASSO), which is commonly used in the theory
of signal processing (see [22])

(5.9) min
x∈RN

1

2
∥Ax− b∥22 subject to ∥x∥1 ≤ t,

where t > 0 is a given constant. By the theory of convex analysis, one is able to
show that a solution to the LASSO problem (5.9), for appropriate choices t > 0, is a
minimizer of (5.8) (see [20]). It can be observed that (5.9) indicates the potential of
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finding a sparse solution of the SFP (1.1) due to the ℓ1 constraint. More precisely,
it is readily seen that problem (5.9) is a particular case of the SFP (1.1) with
C := {x : ∥x∥1 ≤ t} and Q = {b}, and thus can be solved by Scheme (3.30) and the
iterative methods given by Scheme (1.11) and Scheme (1.12). We define the convex
function c(x) = ∥x∥1 − t, and according (1.4), the level set Cn is defined by

Cn = {x ∈ RN : c(xn) + ⟨ξn, x− xn⟩ ≤ 0},

where ξn ∈ ∂ω(xn). Observe that the metric projection onto Cn can be computed
by the following manner,

PCn(z)) =

z, if c(xn) + ⟨ξn, z − xn⟩ ≤ 0,

z − ⟨c(xn)+⟨ξn,z−xn⟩
∥ξn∥2

L2
ξn, otherwise .

We choose a subgradient ξn ∈ ∂c(xn) as

(ξn)i =


1 if (ξn)i > 0,

0 if (ξn)i = 0,

−1 if (ξn)i < 0.

In a special case where Q = Qn = {b}, Scheme (3.30) converges to the solution
of (5.9). Moreover, Scheme (3.30) can be implemented easily, because the projec-
tion onto the level set has an explicit formula. In order to show the efficacy of
Scheme (3.30), a comparative sparse signal recovery experiments were carried-out
with Scheme (1.11) and Scheme (1.12).

The vector x is a L sparse signal with non-zero L elements that are generated
from uniform distribution within an interval of [−2, 2], A is a matrix generated from
normal distribution with mean zero and variance of one and b is an observation
generated by white Gaussian noise with signal-to-noise ratio SNR = 40. The
process of sparse signal recovery start by randomly generating t = L and u, x0 are
N×1 vectors. The main target is then to recover the L sparse signal by solving (5.9)
for x. The restoration accuracy is then measured by mean squared error (MSE) as
follows:

(5.10) MSE =
∥xn+1 − x∥

N
≤ ϵ,

where xn is an estimated signal of x, and ϵ > 0 is a given small constant. We choose
the parameters αn = βn = 1

100n+1 , δn = 1
2 − 1

100n , εn = 1
2 + 1

100n(100n+1) , ρn =

3.5. In our numerical experiments, for u = ones ([N, 1]) and x0 = ones ([N, 1]),
we consider four choices: Choice 1: L = 20, N = 212,M = 210; Choice 2:
L = 40, N = 212,M = 210; Choice 3: L = 20, N = 214,M = 212; Choice 4:
L = 40, N = 214,M = 212. We use MSE < ϵ = 10−4 as stopping criterion for all
methods. The results of the numerical experiments interms of number of iterations
(Iter. (n)) and the CPU-run time in seconds (CPU(s)) are reported in Table 4 and
Figures 4-8.
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Figure 4. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 1

Figure 5. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 2
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Figure 6. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 3

Figure 7. Original L-sparse signal versus recovered sparse signals by

compared methods for Choice 4
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Figure 8. MSE against Iter. (n) for comparison of Scheme (3.30)
with Scheme (1.11) and Scheme (1.12)

It can be observed from Table 4 and Figures 4-8 that the recovered signal by the
proposed method has less number of iterations and small CPU(s) time to converge
than by the compared methods.

Table 4. The experiments of compressed sensing via Scheme (3.30),
Scheme (1.11), and Scheme (1.12)

Scheme (3.30) Scheme (1.11) Scheme (1.12)

Iter. (n) CPU(s) MSE Iter. (n) CPU(s) MSE Iter. (n) CPU(s) MSE

Choice 1 64 0.9348 9.95E-05 112 1.6343 9.79E-05 111 1.6464 9.88E-05
Choice 2 99 1.5069 9.83E-05 166 2.6089 9.94E-05 167 2.5307 9.79E-05
Choice 3 30 6.3471 9.60E-05 61 13.0252 9.52E-05 60 12.5858 9.54E-05
Choice 4 43 9.3767 9.49E-05 81 17.245 9.73E-05 81 17.8173 9.83E-05
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