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Theorem 1.2. Let Y be a convex subset of a Hausdorff locally convex linear topo-
logical space, X a nonempty subset of Y , and let G : Y → K(X) be an upper
semicontinuous compact map. Then there exists an x ∈ X with x ∈ G(x).

2. Topological Transversality Theorem

Let E be a Fréchet space and U an open subset of E. We begin by defining
the classes of maps we will consider and then we introduce the idea of an essential
map.

Definition 2.1. We say F ∈ CW (U,E) if F ∈ W (U,E) is a compact map; here U
denotes the closure of U in E.

Definition 2.2. We say F ∈ CW∂U (U,E) if F ∈ CW (U,E) and x /∈ F (x) for
x ∈ ∂U ; here ∂U denotes the boundary of U in E.

Definition 2.3. We say G ∈ D(U,E) if G : U → K(E) is a upper semicontinuous
compact map.

Definition 2.4. We say G ∈ D∂U (U,E) if G ∈ D(U,E) and x /∈ G(x) for
x ∈ ∂U .

Now we introduce the notion of an essential map.

Definition 2.5. We say F ∈ CW∂U (U,E) is essential in CW∂U (U,E) if for any
upper semicontinuous (compact) selection Φ : U → K(E) of F (i.e. Φ ∈ D∂U (U,E))
and any map θ ∈ D∂U (U,E) with θ|∂U = Φ|∂U there exists a x ∈ U with x ∈ θ(x).

Remark 2.6. Note E is metrizable so U is paracompact. Note Theorem 1.1 guar-
antees that there exists an upper semicontinuous selection Φ : U → K(E) of F in
Definition 2.5.

Remark 2.7. If F ∈ CW∂U (U,E) is essential in CW∂U (U,E) and if Φ ∈ D(U,E)
is any selection of F then there exists a x ∈ U with x ∈ Φ(x) (take θ = Φ in
Definition 2.5), so in particular there exists a x ∈ U with x ∈ F (x).

Next we present the notion of homotopy.

Definition 2.8. Let Φ, Ψ ∈ D∂U (U,E). We say Φ ∼= Ψ inD∂U (U,E) if there exists
an upper semicontinuous, compact map H : U × [0, 1] → K(E) with x /∈ Ht(x) for
any x ∈ ∂ U and t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = Φ and H1 = Ψ.

Remark 2.9. A standard argument guarantees that ∼= in D∂U (U,E) is an equiv-
alence relation.

Definition 2.10. Let F, G ∈ CW∂U (U,E). We say F ∼= G in CW∂U (U,E) if for
any selection Φ ∈ D∂U (U,E) (respectively, Ψ ∈ D∂U (U,E)) of F (respectively, of
G) we have Φ ∼= Ψ in D∂U (U,E).

Next we present a simple result which will then generate a Leray–Schauder al-
ternative and a topological transversality theorem.
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Theorem 2.11. Let E be a Fréchet space, U an open subset of E and F ∈
WC∂U (U,E). Assume G ∈ WC∂U (U,E) is essential in WC∂U (U,E) and sup-
pose the following holds:

(2.1)


for any selection Φ ∈ D∂U (U,E) (respectively, Ψ ∈ D∂U (U,E))

of F (respectively, of G) and any map θ ∈ D∂U (U,E)

with θ|∂U = Φ|∂U we have Ψ ∼= θ in D∂U (U,E).

Then F is essential in WC∂U (U,E).

Proof. Let Φ ∈ D∂U (U,E) be any selection of F and consider any map θ ∈
D∂U (U,E) with θ|∂U = Φ|∂U . We must show there exists a x ∈ U with x ∈ θ(x).
Let Ψ ∈ D∂U (U,E) be any selection of G. Now (2.1) guarantees that there exists a
upper semicontinuous, compact map H : U × [0, 1] → K(E) with x /∈ Ht(x) for any
x ∈ ∂ U and t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = Ψ and H1 = θ. Let

Ω =
{
x ∈ U : x ∈ H(x, t) for some t ∈ [0, 1]

}
.

Now Ω ̸= ∅ since G is essential in CW∂U (U,E) (see Remark 2.7). Also Ω is closed
since H is upper semicontinuous (in fact Ω is compact since H is compact). Also
note Ω ∩ ∂U = ∅ since x /∈ Ht(x) for any x ∈ ∂ U and t ∈ [0, 1]. Then there
exists a Urysohn continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(Ω) = 1.
Define the map R by R(x) = H(x, µ(x)) = H ◦ g(x) where g : U → U × [0, 1] is
given by g(x) = (x, µ(x)). Note R is a upper semicontinuous compact map with
R|∂U = Ψ|∂U since if x ∈ ∂U then R(x) = H(x, 0) = Ψ(x) and thus R ∈ D∂U (U,E)
with R|∂U = Ψ|∂U . Now since G is essential in CW∂U (U,E) then there exists a
x ∈ U with x ∈ R(x) i.e. x ∈ Hµ(x)(x). Thus x ∈ Ω so µ(x) = 1 and as a result
x ∈ H1(x) = θ(x). □

The above result then generates a very general Leray–Schauder type result.

Theorem 2.12. Let E be a Fréchet space, U an open subset of E and F ∈
WC∂U (U,E). Assume G ∈ WC∂U (U,E) is essential in WC∂U (U,E) and x /∈
t F (x)+(1− t)G(x) for x ∈ ∂U and t ∈ (0, 1). Then F is essential in WC∂U (U,E)
(in particular F has a fixed point in U).

Proof. Let Φ ∈ D∂U (U,E) (respectively, Ψ ∈ D∂U (U,E)) be any selection of F
(respectively, of G). Now consider any map θ ∈ D∂U (U,E) with θ|∂U = Φ|∂U .
Let H(x, t) = t θ(x) + (1 − t)Ψ(x). Note H : U × [0, 1] → K(E) is a upper
semicontinuous compact map (see [2, Theorem 4.18]) and x /∈ Ht(x) for any x ∈ ∂ U
and t ∈ (0, 1) (note if x ∈ ∂U and t ∈ (0, 1) then since θ|∂U = Φ|∂U we have Ht(x) =
tΦ(x)+(1−t)Ψ(x) and note x /∈ tΦ(x)+(1−t)Ψ(x) since x /∈ t F (x)+(1−t)G(x)),
H0 = Ψ and H1 = θ. Thus (2.1) holds so our result follows from Theorem 2.11. □

Next we present an applicable example of an essential map.

Theorem 2.13. Let E be a Fréchet space, U an open subset of E and 0 ∈ U . Then
the zero map is essential in WC∂U (U,E).
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Proof. Let F (x) = {0} for x ∈ U (i.e. F is the zero map) and let Φ ∈ D∂U (U,E) be
any selection of F . Note Φ(x) = {0} for x ∈ U . Consider any map θ ∈ D∂U (U,E)
with θ|∂U = Φ|∂U = {0}. We must show there exists a x ∈ U with x ∈ θ(x). Let

J(x) =

{
θ(x), x ∈ U

{0}, x ∈ E\U.

Note J : E → K(E) is a upper semicontinuous, compact map so Theorem 1.2
guarantees that there exists a x ∈ E with x ∈ J(x). If x ∈ E \U then J(x) = {0},
a contradiction since 0 ∈ U . Thus x ∈ U and so x ∈ θ(x). □

Theorem 2.14. Let E be a Fréchet space, U an open subset of E and 0 ∈ U .
Suppose F ∈ WC∂U (U,E) with x /∈ t F (x) for x ∈ ∂U and t ∈ (0, 1). Then F is
essential in WC∂U (U,E) (in particular F has a fixed point in U).

Proof. The result follows from Theorem 2.12 and Theorem 2.13 with G being the
zero map. □

To establish the topological transversality theorem first note the following:

(2.2)

{
if Φ, Ψ ∈ D∂U (U,E) with Φ|∂U = Ψ|∂U
then Φ ∼= Ψ in D∂U (U,E).

To see this let H(x, t) = (1− t)Φ(x) + tΨ(x) and note H : U × [0, 1] → K(E) is a
upper semicontinuous compact map with x /∈ Ht(x) for any x ∈ ∂ U and t ∈ (0, 1)
(note if x ∈ ∂U and t ∈ (0, 1) then Ht(x) = (1 − t)Φ(x) + tΨ(x) = Φ(x) since
Φ|∂U = Ψ|∂U and note x /∈ Φ(x) since Φ ∈ D∂U (U,E)).

Remark 2.15. From (2.2) note in (2.1) that since θ ∈ D∂U (U,E) and θ|∂U = Φ|∂U
then θ ∼= Φ in D∂U (U,E).

Theorem 2.16. Let E be a Fréchet space and U an open subset of E. Suppose
F and G are two maps in CW∂U (U,E) with F ∼= G in CW∂U (U,E). Now F is
essential in CW∂U (U,E) if and only if G is essential in CW∂U (U,E).

Proof. Assume G is essential in CW∂U (U,E). We will use Theorem 2.11 to show
F is essential in CW∂U (U,E). Let Φ ∈ D∂U (U,E) be any selection of F and let
Ψ ∈ D∂U (U,E) be any selection of G. Now consider any map θ ∈ D∂U (U,E) with
θ|∂U = Φ|∂U . Now (2.2) guarantees that Φ ∼= θ in D∂U (U,E) and this together
with F ∼= G in CW∂U (U,E) (so Φ ∼= Ψ in D∂U (U,E)) and Remark 2.9 (i.e. ∼= in
D∂U (U,E) is an equivalence relation) guarantees that Ψ ∼= θ in D∂U (U,E). Thus
(2.1) holds. Now Theorem 2.11 guarantees that F is essential in CW∂U (U,E).
A similar argument shows if F is essential in CW∂U (U,E) then G is essential in
CW∂U (U,E). □
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