

AN *n*-DIMENSIONAL INTERMEDIATE VALUE THEOREM AND ITS APPLICATION TO THE GAME THEORY

HIDEFUMI KAWASAKI

Dedicated to the memory of Professor Wataru Takahashi and Professor Naoki Shioji

ABSTRACT. The Poincaré-Miranda theorem is an *n*-dimensional zero-point theorem, which was conjectured by Poincaré [4]. Miranda [3] showed that it is equivalent to Brouwer's fixed point theorem. Further it is equivalent to the Hadamard theorem [1], see [2] for simple proofs. Although it is sometimes called an extension of the intermediate value theorem, it does not seem to be explicitly given as an *n*-dimensional intermediate value theorem. In this paper we explicitly mention an *n*-dimensional intermediate value theorem, and show that it is equivalent to the Poincaré-Miranda theorem. As an application we deal with a bimatrix game and a three-person strategic game, and show the range of payoffs that can be achieved by mixed strategies.

1. INTRODUCTION

Let $[a_i, b_i] \subset \mathbb{R}$ (i = 1, ..., n) be closed intervals, and I = [a, b] denote the product $[a_1, b_1] \times \cdots \times [a_n, b_n]$. Let $f = (f_1, ..., f_n) : I \to \mathbb{R}^n$ be a continuous function. The classical intermediate value theorem states that when n = 1

- (1) for any value γ satisfying $\min\{f(a), f(b)\} \leq \gamma \leq \max\{f(a), f(b)\}$ there exists some point $a \leq c \leq b$ such that $f(c) = \gamma$,
- (2) in particular when $\min\{f(a), f(b)\} < \gamma < \max\{f(a), f(b)\}$ there exists some point a < c < b such that $f(c) = \gamma$.

Although the intermediate value theorem (n = 1) is usually stated as (2), the first form is equivalent to Brouwer's fixed point theorem for n = 1 and the following Poincaré-Miranda theorem for n = 1.

Theorem 1.1 (Poincaré-Miranda). If a continuous function $g = (g_1, \ldots, g_n) : I \to \mathbb{R}^n$ satisfies the following boundary condition:

(1.1)
$$g_i(x) \le 0 \ (x \in I, \ x_i = a_i), \ g_i(x) \ge 0 \ (x \in I, \ x_i = b_i)$$

or

(1.2)
$$g_i(x) \ge 0 \ (x \in I, \ x_i = a_i), \ g_i(x) \le 0 \ (x \in I, \ x_i = b_i)$$

for any i = 1, ..., n, then g has a zero-point $c \in I$.

²⁰²⁰ Mathematics Subject Classification. 47H10.

Key words and phrases. intermediate value theorem, Poincaré-Miranda theorem, game theory, bimatrix game.

HIDEFUMI KAWASAKI

In this paper we present an *n*-dimensional intermediate value theorem, and show that it is equivalent to the Poincaré-Miranda theorem. Next we apply it to two and three-person strategic games, and show the range of payoffs that can be achieved by mixed strategies.

2. *n*-dimensional intermediate value theorem

Theorem 2.1. Let $f = (f_1, \ldots, f_n) : I \to \mathbb{R}^n$ be a continuous function. Define $\overline{\alpha}_i$, $\overline{\beta}_i$, $\underline{\alpha}_i$, and β_i for $i = 1, \ldots, n$ by

(2.1)
$$\overline{\alpha}_i := \max\{f_i(x) \mid x \in I, \ x_i = a_i\}, \ \overline{\beta}_i := \max\{f_i(x) \mid x \in I, \ x_i = b_i\},\$$

(2.2)
$$\underline{\alpha}_i := \min\{f_i(x) \mid x \in I, \ x_i = a_i\}, \ \underline{\beta}_i := \min\{f_i(x) \mid x \in I, \ x_i = b_i\}.$$

Then for any $\gamma = (\gamma_1, \ldots, \gamma_n)$ satisfying

(2.3)
$$\min\{\overline{\alpha}_i, \overline{\beta}_i\} \le \gamma_i \le \max\{\underline{\alpha}_i, \underline{\beta}_i\} \quad (i = 1, \dots, n),$$

there exists some point $c = (c_1, \ldots, c_n) \in I$ such that $f(c) = \gamma$. In particular, when γ_i satisfies

(2.4)
$$\min\{\overline{\alpha}_i, \overline{\beta}_i\} < \gamma_i < \max\{\underline{\alpha}_i, \underline{\beta}_i\},$$

it holds that $a_i < c_i < b_i$.

Proof. Define a function $g: I \to \mathbb{R}^n$ by $g(x) = \gamma - f(x)$. Taking account of $\underline{\alpha}_i \leq \overline{\alpha}_i$ and $\underline{\beta}_i \leq \overline{\beta}_i$, we see that (2.3) is equivalent to

(2.5)
$$\overline{\alpha}_i \leq \gamma_i \leq \underline{\beta}_i \text{ or } \overline{\beta}_i \leq \gamma_i \leq \underline{\alpha}_i.$$

In the former case, it holds that

(2.6)
$$g_i(x) = \gamma_i - f_i(x) \begin{cases} \geq \overline{\alpha}_i - f_i(x) \geq 0 & (x_i = a_i) \\ \leq \underline{\beta}_i - f_i(x) \leq 0 & (x_i = b_i). \end{cases}$$

In the latter case, it holds that

(2.7)
$$g_i(x) = \gamma_i - f_i(x) \begin{cases} \leq \underline{\alpha}_i - f_i(x) \leq 0 & (x_i = a_i) \\ \geq \overline{\beta}_i - f_i(x) \geq 0 & (x_i = b_i). \end{cases}$$

Hence, by the Poincaré-Miranda theorem, there exists $c \in I$ such that g(c) = 0, that is, $f(c) = \gamma$.

In particular when γ_i satisfies (2.4), assume that $\overline{\alpha}_i < \gamma_i < \underline{\beta}_i$ and $c_i = a_i$, then $f_i(c) \leq \overline{\alpha}_i < \gamma_i = f_i(c)$. Hence $c_i \neq a_i$. Assume that $\overline{\alpha}_i < \gamma_i < \underline{\beta}_i$ and $c_i = b_i$, then $\underline{\beta}_i \leq f_i(c) = \gamma_i < \underline{\beta}_i$. Hence $c_i \neq b_i$. Therefore we have $a_i < c_i < b_i$. Similarly we have $a_i < c_i < b_i$ in the case of $\overline{\beta}_i < \gamma_i < \underline{\alpha}_i$.

Theorem 2.2. Theorem 2.1 implies the Poincaré-Miranda theorem.

Proof. If g_i satisfies boundary condition (1.1). Then it holds that

$$\overline{\alpha}_{i} = \max\{g_{i}(x) \mid x \in I, \ x_{i} = a_{i}\} \le 0 \le \min\{g_{i}(x) \mid x \in I, \ x_{i} = b_{i}\} = \beta_{i}.$$

If g_i satisfies boundary condition (1.2). Then it holds that

$$\overline{\beta}_i = \max\{g_i(x) \mid x \in I, \ x_i = b_i\} \le 0 \le \min\{g_i(x) \mid x \in I, \ x_i = a_i\} = \underline{\alpha}_i.$$

Hence $\gamma_i = 0$ satisfies (2.3). By Theorem 2.1, there exists $c \in I$ such that g(c) = 0.

Example 2.3. This example shows the necessity of assumption (2.3). Let $I = [-1, 1]^2$, $f_1(x_1, x_2) = -(x_1 + 1)^2 - x_2^2$, and $f_1(x_1, x_2) = x_2$. Then

$$\overline{\alpha}_1 = \max\{f_1(x_1, x_2) \mid x_1 = -1\} = \max\{-x_2^2 \mid x_2 \in [-1, 1]\} = 0, \\ \underline{\alpha}_1 = \min\{f_1(x_1, x_2) \mid x_1 = -1\} = \min\{-x_2^2 \mid x_2 \in [-1, 1]\} = -1$$

Similarly computing $\overline{\beta}_1,\,\underline{\beta}_2,\,\mathrm{etc.},\,\mathrm{we}$ have

$$\min\{\overline{\alpha}_1, \overline{\beta}_1\} = \min\{0, -4\} = -4, \qquad \max\{\underline{\alpha}_1, \underline{\beta}_1\} = \max\{-1, -5\} = -1$$
$$\min\{\overline{\alpha}_2, \overline{\beta}_2\} = \min\{-1, 1\} = -1, \qquad \max\{\underline{\alpha}_2, \beta_2\} = \max\{-1, 1\} = 1.$$

By Theorem 2.1, for any $\gamma \in [-4, -1] \times [-1, 1]$, there exists a point $c \in [-1, 1]^2$ such that $f(c) = \gamma$. Further, for $\gamma \in (-4, -1) \times (-1, 1)$, c is in $(-1, 1)^2$. On the other

FIGURE 1. (1) Level sets of f_1 . (2) Level sets of f_2 . (3) $f(c) = \gamma$.

HIDEFUMI KAWASAKI

hand, it holds that for $\gamma := (-\varepsilon^2, 1-\varepsilon) \notin [-4, -1] \times [-1, 1]$

$$f(x_1, x_2) = \gamma \quad \Leftrightarrow \quad (x_1 + 1)^2 + x_2^2 = \varepsilon^2, \ x_2 = 1 - \varepsilon$$
$$\Rightarrow \quad (x_1 + 1)^2 = \varepsilon^2 - (1 - \varepsilon)^2 = 2\varepsilon - 1 < 0,$$

where $\varepsilon > 0$ is sufficiently small. Hence there is no $x \in I$ such that $f(x) = \gamma$.

3. Application to the game theory

First, we apply Theorem 2.1 to the following bimatrix game:

- Each player has two actions called pure strategies.
- The payoff of player i is given by

(3.1)
$$f_i(x_1, y_1) = (x_1, 1 - x_1) \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \begin{pmatrix} y_1 \\ 1 - y_1 \end{pmatrix} \quad (i = 1, 2)$$

where $x_1, y_1 \in [0, 1]$. Player *i* wants to maximize f_i , predicting opponent's action.

In the following Δ denotes the set of 1-dimensional probability vectors. Probability vectors $\boldsymbol{x} = (x_1, x_2) \in \Delta$ and $\boldsymbol{y} = (y_1, y_2) \in \Delta$ are called mixed strategies.

Theorem 3.1. In the bimatrix game above, for any (γ_1, γ_2) satisfying

(3.2) $\min\{\max\{a_1, b_1\}, \max\{c_1, d_1\}\} \le \gamma_1 \le \max\{\min\{a_1, b_1\}, \min\{c_1, d_1\}\}\$

(3.3) $\min\{\max\{a_2, c_2\}, \max\{b_2, d_2\}\} \le \gamma_2 \le \max\{\min\{a_2, c_2\}, \min\{b_2, d_2\}\},\$

the payoffs (γ_1, γ_2) are achieved by some mixed strategies $(\boldsymbol{x}, \boldsymbol{y}) \in \Delta^2$. Further, if γ_1 satisfies (3.2) with strict inequalities, then $x_1 \in (0, 1)$. If γ_2 satisfies (3.3) with strict inequalities, then $y_1 \in (0, 1)$.

Proof. Taking $I = [0, 1]^2$ in Theorem 2.1, we easily see that

$$\begin{aligned} \underline{\alpha}_1 &= \min\{f_1(0,y_1) \mid y_1 \in [0,1]\} = \min\{c_1,d_1\},\\ \overline{\alpha}_1 &= \max\{f_1(0,y_1) \mid y_1 \in [0,1]\} = \max\{c_1,d_1\},\\ \underline{\beta}_1 &= \min\{f_1(1,y_1) \mid y_1 \in [0,1]\} = \min\{a_1,b_1\},\\ \overline{\beta}_1 &= \max\{f_1(1,y_1) \mid y_1 \in [0,1]\} = \max\{a_1,b_1\},\\ \underline{\alpha}_2 &= \min\{f_2(x_1,0) \mid x_1 \in [0,1]\} = \max\{a_1,b_1\},\\ \underline{\alpha}_2 &= \max\{f_2(x_1,0) \mid x_1 \in [0,1]\} = \max\{b_2,d_2\},\\ \overline{\alpha}_2 &= \max\{f_2(x_1,0) \mid x_1 \in [0,1]\} = \max\{b_2,d_2\},\\ \underline{\beta}_2 &= \min\{f_2(x_1,1) \mid x_1 \in [0,1]\} = \min\{a_2,c_2\},\\ \overline{\beta}_2 &= \max\{f_2(x_1,1) \mid x_1 \in [0,1]\} = \max\{a_2,c_2\}. \end{aligned}$$

Therefore (2.1) reduces to (3.2) and (3.3).

Example 3.2. Let

$$f_1(x_1, y_1) = (x_1, 1 - x_1) \begin{pmatrix} 2 & 3 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ 1 - y_1 \end{pmatrix},$$

$$f_2(x_1, y_1) = (x_1, 1 - x_1) \begin{pmatrix} 2 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ 1 - y_1 \end{pmatrix}.$$

84

Then LHS and RHS of (3.2) are

$$LHS = \min\{\max\{2,3\}, \max\{-2,0\}\} = 0,$$

$$RHS = \max\{\min\{2,3\}, \min\{-2,0\}\} = 2,$$

respectively. Similarly LHS and RHS of (3.3) are

$$LHS = \min\{\max\{2, 4\}, \max\{-1, 1\}\} = 1,$$

$$RHS = \max\{\min\{2,4\}, \min\{-1,1\}\} = 2.$$

respectively. Therefore any $(\gamma_1, \gamma_2) \in [0, 2] \times [1, 2]$ can be achieved by some mixed strategies.

Next, we consider the following three-person game:

- It is a simultaneous game by three players in which each player has two actions.
- The payoffs of player i = 1, 2, 3 are given by

$$\begin{split} f_1(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &= \sum_{i, j, k \in \{1, 2\}} a_{ijk} x_i y_j z_k, \\ f_2(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &= \sum_{i, j, k \in \{1, 2\}} b_{ijk} x_i y_j z_k, \\ f_3(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) &= \sum_{i, j, k \in \{1, 2\}} c_{ijk} x_i y_j z_k, \end{split}$$

where $\boldsymbol{x} = (x_1, x_2)$, $\boldsymbol{y} = (y_1, y_2)$, and $\boldsymbol{z} = (z_1, z_2)$ are probability vectors. Player *i* wants to maximize f_i , predicting individual players' actions.

Theorem 3.3. In the three-person game above, for any $(\gamma_1, \gamma_2, \gamma_3)$ satisfying

$$(3.4) \quad \min\{\max_{j,k\in\{1,2\}}a_{1jk}, \max_{j,k\in\{1,2\}}a_{2jk}\} \le \gamma_1 \le \max\{\min_{j,k\in\{1,2\}}a_{1jk}, \min_{j,k\in\{1,2\}}a_{2jk}\},\$$

(3.5)
$$\min\{\max_{i,k\in\{1,2\}}b_{i1k}, \max_{i,k\in\{1,2\}}b_{i2k}\} \le \gamma_2 \le \max\{\min_{i,k\in\{1,2\}}b_{i1k}, \min_{i,k\in\{1,2\}}b_{i2k}\},\$$

(3.6)
$$\min\{\max_{i,j\in\{1,2\}}c_{ij1},\max_{i,j\in\{1,2\}}c_{ij2}\} \le \gamma_3 \le \max\{\min_{i,j\in\{1,2\}}c_{ij1},\min_{i,j\in\{1,2\}}c_{ij2}\},$$

the payoffs $(\gamma_1, \gamma_2, \gamma_3)$ are achieved by some mixed strategies $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \Delta^3$. Namely $(f_1(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), f_2(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), f_3(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) = (\gamma_1, \gamma_2, \gamma_3).$

Further, if γ_1 satisfies (3.4) with strict inequality, then $x_1 \in (0,1)$. If γ_2 satisfies (3.5) with strict inequality, then $y_1 \in (0,1)$. If γ_3 satisfies (3.6) with strict inequality, then $z_1 \in (0,1)$.

Proof. Since x, y, and z are 1-dimensional probability vectors, payoff f_i can be regarded as a function with variables $(x_1, y_1, z_1) \in [0, 1]^3$, so that we simply denote it by $f_i(x_1, y_1, z_1)$. For example, $f_1(x_1, y_1, z_1)$ is equal to

$$\sum_{\substack{i,j,k \in \{1,2\}\\ = a_{111}x_1y_1z_1 + a_{112}x_1y_1(1-z_1) + a_{121}x_1(1-y_1)z_1\\ + a_{122}x_1(1-y_1)(1-z_1) + a_{211}(1-x_1)y_1z_1 + a_{212}(1-x_1)y_1(1-z_1)\\ + a_{221}(1-x_1)(1-y_1)z_1 + a_{222}(1-x_1)(1-y_1)(1-z_1).$$

Hence $f_1(0, y_1, z_1)$ is equal to

$$(a_{211} - a_{212} - a_{221} + a_{222})y_1z_1 + (a_{212} - a_{222})y_1 + (a_{221} - a_{222})z_1 + a_{222}$$

and $\overline{\alpha}_1$ in (2.1) is

$$\overline{\alpha}_1 = \max\left\{f_1(0, y_1, z_1) \mid (y_1, z_1) \in [0, 1]^2\right\}$$

When $a_{211} - a_{212} - a_{221} + a_{222} \neq 0$, the stationary point of (3.7) is a saddle point. If the stationary point is in $(0, 1)^2$, it is neither a maximum point nor a minimum point of (3.7). When $a_{211} - a_{212} - a_{221} + a_{222} = 0$, (3.7) is linear. In either case a maximum point of (3.7) can be found in the boundary of $[0, 1]^2$. Furthermore since (3.7) is linear on each edge of the boundary we may assume that the maximum of (3.7) is attained by a corner of $[0, 1]^2$. The minimum of (3.7) is also attained by a corner. Therefore

$$\underline{\alpha}_1 = \min_{j,k \in \{1,2\}} a_{2jk}, \quad \overline{\alpha}_1 = \max_{j,k \in \{1,2\}} a_{2jk}.$$

Similarly, we have

$$\underline{\beta}_1 = \min_{j,k \in \{1,2\}} a_{1jk}, \quad \overline{\beta}_1 = \max_{j,k \in \{1,2\}} a_{1jk}.$$

4. Acknowledgements

This research is supported by JSPS KAKENHI Grant Number 16K05278.

References

- J. Hadamard, Sur quelques applications de l'indice de Kronecker, in: Introduction a la Théorie des Fonctions d'Une Variable, J. Tannery (ed.), vol. 2, 2nd ed. Paris: Hermann, 1910, pp. 437– 477.
- [2] J. Mawhin, Simple Proofs of the Hadamard and Poincaré-Miranda Theorems Using the Brouwer Fixed Point Theorem, The American Mathematical Monthly. 126 (2019) 260–263.
- [3] C. Miranda, Un osservatione su un theorema di Brouwer, Boll. Unione Mat. Ital. 3 (1940) 5–7.
- [4] H. Poincaré, Sur certaines solutions particuliéres du probléme des trois corps, Comptes Rendus Acad. Sci. Paris 97 (1883) 251–252.

 $Manuscript\ received\ 15\ February\ 2022$

H. KAWASAKI

Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan *E-mail address:* kawasaki@math.kyushu-u.ac.jp