AN n-DIMENSIONAL INTERMEDIATE VALUE THEOREM AND ITS APPLICATION TO THE GAME THEORY

HIDEFUMI KAWASAKI
Dedicated to the memory of Professor Wataru Takahashi and Professor Naoki Shioji

Abstract

The Poincaré-Miranda theorem is an n-dimensional zero-point theorem, which was conjectured by Poincaré [4]. Miranda [3] showed that it is equivalent to Brouwer's fixed point theorem. Further it is equivalent to the Hadamard theorem [1], see [2] for simple proofs. Although it is sometimes called an extension of the intermediate value theorem, it does not seem to be explicitly given as an n-dimensional intermediate value theorem. In this paper we explicitly mention an n-dimensional intermediate value theorem, and show that it is equivalent to the Poincaré-Miranda theorem. As an application we deal with a bimatrix game and a three-person strategic game, and show the range of payoffs that can be achieved by mixed strategies.

1. Introduction

Let $\left[a_{i}, b_{i}\right] \subset \mathbb{R}(i=1, \ldots, n)$ be closed intervals, and $I=[a, b]$ denote the product $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$. Let $f=\left(f_{1}, \ldots, f_{n}\right): I \rightarrow \mathbb{R}^{n}$ be a continuous function. The classical intermediate value theorem states that when $n=1$
(1) for any value γ satisfying $\min \{f(a), f(b)\} \leq \gamma \leq \max \{f(a), f(b)\}$ there exists some point $a \leq c \leq b$ such that $f(c)=\gamma$,
(2) in particular when $\min \{f(a), f(b)\}<\gamma<\max \{f(a), f(b)\}$ there exists some point $a<c<b$ such that $f(c)=\gamma$.
Although the intermediate value theorem ($n=1$) is usually stated as (2), the first form is equivalent to Brouwer's fixed point theorem for $n=1$ and the following Poincaré-Miranda theorem for $n=1$.

Theorem 1.1 (Poincaré-Miranda). If a continuous function $g=\left(g_{1}, \ldots, g_{n}\right): I \rightarrow$ \mathbb{R}^{n} satisfies the following boundary condition:

$$
\begin{equation*}
g_{i}(x) \leq 0\left(x \in I, x_{i}=a_{i}\right), \quad g_{i}(x) \geq 0\left(x \in I, x_{i}=b_{i}\right) \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
g_{i}(x) \geq 0\left(x \in I, x_{i}=a_{i}\right), \quad g_{i}(x) \leq 0\left(x \in I, x_{i}=b_{i}\right) \tag{1.2}
\end{equation*}
$$

for any $i=1, \ldots, n$, then g has a zero-point $c \in I$.

[^0]In this paper we present an n-dimensional intermediate value theorem, and show that it is equivalent to the Poincaré-Miranda theorem. Next we apply it to two and three-person strategic games, and show the range of payoffs that can be achieved by mixed strategies.

2. n-DIMENSIONAL INTERMEDIATE VALUE THEOREM

Theorem 2.1. Let $f=\left(f_{1}, \ldots, f_{n}\right): I \rightarrow \mathbb{R}^{n}$ be a continuous function. Define $\bar{\alpha}_{i}$, $\bar{\beta}_{i}, \underline{\alpha}_{i}$, and $\underline{\beta}_{i}$ for $i=1, \ldots, n$ by

$$
\begin{align*}
& \bar{\alpha}_{i}:=\max \left\{f_{i}(x) \mid x \in I, x_{i}=a_{i}\right\}, \bar{\beta}_{i}:=\max \left\{f_{i}(x) \mid x \in I, x_{i}=b_{i}\right\} \tag{2.1}\\
& \underline{\alpha}_{i}:=\min \left\{f_{i}(x) \mid x \in I, x_{i}=a_{i}\right\}, \underline{\beta}_{i}:=\min \left\{f_{i}(x) \mid x \in I, x_{i}=b_{i}\right\} \tag{2.2}
\end{align*}
$$

Then for any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ satisfying

$$
\begin{equation*}
\min \left\{\bar{\alpha}_{i}, \bar{\beta}_{i}\right\} \leq \gamma_{i} \leq \max \left\{\underline{\alpha}_{i}, \underline{\beta}_{i}\right\} \quad(i=1, \ldots, n) \tag{2.3}
\end{equation*}
$$

there exists some point $c=\left(c_{1}, \ldots, c_{n}\right) \in I$ such that $f(c)=\gamma$. In particular, when γ_{i} satisfies

$$
\begin{equation*}
\min \left\{\bar{\alpha}_{i}, \bar{\beta}_{i}\right\}<\gamma_{i}<\max \left\{\underline{\alpha}_{i}, \underline{\beta}_{i}\right\} \tag{2.4}
\end{equation*}
$$

it holds that $a_{i}<c_{i}<b_{i}$.
Proof. Define a function $g: I \rightarrow \mathbb{R}^{n}$ by $g(x)=\gamma-f(x)$. Taking account of $\underline{\alpha}_{i} \leq \bar{\alpha}_{i}$ and $\underline{\beta}_{i} \leq \bar{\beta}_{i}$, we see that (2.3) is equivalent to

$$
\begin{equation*}
\bar{\alpha}_{i} \leq \gamma_{i} \leq \underline{\beta}_{i} \text { or } \bar{\beta}_{i} \leq \gamma_{i} \leq \underline{\alpha}_{i} \tag{2.5}
\end{equation*}
$$

In the former case, it holds that

$$
g_{i}(x)=\gamma_{i}-f_{i}(x) \begin{cases}\geq \bar{\alpha}_{i}-f_{i}(x) \geq 0 & \left(x_{i}=a_{i}\right) \tag{2.6}\\ \leq \underline{\beta}_{i}-f_{i}(x) \leq 0 & \left(x_{i}=b_{i}\right)\end{cases}
$$

In the latter case, it holds that

$$
g_{i}(x)=\gamma_{i}-f_{i}(x) \begin{cases}\leq \underline{\alpha}_{i}-f_{i}(x) \leq 0 & \left(x_{i}=a_{i}\right) \tag{2.7}\\ \geq \bar{\beta}_{i}-f_{i}(x) \geq 0 & \left(x_{i}=b_{i}\right)\end{cases}
$$

Hence, by the Poincaré-Miranda theorem, there exists $c \in I$ such that $g(c)=0$, that is, $f(c)=\gamma$.

In particular when γ_{i} satisfies (2.4), assume that $\bar{\alpha}_{i}<\gamma_{i}<\underline{\beta}_{i}$ and $c_{i}=a_{i}$, then $f_{i}(c) \leq \bar{\alpha}_{i}<\gamma_{i}=f_{i}(c)$. Hence $c_{i} \neq a_{i}$. Assume that $\bar{\alpha}_{i}<\gamma_{i}<\underline{\beta}_{i}$ and $c_{i}=b_{i}$, then $\underline{\beta}_{i} \leq f_{i}(c)=\gamma_{i}<\underline{\beta}_{i}$. Hence $c_{i} \neq b_{i}$. Therefore we have $a_{i}<c_{i}<b_{i}$. Similarly we have $a_{i}<c_{i}<b_{i}$ in the case of $\bar{\beta}_{i}<\gamma_{i}<\underline{\alpha}_{i}$.

Theorem 2.2. Theorem 2.1 implies the Poincaré-Miranda theorem.

Proof. If g_{i} satisfies boundary condition (1.1). Then it holds that

$$
\bar{\alpha}_{i}=\max \left\{g_{i}(x) \mid x \in I, x_{i}=a_{i}\right\} \leq 0 \leq \min \left\{g_{i}(x) \mid x \in I, x_{i}=b_{i}\right\}=\underline{\beta}_{i} .
$$

If g_{i} satisfies boundary condition (1.2). Then it holds that

$$
\bar{\beta}_{i}=\max \left\{g_{i}(x) \mid x \in I, x_{i}=b_{i}\right\} \leq 0 \leq \min \left\{g_{i}(x) \mid x \in I, x_{i}=a_{i}\right\}=\underline{\alpha}_{i} .
$$

Hence $\gamma_{i}=0$ satisfies (2.3). By Theorem 2.1, there exists $c \in I$ such that $g(c)=$ 0.

Example 2.3. This example shows the necessity of assumption (2.3). Let $I=$ $[-1,1]^{2}, f_{1}\left(x_{1}, x_{2}\right)=-\left(x_{1}+1\right)^{2}-x_{2}^{2}$, and $f_{1}\left(x_{1}, x_{2}\right)=x_{2}$. Then

$$
\begin{aligned}
& \bar{\alpha}_{1}=\max \left\{f_{1}\left(x_{1}, x_{2}\right) \mid x_{1}=-1\right\}=\max \left\{-x_{2}^{2} \mid x_{2} \in[-1,1]\right\}=0 \\
& \underline{\alpha}_{1}=\min \left\{f_{1}\left(x_{1}, x_{2}\right) \mid x_{1}=-1\right\}=\min \left\{-x_{2}^{2} \mid x_{2} \in[-1,1]\right\}=-1
\end{aligned}
$$

Similarly computing $\bar{\beta}_{1}, \underline{\beta}_{2}$, etc., we have

$$
\begin{array}{ll}
\min \left\{\bar{\alpha}_{1}, \bar{\beta}_{1}\right\}=\min \{0,-4\}=-4, & \max \left\{\underline{\alpha}_{1}, \underline{\beta}_{1}\right\}=\max \{-1,-5\}=-1 \\
\min \left\{\bar{\alpha}_{2}, \bar{\beta}_{2}\right\}=\min \{-1,1\}=-1, & \max \left\{\underline{\alpha}_{2}, \underline{\beta}_{2}\right\}=\max \{-1,1\}=1
\end{array}
$$

By Theorem 2.1, for any $\gamma \in[-4,-1] \times[-1,1]$, there exists a point $c \in[-1,1]^{2}$ such that $f(c)=\gamma$. Further, for $\gamma \in(-4,-1) \times(-1,1), c$ is in $(-1,1)^{2}$. On the other

Figure 1. (1) Level sets of f_{1}. (2) Level sets of f_{2}. (3) $f(c)=\gamma$.
hand, it holds that for $\gamma:=\left(-\varepsilon^{2}, 1-\varepsilon\right) \notin[-4,-1] \times[-1,1]$

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right)=\gamma & \Leftrightarrow\left(x_{1}+1\right)^{2}+x_{2}^{2}=\varepsilon^{2}, x_{2}=1-\varepsilon \\
& \Rightarrow\left(x_{1}+1\right)^{2}=\varepsilon^{2}-(1-\varepsilon)^{2}=2 \varepsilon-1<0
\end{aligned}
$$

where $\varepsilon>0$ is sufficiently small. Hence there is no $x \in I$ such that $f(x)=\gamma$.

3. Application to the game theory

First, we apply Theorem 2.1 to the following bimatrix game:

- Each player has two actions called pure strategies.
- The payoff of player i is given by

$$
f_{i}\left(x_{1}, y_{1}\right)=\left(x_{1}, 1-x_{1}\right)\left(\begin{array}{cc}
a_{i} & b_{i} \tag{3.1}\\
c_{i} & d_{i}
\end{array}\right)\binom{y_{1}}{1-y_{1}} \quad(i=1,2)
$$

where $x_{1}, y_{1} \in[0,1]$. Player i wants to maximize f_{i}, predicting opponent's action.
In the following Δ denotes the set of 1-dimensional probability vectors. Probability vectors $\boldsymbol{x}=\left(x_{1}, x_{2}\right) \in \Delta$ and $\boldsymbol{y}=\left(y_{1}, y_{2}\right) \in \Delta$ are called mixed strategies.

Theorem 3.1. In the bimatrix game above, for any $\left(\gamma_{1}, \gamma_{2}\right)$ satisfying

$$
\begin{align*}
& \min \left\{\max \left\{a_{1}, b_{1}\right\}, \max \left\{c_{1}, d_{1}\right\}\right\} \leq \gamma_{1} \leq \max \left\{\min \left\{a_{1}, b_{1}\right\}, \min \left\{c_{1}, d_{1}\right\}\right\} \tag{3.2}\\
& \min \left\{\max \left\{a_{2}, c_{2}\right\}, \max \left\{b_{2}, d_{2}\right\}\right\} \leq \gamma_{2} \leq \max \left\{\min \left\{a_{2}, c_{2}\right\}, \min \left\{b_{2}, d_{2}\right\}\right\} \tag{3.3}
\end{align*}
$$

the payoffs $\left(\gamma_{1}, \gamma_{2}\right)$ are achieved by some mixed strategies $(\boldsymbol{x}, \boldsymbol{y}) \in \Delta^{2}$. Further, if γ_{1} satisfies (3.2) with strict inequalities, then $x_{1} \in(0,1)$. If γ_{2} satisfies (3.3) with strict inequalities, then $y_{1} \in(0,1)$.

Proof. Taking $I=[0,1]^{2}$ in Theorem 2.1, we easily see that

$$
\begin{aligned}
\underline{\alpha}_{1} & =\min \left\{f_{1}\left(0, y_{1}\right) \mid y_{1} \in[0,1]\right\}=\min \left\{c_{1}, d_{1}\right\} \\
\bar{\alpha}_{1} & =\max \left\{f_{1}\left(0, y_{1}\right) \mid y_{1} \in[0,1]\right\}=\max \left\{c_{1}, d_{1}\right\} \\
\beta_{1} & =\min \left\{f_{1}\left(1, y_{1}\right) \mid y_{1} \in[0,1]\right\}=\min \left\{a_{1}, b_{1}\right\} \\
\bar{\beta}_{1} & =\max \left\{f_{1}\left(1, y_{1}\right) \mid y_{1} \in[0,1]\right\}=\max \left\{a_{1}, b_{1}\right\} \\
\underline{\alpha}_{2} & =\min \left\{f_{2}\left(x_{1}, 0\right) \mid x_{1} \in[0,1]\right\}=\min \left\{b_{2}, d_{2}\right\} \\
\bar{\alpha}_{2} & =\max \left\{f_{2}\left(x_{1}, 0\right) \mid x_{1} \in[0,1]\right\}=\max \left\{b_{2}, d_{2}\right\} \\
\overline{\bar{\beta}}_{2} & =\min \left\{f_{2}\left(x_{1}, 1\right) \mid x_{1} \in[0,1]\right\}=\min \left\{a_{2}, c_{2}\right\} \\
2 & \left.=\operatorname{lx}\left(x_{1}, 1\right) \mid x_{1} \in[0,1]\right\}=\max \left\{a_{2}, c_{2}\right\}
\end{aligned}
$$

Therefore (2.1) reduces to (3.2) and (3.3).
Example 3.2. Let

$$
\begin{aligned}
& f_{1}\left(x_{1}, y_{1}\right)=\left(x_{1}, 1-x_{1}\right)\left(\begin{array}{cc}
2 & 3 \\
-2 & 0
\end{array}\right)\binom{y_{1}}{1-y_{1}} \\
& f_{2}\left(x_{1}, y_{1}\right)=\left(x_{1}, 1-x_{1}\right)\left(\begin{array}{cc}
2 & -1 \\
4 & 1
\end{array}\right)\binom{y_{1}}{1-y_{1}}
\end{aligned}
$$

Then LHS and RHS of (3.2) are

$$
\begin{aligned}
& L H S=\min \{\max \{2,3\}, \max \{-2,0\}\}=0 \\
& R H S=\max \{\min \{2,3\}, \min \{-2,0\}\}=2
\end{aligned}
$$

respectively. Similarly LHS and RHS of (3.3) are

$$
\begin{aligned}
& L H S=\min \{\max \{2,4\}, \max \{-1,1\}\}=1 \\
& R H S=\max \{\min \{2,4\}, \min \{-1,1\}\}=2
\end{aligned}
$$

respectively. Therefore any $\left(\gamma_{1}, \gamma_{2}\right) \in[0,2] \times[1,2]$ can be achieved by some mixed strategies.

Next, we consider the following three-person game:

- It is a simultaneous game by three players in which each player has two actions.
- The payoffs of player $i=1,2,3$ are given by

$$
\begin{aligned}
f_{1}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) & =\sum_{i, j, k \in\{1,2\}} a_{i j k} x_{i} y_{j} z_{k} \\
f_{2}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) & =\sum_{i, j, k \in\{1,2\}} b_{i j k} x_{i} y_{j} z_{k} \\
f_{3}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) & =\sum_{i, j, k \in\{1,2\}} c_{i j k} x_{i} y_{j} z_{k}
\end{aligned}
$$

where $\boldsymbol{x}=\left(x_{1}, x_{2}\right), \boldsymbol{y}=\left(y_{1}, y_{2}\right)$, and $\boldsymbol{z}=\left(z_{1}, z_{2}\right)$ are probability vectors. Player i wants to maximize f_{i}, predicting individual players' actions.

Theorem 3.3. In the three-person game above, for any $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ satisfying

$$
\begin{align*}
& \min \left\{\max _{j, k \in\{1,2\}} a_{1 j k}, \max _{j, k \in\{1,2\}} a_{2 j k}\right\} \leq \gamma_{1} \leq \max \left\{\min _{j, k \in\{1,2\}} a_{1 j k}, \min _{j, k \in\{1,2\}} a_{2 j k}\right\}, \tag{3.4}\\
& \min \left\{\max _{i, k \in\{1,2\}} b_{i 1 k}, \max _{i, k \in\{1,2\}} b_{i 2 k}\right\} \leq \gamma_{2} \leq \max \left\{\min _{i, k \in\{1,2\}} b_{i 1 k}, \min _{i, k \in\{1,2\}} b_{i 2 k}\right\}, \tag{3.5}\\
& \min \left\{\max _{i, j \in\{1,2\}} c_{i j 1}, \max _{i, j \in\{1,2\}} c_{i j 2}\right\} \leq \gamma_{3} \leq \max \left\{\min _{i, j \in\{1,2\}} c_{i j 1}, \min _{i, j \in\{1,2\}} c_{i j 2}\right\}, \tag{3.6}
\end{align*}
$$

the payoffs $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ are achieved by some mixed strategies $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) \in \Delta^{3}$. Namely $\left(f_{1}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), f_{2}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}), f_{3}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})\right)=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$.

Further, if γ_{1} satisfies (3.4) with strict inequality, then $x_{1} \in(0,1)$. If γ_{2} satisfies (3.5) with strict inequality, then $y_{1} \in(0,1)$. If γ_{3} satisfies (3.6) with strict inequality, then $z_{1} \in(0,1)$.

Proof. Since $\boldsymbol{x}, \boldsymbol{y}$, and \boldsymbol{z} are 1-dimensional probability vectors, payoff f_{i} can be regarded as a function with variables $\left(x_{1}, y_{1}, z_{1}\right) \in[0,1]^{3}$, so that we simply denote it by $f_{i}\left(x_{1}, y_{1}, z_{1}\right)$. For example, $f_{1}\left(x_{1}, y_{1}, z_{1}\right)$ is equal to

$$
\begin{align*}
& \sum_{i, j, k \in\{1,2\}} a_{i j k} x_{i} y_{j} z_{k} \\
= & a_{111} x_{1} y_{1} z_{1}+a_{112} x_{1} y_{1}\left(1-z_{1}\right)+a_{121} x_{1}\left(1-y_{1}\right) z_{1} \\
& +a_{122} x_{1}\left(1-y_{1}\right)\left(1-z_{1}\right)+a_{211}\left(1-x_{1}\right) y_{1} z_{1}+a_{212}\left(1-x_{1}\right) y_{1}\left(1-z_{1}\right) \tag{3.7}\\
& +a_{221}\left(1-x_{1}\right)\left(1-y_{1}\right) z_{1}+a_{222}\left(1-x_{1}\right)\left(1-y_{1}\right)\left(1-z_{1}\right) .
\end{align*}
$$

Hence $f_{1}\left(0, y_{1}, z_{1}\right)$ is equal to

$$
\left(a_{211}-a_{212}-a_{221}+a_{222}\right) y_{1} z_{1}+\left(a_{212}-a_{222}\right) y_{1}+\left(a_{221}-a_{222}\right) z_{1}+a_{222}
$$

and $\bar{\alpha}_{1}$ in (2.1) is

$$
\bar{\alpha}_{1}=\max \left\{f_{1}\left(0, y_{1}, z_{1}\right) \mid\left(y_{1}, z_{1}\right) \in[0,1]^{2}\right\}
$$

When $a_{211}-a_{212}-a_{221}+a_{222} \neq 0$, the stationary point of (3.7) is a saddle point. If the stationary point is in $(0,1)^{2}$, it is neither a maximum point nor a minimum point of (3.7). When $a_{211}-a_{212}-a_{221}+a_{222}=0,(3.7)$ is linear. In either case a maximum point of (3.7) can be found in the boundary of $[0,1]^{2}$. Furthermore since (3.7) is linear on each edge of the boundary we may assume that the maximum of (3.7) is attained by a corner of $[0,1]^{2}$. The minimum of (3.7) is also attained by a corner. Therefore

$$
\underline{\alpha}_{1}=\min _{j, k \in\{1,2\}} a_{2 j k}, \quad \bar{\alpha}_{1}=\max _{j, k \in\{1,2\}} a_{2 j k}
$$

Similarly, we have

$$
\underline{\beta}_{1}=\min _{j, k \in\{1,2\}} a_{1 j k}, \quad \bar{\beta}_{1}=\max _{j, k \in\{1,2\}} a_{1 j k} .
$$

4. Acknowledgements

This research is supported by JSPS KAKENHI Grant Number 16K05278.

References

[1] J. Hadamard, Sur quelques applications de l'indice de Kronecker, in: Introduction a la Théorie des Fonctions d’Une Variable, J. Tannery (ed.), vol. 2, 2nd ed. Paris: Hermann, 1910, pp. 437477.
[2] J. Mawhin, Simple Proofs of the Hadamard and Poincaré-Miranda Theorems Using the Brouwer Fixed Point Theorem, The American Mathematical Monthly. 126 (2019) 260-263.
[3] C. Miranda, Un osservatione su un theorema di Brouwer, Boll. Unione Mat. Ital. 3 (1940) 5-7.
[4] H. Poincaré, Sur certaines solutions particuliéres du probléme des trois corps, Comptes Rendus Acad. Sci. Paris 97 (1883) 251-252.
H. KAWASAKI

Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
E-mail address: kawasaki@math.kyushu-u.ac.jp

[^0]: 2020 Mathematics Subject Classification. 47H10.
 Key words and phrases. intermediate value theorem, Poincaré-Miranda theorem, game theory, bimatrix game.

