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ALGORITHMIC APPROACH TO A CLASS OF GENERALIZED
SET-VALUED NONLINEAR VARIATIONAL-LIKE INEQUALITY
PROBLEMS IN BANACH SPACES

JAVAD BALOOEE

ABSTRACT. In this paper, the notion of P-n-proximal mapping is used and an it-
erative algorithm for finding the approximate solution of a new class of generalized
set-valued nonlinear variational-like inequality problems is proposed. Under some
suitable conditions, the convergence analysis of the sequences generated by our
suggested iterative algorithm is studied. The final section is dedicated to the in-
vestigation and analysis of the notion of co-proximal operator and related results
given in [R. Ahmad, S.S. Irfan, I. Ahmad, M. Rahaman, Co-proximal operators
for solving generalized co-variational inclusion problems in g-uniformly smooth
Banach spaces, J. Nonlinear Convex Anal. 19(7)(2018) 1093-1107]. Some facts
relating to them are also pointed out.

1. INTRODUCTION

Due to their applications to fields like economics, engineering, mechanics, elas-
ticity, fluid mechanics, game theory and optimization [8,21], variational inequal-
ities and complementarity problems continue to attract the interest of many re-
searchers, see, for example, [1-15,17,18, 20,24, 25, 28,29, 31-34, 36, 38] and the ref-
erences therein. The importance of the theory of variational inequalities and its
applications have motivated many researchers to extend, generalize and study it in
many different directions. For more details and relevant commentaries, we refer the
reader to [15]. With the goal of studying and solving of various classes of varia-
tional inequalities, in recent decades considerable efforts have been made to develop
efficient and implementable numerical methods including projection method and
its variant forms, descent method, linear approximation and the method based on
the auxiliary principle technique. To find more information, the reader can refer
to [2-7,9-14,17-20,24,28,29,31,32,34,38] and the references therein. It is well known
that an important and significant generalization of convexity is invexity, which was
introduced by Hanson [23] in 1981. In the light of the application of variational
inequalities to optimization problems, and the notion of invexity, the introduction
of the concept of variational-like inequality or pre-variational inequality was first
made by Parida et al. [30] and Yang and Chen [36], independently. In fact, they
replaced the linear term y — x appearing in the formulation of variational inequal-
ities by a vector-valued term 7(y,z), where n is a vector-valued bifunction. But,
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the presence of the vector-valued term 7(y,x) in the formulation of a variational-
like inequality makes limitations for us in using of solution methods to compute
approximate solutions of variational-like inequalities. Indeed, the auxiliary princi-
ple technique and the proximal method are the most studied methods for solving
variational-like inequalities. It is significant to emphasize that we cannot employ
the projection method to construct and propose any iterative algorithm for solving
variational-like inequalities in the setting of Banach spaces. This is mainly because
the standard projection method strictly depend on the inner product property of
Hilbert spaces. This drawback motivated the researchers to introduce proximal
(resolvent) mappings to overcome and resolve the above-mentioned problem. The
concepts of n-subdifferential and n-proximal point mappings of a proper functional
were initially introduced by Ding and Luo [18] and Lee et al. [25], independently, and
under some suitable conditions, the existence and Lipschitz continuity of n-proximal
mapping of a proper functional are proved. At the same time, they developed some
perturbed n-proximal point algorithms for computing the approximate solutions of
some classes of variational-like inequalities in a Hilbert space context. In order to
develop and construct efficient iterative algorithms for solving variational-like in-
equalities in the framework of Banach spaces, Ding and Xia [20] succeeded to intro-
duce the concept of J-proximal mapping for a nonconvex lower semicontinous and
subdifferentiable proper functional on Banach space. Under some appropriate con-
ditions, they proved the existence and Lipschitz continuity of J-proximal mapping
of a lower semicontinuous subdifferentiable proper functional. In the meanwhile,
they applied the concept of J-proximal mapping and a similar technique of resol-
vent operator in the context of Hilbert spaces and proposed an iterative algorithm
to compute the approximate solution of a new class of variational-like inequalities
with nonconvex functional in the framework of reflexive Banach spaces. After that,
in 2005, Ahmad et al. [2] and Kazmi and Bhat [24] were, independently, the first to
introduce the concept of J7-proximal (also referred to as P-n-proximal) mapping for
a nonconvex lower semicontinuous 7-subdifferentiable proper functional on Banach
space which can be viewed as a generalization of the notion of J-proximal mapping
introduced in [20]. They proved the existence and Lipschitz continuity of such map-
pings under some suitable hypotheses and suggested some iterative algorithms for
finding the approximate solutions of some classes of generalized multivalued nonlin-
ear variational-like inequalities in the setting of Banach spaces. They also studied
the convergence analysis of the sequences generated by their proposed iterative al-
gorithms under some suitable conditions.

Recently, Ahmad et al. [1] introduced a proximal operator associated with a
proper, lower semicontinuous and subdifferentiable functional called co-proximal
operator and claimed that it is a new one. Under some assumptions, they also
asserted that such an operator exists and proved its Lipschitz continuity. They
considered a generalized co-variational inequality problem in the setting of a g¢-
uniformly smooth Banach space and using co-proximal operator they proposed an
iterative algorithm for computing its approximate solution. At the end of their pa-
per, they claimed that under some appropriate conditions, the sequences generated
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by their suggested iterative algorithm converge strongly to a solution of the problem
considered in [1].

The organization of this article is as follows. In Sect. 2, we recall basic definitions
and facts about P-n-proximal mappings. In Sect. 3, a variational-like inequality
problem involving a proper lower semicontinuous and n-subdifferentiable functional
named generalized set-valued nonlinear variational-like inequality problem (in short,
(GSNVLIP) is considered and its equivalence with a fixed point problem is proved
under some suitable conditions. Applying the concept of P-proximal mapping, an
iterative algorithm for approximating the solution of the GSNVLIP is proposed.
Section 3 by the study of the convergence analysis of the sequences generated by
our proposed iterative algorithm is concluded. Section 4 deals with the investigation
and analysis of the concept of co-proximal operator introduced in [1]. We show that
under the assumptions considered in [1], contrary to the claim of the authors in [1],
the concept co-proximal operator is not a new one. Indeed, it is the same notion
of J-proximal mapping introduced by Ding and Xia [20]. We prove that, contrary
to the claim in [1], under the conditions mentioned in it, the co-proximal operator
associated with a proper, lower semicontinous and subdifferentiable functional is
not well defined necessarily. We also show that the proposed iterative algorithm
in [1] is not necessarily well defined and point out that the results given in [1] are
not correct.

2. NOTATION, BASIC DEFINITIONS AND FUNDAMENTAL PROPERTIES

Throughout the paper, unless otherwise specified, we use the following notations,
terminology and assumptions.

For a real Banach space E, we denote by E* its dual Banach space of bounded
linear functionals. As usual, z* will stand for the weak star topology in E*, and (., .)
will represent the duality pairing of £ and E*. The value of a functional z* € E*
at * € F is denoted by either (x,2*) or z*(x), as is convenient. For the sake of
simplicity, the norms of E and E* are denoted by the symbol ||.||. We use the
symbol 2F (resp., CB(FE)) to represent the set of all nonempty (resp., nonempty
closed and bounded) subsets of E.

For any given function f : E — RU {£o0}, dom f = {z € E, f(x) < 400} is
called the effective domain of f. Such a function is said to be proper if its effective
domain is nonempty and it is real-valued on its effective domain, what is equivalent,
f is proper if f(z) > —oo for all z € E and f(x) < +oo for at least one = € E.

Definition 2.1. A function f: E — R U {+oc} is called

(i) convex if the inequality

fAz+ (1 =Ny) <Af(z)+ (1 =) f(y)

holds for every A € [0,1] and all z,y € E, for which the right-hand side is
meaningful;

(ii) lower semicontinuous at xog € E, provided that f(zo) < liminf,, f(z,), for
every sequence {z,} C E satisfying lim,, z,, = xo.
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If the property mentioned in Definition 2.1(ii) holds for every point 2y € E we
say that f is lower semicontinuous on F.

Definition 2.2. The function f : Ex E — RU{+400} is called lower semicontinuous
in the second argument on E if for each x € E, the function f(z,.) : E — RU{+o00}
is lower semicontinuous on E.

Similarly, one can define the lower semicontinuity of the function f in the first
argument.

Definition 2.3 ([38]). An extended real-valued functional f : (z,y) € E x B —
f(z,y) € RU{£oo} is said to be 0-diagonally quasi-concave (in short, 0-DQCV)

(i) in the first argument (or with respect to z), if for any finite subset {1, z2, .. .,

xp} of E and any & € Co({z1,22,...,2,}), we have
i ) <0
min f(zi,7) <0,

where for any given set A C FE, Co(A) denotes the closed convex hull of
A consisting of all vectors of the form > 7" | Aju; with u; € A;, \; € Ry =
[0,+00) and Y ;" A = 1;

(ii) in the second argument (or with respect to y), if for any finite subset
{y1,92,--.,yn} of E and any gy € Co({y1,¥y2,-..,Yn}), we have

i 7, i) < 0.
fé?élnf (9,9:) <0

Lemma 2.4 ([19]). Let D be a nonempty convex subset of a topological vector space
and let f: D x D — RU{zxoo} be an extended real-valued functional such that

(i) f is lower semicontinuous in the second argument on every nonempty com-
pact subset of D;
(ii) f s 0-DQCV in the first argument;
(iii) there exists a monempty compact convex subset Dy of D and a nonempty
compact subset K of D such that for each y € D\K, there is an x € Co(DoU

{y}) satisfying f(z,y) > 0.
Then there exists § € K such that f(x,9) <0 for all z € D.

Definition 2.5. A proper functional ¢ : E — RU {400} is said to be subdifferen-
tiable at a point z € F if there exists a point * € E* such that

o(y) — o(x) > (2%, y —z), VyeE.

Such a point x* is called subgradient of ¢ at . The set of all subgradients of ¢ at
z is denoted by 0¢(x). The mapping 9¢ : E — 2F" defined by

0p(x) ={a* € E* : ¢(y) — o(x) > (¥, y —z),Yy € E}, Vx € E,
is said to be subdifferential of ¢ at x.

The introduction and study of the notion of n-subdifferential, in a more general
setting than that given in [37], was first initiated by Lee et al. [25] and Ding and
Luo [18], independently, as follows.
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Definition 2.6 ([18,25]). Let n: Ex E — E be a vector-valued mapping. A proper
functional ¢ : E — R U {400} is said to be n-subdifferentiable at a point x € E if
there exists a point x* € E* such that

(%, n(y,2)) < o(y) — ¢(x), Vye€E.

Such a point x* is called n-subgradient of ¢ at x. The set of all n-subgradients of
¢ at x is denoted by 0,¢(r). We can associate with each ¢ the n-subdifferential
mapping 0, ¢ defined by

0,6(z) = { égg* € E*: (", n(y, v)) < ¢(y) — &(x),Vy € E}, i ; 3222,

For x € dom ¢, 0,¢(x) is called the n-subdifferential of ¢ at x.

Here it is to be noted that in the definition of n-subdifferential in the sense of
Yang and Craven [37], the function ¢ needs to be local Lipschitz and cannot take
the value +0o0. We now present a new example which illustrates that the notion of
n-subdifferential introduced in [18,25] is more general than that given in [37].

Example 2.7. Suppose that E is the set of all real numbers endowed with the
Euclidean norm ||.|| = |.| and the mappings ¢ : E - RU{+o0c0} and n: ExX E — E
are defined, respectively, by

Al k=1
¢(ﬂf) = { a( pil w2p71‘x’ + Epil 2IH—\I/‘M) + B, x <0,

+00, z >0,

k41 k—1 k+1 k—1

and n(z,y) = o(3°, 2, x| +> 0,2, R/ alel)+e(X, 2 v yl+22,2 T/ ylvl),
for all x,y € F, where k is an arbitrary but fixed odd natural number, and «, 0,5 > 0
and f € R are arbitrary constants. We now show that for given z € dom ¢,
Opp(x) = [%,—}—oo). For this aim, take z € dom ¢ arbitrarily. Then, we have

kel k-1
Bx) = oS5 22 Val + Tk #YaTa) + f and & < 0.
If v € 0y¢(x), then

k+1 k

2
YOyl +
p=1

k-1 k+1 k-1
2 2 2
PRI + O ezl + D R/ xlal))
p=1 p=1 p=1
k+1 k

-1
2 2
<oly) —ad e Mal+ Y R/ala) - 8, VyeE.
p=1 p=1
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Since ¢(y) = +oo for all y > 0, it follows that

kil
(e (Z 2 1IlerZ R/ ylyl) + Zw2” 1Icv!JrZ R/ xlal))
=1
k41

v wywz R/ylyl) + B = af zx% wx|+z *afa]) -

o
=
IA
2
M\

p:l
k4l k=1
2 2
=a() WPyl = 2 ) + (R ylyl = R/ xla]), vy <o.
p=1 p=1

If x =0, then making use of (2.1), we conclude that

k+1
ZyQp 'yl +Z R/ylyl) < a Zyzp 'yl +Z 2 R/ylyl), Yy <0,

which 1mphes that ~ 2 S
For the case when x < 0, due to the fact that

k+1

Zy2p 1|y!+Z "/ ylyl) + Zw2’” 1Ix\+Z Y wlal) <

recalling (2.1), for all y S 0, we yield
(2.2)

k+1 k—1
a3, 2 (v~ 1\y! a?Hal) + 30,2, (PR ylyl = 2/ @lzl))

v 2 k1 k—1 k+1 k=1 ’
022 vyl + Zpil TRy Qop2y @ el + 30,2 R )

[e]

Passing to the limit in (2.2) as y — —oo, we deduce that v > e Hence, in any
case, we infer that y > £, and so, d,¢(x) C [7,+o00) for all z < 0. To prove
Opp(x) = [%,4—00), it is sufficient to show that [%,—l—oo) C Opo(x) for all z < 0.
Take v € [%, +00) arbitrarily and on the contrary, suppose that v ¢ 9,¢(zo) for
some xg < 0. Then there exists yp < 0 such that

k—1

o
Z?fp HJyol +Z NV yolyol) + < Z$2p Haol + > 2/ xolaol))

p=1

(23) o
2 T

> a(d e ol — 2" Hawol) + D (R volyol — 7/ wolwol)
p=1 p=1

It is obvious that the case where xy = y9 = 0 cannot happen. If zg,y9 < 0, then
taking into account that

k+1 k+1 k-1
2

Z?/2p Yol +Z %/ yolyol) + s ( Zﬂpr Haol + Y 3/ olzol) < 0
p=1
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by using (2.3), yields

(67
=<y
0

Bl op 1 1
Q(Zp (o o ’_xop |zol) +Zp 1 ( 2er\l/yO’W 2er\I/ﬂUO|350D)
1 9

ML oo |
o3, 2 vh !yo\+zpil 5/ yolvol) + < ( p—lxop !$0|+Z 1 PR/ olzol)

for which it follows that

k—1
R

(2.4) a(s+ o)( Zpr 1\x0]+z P/ xo|zo]) > 0
p=1

<

Taking into consideration the fact that a,¢, 0 > 0 and k is an odd natural number,
using (2.4) we conclude that zp > 0, which is a contradiction. If 29 < 0 and yo = 0,
then making use of (2.3), we deduce that v < —2, which leads to a contradiction.

Finally, for the case when zp = 0 and yy < 0, then employing (2.3), we deduce

(e

that v < 2 which is also a contradiction. Thanks to these facts, it follows that
[5:+00) € Opo(x), for all < 0. Consequently, d,¢(x) =[5, +00) for all z < 0.

Definition 2.8 ([2,24]). Let n : E x E — E be a vector-valued mapping, ¢ :
E — RU{+o0} be a proper n-subdifferentiable (may not be convex) functional and
P : E — E* be a mapping. If for any given =* € E* and p > 0, there exists a
unique point x € F satisfying

(P(z) — 2%, n(y, x)) + po(y) — pp(x) 20,  Vy € E,
then the mapping =* — x, denoted by Jg”d), is called P-n-proximal mapping of ¢.
Evidently, in the light of Definition 2.6, we have z* — P(z) € pd,¢(x) and then it
follows that x = Jf’}f( *) = (P + pdyo) L (z*).

It should be pointed out that if n(u,v) = u — v for all u,v € E, then Definition
2.8 reduces to the following definition of a P-proximal mapping.

Definition 2.9 ([20]). Let ¢ : E — R U {400} be a proper subdifferentiable (not
necessarily convex) functional and P : E — E* be a mapping. If for any given point
z* € E* and p > 0, there exists a unique point x € E satisfying

(P(z) — 2",y —x) + pd(y) — po(z) >0,  VyeE,

then the mapping z* — x, denoted by J;%, is said to be P-proximal mapping of

¢. Clearly, invoking Definition 2.6, we have z* — P(x) € pd¢(z) and then it follows
a * — *

that z = J)%(2*) = (P + pd¢) ().

Definition 2.10. Let P : £ — E* and n : E x F — E be two vector-valued
mappings. P is said to be

(i) k-strongly m-monotone if there exists a constant k£ > 0 such that

(P(z) = P(y),n(z,y)) > kllz —y|?,  Va,y € B;
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(ii) Ap-Lipschitz continuous if there exists a constant Ap > 0 such that
[1P(x) = P(y)l < Apllz —yll,  Va,yeE.

Definition 2.11. A vector-valued mapping n : £ x F — F is said to be 7-Lipschitz
continuous if there exists a constant 7 > 0 such that ||n(z,y)|| < 7|z — y||, for all
r,y €F.

A natural question then arises whether for given mappings n : E x F — FE
and P : E — E*, an n-subdifferentiable (not necessarily convex) proper functional
¢ : F — RU{+oo} and an arbitrary real constant p > 0, the P-n-proximal map-
ping associated with the mappings ¢, P, n and the constant p > 0 is well defined
necessarily? Under some appropriate conditions, an affirmative answer is given by
Ahmad et al. [2] and Kazmi and Bhat [24] by the next theorem.

Theorem 2.12 ([2,24]). Let E be a reflexive Banach space, n: E X E — E be a
T-Lipschitz continuous mapping such that n(x,y) +n(y,x) =0 for all z,y € E, and
let P: E — E* be a y-strongly n-monotone continuous mapping. Suppose that for
any given x* € E*, the function

h:(y,x) € Ex E = h(y,z) = (x* — P(z),n(y,z)) € RU{+o0}

is 0-DQCV in the first argument. Moreover, let ¢ : E — R U {+o0} be a lower
semicontinuous n-subdifferentiable proper functional on E, which may not be convex.
Then for any given p > 0 and x* € E*, there exists a unique point x € E such that

(P(z) — 2", n(y,z)) > pp(z) — poly),  Vy € E,

that is, x = Jg@f(x*) and so the P-n-proximal mapping associated with ¢, P, n and
p is well defined.

It is very essential to note that by a careful reading the proof of Theorem 3.1 in [24]
and by comparing it with the assumptions appeared in its context, we found that the
mapping 1 must be 7-Lipschitz continuous. In fact, in the context of [24, Theorem
3.1], the continuity hypothesis of the mapping 7 must be replaced by the 7-Lipschitz
continuity assumption, as we have done in the context of Theorem 2.12.

We now give a new example in which the existence of the two mappings 7 :
ExFE — FEand P: F — E* satisfying all the conditions of Theorem 2.12 is shown.

Example 2.13. Consider £ = R with the Euclidean norm |.|| = |.| and let the
mappings n: F x E — E and P: E — E* be defined by
(VI 4 foylm 4 p) (@ —y), i eyl < p,
na,y) = 9§ BV faloglay)(@ —y),  ifp<layl <,
(m+9)(w—y)a if ¢ < |ayl,

and P(z) = ¢z for all z,y € E, where «, 3,7,&, 0,5, m, [ are arbitrary real constants
that are strictly bigger than zero, k,n,s € N\{1} are arbitrary constants, and
a,b,p,q are arbitrary real constants such that a,b > 1 and ¢q,p > 1. It is easy to
observe that n(x,y) +n(y,x) =0 for all z,y € E.
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Taking into account that for all z,y € F,

a(e VI 4 jzy[m 4 )|z —yl,  if ey < p,
)l = 4 Bla VI stogfenDle —yi, i<l <
[ S _ o<

with the help of the assumptions, we derive that

(2.5) p < e VIl g fay™ 4 < VP 4 p™ g, Va,y € E with [ay| < p,

(2.6) 0<a¥? +rlogyp < aVI 4+ rlogylzy| < a Vi +~logyg,

for all z,y € F with p < |zy| < ¢, and

§ §
< to< ——r—+o,
R/ Py B P e R R T
for all z,y € E with |zy| > q.
Making use of (2.5)—(2.7) and in view of the fact that «, 5 > 0, we obtain

§
T4+ ¢+ b

(2.7)

In(z,y)| < max {a(ew + ™ 4 1), B(a V9 + ylogyq) + Q}]w —yl,

for all z,y € E, which means that 7 is a

max {a(e W—i—pm—i-,u), Bla %—i-'ylogbq), m
ping. Define, associated with each z € E, a correspondence h, : Ex E — RU{+o00}
for each (y,z) € E x E by

h.(y, ) = (2 = P(2),n(y,2)) = (2 — P(x))n(y,z).

Using proof by contradiction, we now prove that the function h, is 0-DQCYV in the
first argument. For this end, suppose that there exist a finite set {y1,y2,...,Yn}
and t =Y ;" | A\jy; with A; > 0 and > ; \; = 1 such that for each i € {1,2,...,n},

+ Q}—Lipschitz continuous map-

k j .
a(z —ot)(e VIt flyt|™ + ) (yi —t),  if |it] < p,

0 < ha(yit) =< Bla VWit 4 vlogy|yit]) (y; —t), if p <|yit| <gq,
¢ _ g < |
( Y/ Nyitl+yit| bl + o)y —1), if ¢ < Jyit|

Therefore, (z — ¢t)(y; —t) > 0 for each i € {1,2,...,n} which ensures that

0< Z)\i(z —st)(yi —t) = (2 — gt)(z AiYi — Z)‘it) =(z—ct)(t—1t) =0,
i=1 i=1 i=1

which leads to a contradiction. Hence, for any given z € FE the function h, is
0-DQCYV in the first argument. Since for all z,y € F,
as(e VW foy™ 4 )l — g2, it oyl <p,
(P(e) = P)nwy)) = 4 Bola VI +aloglegl)le —uP, i p < feyl <
—_— —yl? if ¢ <
o agtizomn T Ol ol if g < |ayl,
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utilizing (2.5)—(2.7), it follows that
<P(‘T) - P(y),T](.’II,y)> 2 agu’x - y’27 vxay € L with ‘.'Ify| € [0,])),

(P(z) — P(y),n(z,y)) > Bs(a VP + ~logp)|x — y|*, Va,y € E with |zy| € [p,q)
and

(P(z) — P(y),n(z,y)) > solr —y|*, Va,y € E with |zy| € [g, +00).
Consequently,
(P(z) — P(y),n(z,y)) > min {aspu, Bs(a VP + ylogyp),so}|x — y|*, Va,y € E,

that is, P is a min {acu, Bs(a VP + ~ylogyp), so }-strongly n-monotone mapping.
Thereby, the two mappings P and n are satisfied all the conditions of Theorem
2.12.

Under some appropriate conditions, the Lipschitz continuity of the P-n-proximal
mapping Jf}? associated with the mappings ¢, P, n and the constant p > 0 is proved
in [2,24] and an estimate of its Lipschitz constant is also computed as follows.

Theorem 2.14 ([2,24]). Let E be a reflexive Banach space with the dual space E*,
n: E X E — E be a T-Lipschitz continuous mapping such that n(x,y) +n(y,z) =0
forallxz,y € E, and P : E — E* be a y-strongly n-monotone continuous mapping.
Suppose that for given x* € E*, the function h : (y,z) € E x E — h(y,x) =
(x*—=P(x),n(y,z)) € RU{+o0} is 0-DQCV in the first argument, ¢ : E — RU{4o00}
is a lower semicontinuous n-subdifferentiable proper functional on E and p > 0 is an
arbitrary real constant. Then, the P-n-proximal mapping Jf”}f . B* — E associated
with ¢, P, 7 and p > 0 is %—Lz’pschz’tz continuous, i.e.,

Ond O/ x T * * * ok *
||Jp,’}v(ﬂf)—Jp,}»(y)H§;llm -y, Vatyte B

3. FORMULATION, ALGORITHM AND CONVERGENCE THEOREM

Let A,B,C,F,G : E — CB(E*) and H : E — CB(FE) be set-valued mappings;
and f: F - FE",g: F - FE n: ExFE —FE M:FE" xFE" — E*and N :
E* x E* x E* — E* be single-valued mappings. Suppose that ¢ : £ x F —
R U {400} is an extended real-valued bifunction such that for each fixed v € E,
¢(.,v) : E— RU{+o00} is a proper lower semicontinuous and n-subdifferentiable
functional on E with g(E) N dom 0,¢(.,v) # (). We consider the problem of finding
r e E ue Alx),ve B(x),we Cx), s € F(z), t € G(z) and z € H(x) such that
g(z) € dom9y¢(., z) and
(3.1)  (N(w,v,w) + f(x) = M(s,t),n(y,9(x))) = d(g(x),2) — ¢(y,2), Vy € E,
which is called a generalized set-valued nonlinear variational-like inequality problem
(in short, GSNVLIP).

If f=M=0and H = D, then the GSNVLIP (3.1) reduces to the problem of
finding = € E, u € A(z), v € B(z), w € C(x) and z € D(z) such that

(N (u,v,w),n(y, 9(x))) = ¢(g(x),2) — ¢(y,2), Vy€EE,
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which was introduced and studied by Kazmi and Bhat [24].

If N=0and H: E — FE is a single-valued mapping, then the GSNVLIP
(3.1) becomes the problem of finding x € E, s € F(z) and t € G(z) such that
g(z) € dom 0, ¢(., ) and

(f(z) = M(s,t),n(y,9(2))) = d(g(x),2) — d(y,2), VyE€E,
which was introduced and studied by Ahmad et al. [2].

We remark that for a suitable choices of the mappings A, B,C, F,G,H, M, N, ¢, f,
g,n and the underlying space E, a number of known problems of variational-like
and variational inequalities can be obtained as special cases of the GSNVLIP (3.1),
see, for example, [2,17,18,20,24,31] and the references therein.

The following conclusion, which tells the GSNVLIP (3.1) is equivalent to a fixed

point problem under some appropriate conditions, gives a characterization of the
solution of the GSNVLIP (3.1).

Lemma 3.1. Let E be a reflexive Banach space with its dual space E*, and let
A,B,C,F,G, H M,N, ¢, f,g be the same as in the GSNVLIP (3.1). Assume that
n: Ex E — E is a 7-Lipschitz continuous mapping such that n(z,y) +n(y,z) =0
for all 2,5 € E, and let P : E — E* be an a-strongly n-monotone continuous
mapping such that g(E) Ndom(P) # 0. Suppose that for any x* € E*, the function
h:(z,9) € ExE — h(z,9) = (* — P(9),n(z,9)) € RU {400} is 0-DQCV in the
first argument. Then (x,u,v,w, s, t,z) € ExXA(z)xB(z)xC(x)x F(z)xG(x)x H(x)
is a solution of the GSNVLIP (3.1) if and only if g(x) € dom P and

(3.2) g(@) = I[P o g) (@) — p(N (u,v,w) + f(z) — M(s,1))],

where JiT}f('72) = (P+p0yo(., 2))" 1 is P-n-prozimal mapping of (., 2) for each fived
z e E, Pog denotes P composition g, and p > 0 is a constant.

Proof. Invoking Definitions 2.6 and 2.8, we deduce that (z,u,v,w,s,t,z) € E X
A(x) x B(xz) x C(z) x F(z) x G(x) x H(x) is a solution of the GSNVLIP (3.1) if
and only if

Py, 2) — #(g(x), 2) = (—(N(u,v,w) + f(x) — M(s,1)),n(y, 9(x))), Vy€ E,

& —(N(u,v,w) + f(z ) M(s,t)) € Oyo(g(x), 2)

& (Pog)(z) — p(N(u,v,w) + f(x) — M(s,t)) € (Pog)(z) + poyd(g(x), 2)

= (P + pdyo(., 2))(9(x))

& g(@) = I (P o g)(@) — p(N (u, v, w) + f(x) = M(s,1))],

where J¥" = (P + pdyo (., 2)) L. O

Let E,A,B,C,F,G,H,M,N,¢,n, f,g,h be the same as in Lemma 3.1 such that
dom PN Ji’}f("é) (E*) # 0 for any 2 € E. Related to the GSNVLIP (3.1), we consider
the problem of finding p € E*, 2 € E, u € A(x), v € B(x), w € C(x), s € F(x),
t € G(x) and z € H(x) such that

(3.3) (N (u,0,w) + f(x) = M(s,t) + p ' RS (p) = 0,

z
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where p > 0 is a constant, R) "¢( A T Po Jz"]f("z) and [ is the identity mapping
on E. The problem (3.3) is called a generalized implicit Wiener-Hopf equation (in
short, GIWHE).

Accordance with the following conclusion, the GSNVLIP (3.1) and the GIWHE
(3.3) are equivalent.

Lemma 3.2. Let E,A,B,C,F,G,H,M,N,P,¢,n, f,g,h be the same as in
Lemma 3.1 and let all the conditions of Lemma 3.1 hold. Moreover, let dom P N
Jﬁ"]f("z)(E*) £ () for any 2 € E. Then, (z,u,v,w,s,t,2) € E x A(x) x B(x) x
C(x) x F(x) x G(z) x H(x) is a solution of the GSNVLIP (3.1) if and only if the
GIWHE (3.3) has a solution (p,z,u,v,w,s,t,z) € E* x E x A(x) x B(xz) x C(x) x
F(z) x G(z) x H(x) satisfying

(3.4) { 9(@) = I ),
p=(Pog)(x) — p(N(u,v,w)+ f(x) — M(s,1)),
(.

where J #) , Pog and p are the same as in Lemma 5.1.

Proof. Suppose that (z,u,v,w, s, t,z) € ExA(x)XB(z)xC(z)x F(z)xG(z)x H(x)
is a solution of the GSNVLIP (3.1). From Lemma 3.1 it follows that
9(x) = TP o g)(@) = p(N (. v,w) + f(w) = M(s.1))].

Taking p = (P o g)(z) — p(N(u,v,w) + f(z) — M(s,t)) in the latter equation, we
conclude that

(@) = J7 D (p) & (Pog)(x) = (Po Jogt)(p)

& p(N(u,0,w) + f(z) = M(s,1)) = (P o J7E) (p)

— (Pog)(x) + p(N(u,v,w) + f(z) — M(s,1))
& p(N(u,v,w) + f(z) = M(s,1)) = ~(p — (P o JO")(p)
& p(N(u,v,w) + f(z) — M(s,t)) = <I PoJi@f‘ ?)(p)
& p(N(u,v,w) + f(z) — M(s,t)) = —R0 09 (p)
& N(u,v,w) + f(x) — M(s,t) + p~ R ( #(p) =0,

where Rf:j’ﬁ =) — 1 po Ji’ﬁ("z) and [ is the identity mapping on E*. Thereby, every
solution of the GSNVLIP (3.1) is a solution of the GIWHE (3.3) and vice versa.
Hence, the two problems (3.1) and (3.3) are equivalent. The proof is finished. O

Lemma 3.3. [27] Let E be a complete metric space and T : E — CB(E) be a
set-valued mapping. Then for any € > 0 and for any given z,y € E, u € T(z),
there exists v € T'(y) such that

(3.5) d(u,v) < (1+2)D(T(x), T(y)),
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where D(.,.) is the Hausdorff metric on CB(E) defined by

D(A, B) = max { sup inf ||z — y||, sup inf ||z — yH}, VA,B € CB(E).
zcAYEB yeBTEA

The fixed Point formulation (3.4) and Nadler’s technique [27] allow us to construct
the following iterative algorithm for approximating a solution of the GSNVLIP (3.1).

Algorithm 3.1. Let £, A B,C,F,G,H,M,N,P,¢,n, f,g,h be the same as in
Lemma 3.1 such that ¢ is an onto mapping. For any given pg € E*, g € F,
up € A(zo), vo € B(xo), wo € C(z0), so € F(xo), to € G(xp) and 29 € H(zo), define
the iterative sequences {pn}, {zn}, {un}, {vn}, {wn}, {sn} {tn} and {z,} in the
following way:
g(zn) = JTE (py),
Prt1 = (L= N)pp + A[(P 0 g)(zn) — p(N (tn, vn, wn) + f(zn)

—M (sp,tn))] + Aen + 1y
up € A(@n); [ttt — un < (14 (14 1)) D(A(zn11), A(2s)),
(3.6) § v, € B(zn); [[vpt1 —onll < (1 + (1 +n)” 1)D< (Tn+1), B(xn)),
wn € Czn); [[wnpr —wall < (14 (1+ n) HD(C(2n+1), Clan)),
sn € F(2n); lIsns1 — sall < (1+ (1+0) ") D(F(2nt1), F(wn)),
tn € G(@n); [tns1 — tall < (1+ (1 +7) ") D(G(wnt1), Gln)),
#n € H(zn); l2nt1 — zall < (1+ (1+ 1)) D(H (wnr1), H(wn)),

where n = 0,1,2,...; p > 0 is a constant, A € (0, 1] is a relaxation parameter,
D(.,.) is the Hausdorff metric on CB(F) and {e,}, {r,} are two sequences in E*
to take into account a possible inexact computation of the P-n-proximal mapping
points satisfying the following conditions:

(3.7) { lim,, 00 ||€n|| = limy 00 ||7n]| = 0
Zﬁo:o len — en—1]| < oo, Ziozo 70— rn—1]| < oo.

Before proceeding to the main result of this paper, let us to recall the following
definitions which will be used in the sequel.
Recall that a mapping J : E — 2F" satisfying the condition

J(z) = {z" € B : (z,2") = ||«|® = ||l="||}}, Vz € B,

is called the normalized duality mapping on F£. The Hahn-Banach theorem guar-
antees that J(x) # () for every x € E. In the sequel, we shall denote a selection of
the normalized duality mapping J by j.

Definition 3.4. A set-valued mapping 7' : E — CB(FE) is said to be D-Lipschitz
continuous with constant Ay (or Ap-D-Lipschitz continuous) if there exists a con-
stant Ap > 0 such that

where D(.,.) is the Hausdorff metric on CB(E).
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Definition 3.5. A mapping g : E — F is said to be k-strongly accretive, if there
exists a constant k£ > 0 such that for any z,y € E,

(g(x) — g(y),j(x —y) = kllz —y|*, Vi(z—y) € J(x—y),

where J is the normalized duality mapping from real Banach space E into its dual
space E*.

Definition 3.6. The mapping N : E X E x F — FE is said to be

(i) An,-Lipschitz continuous in the first argument if there exists a constant
An; > 0 such that

||N(x,y,z) - N(‘%vyaz)n < >\N1||JZ‘ - j”? \V/LU,JAJ,y,Z € E,

(ii) An,-Lipschitz continuous in the second argument if there exists a constant
AN, > 0 such that

IN(z,y,2) = N(2, 9, 2) | < Awolly =9I, Va,y,9,2 € E;

(iii) An,-Lipschitz continuous in the third argument if there exists a constant
An; > 0 such that

IN(z,y,2) = N(z,y, 2)[| < Angllz = 2[I, V9,22 € E.

Similarly, one can define the Lipschitz continuity of a bifunction M : Ex E — E
in the first and second arguments.

This section is closed by the following theorem in which under sufficient con-
ditions, the strong convergence of the sequences generated by Algorithm 3.1 to a
solution of the GSNVLIP (3.1) is proved.

Theorem 3.7. Let E be a reflexive Banach space with the dual space E* and
n:E x E — E be a T-Lipschitz continuous mapping such that n(Z,4) +n(g,2) =0
for all 2,9 € E. Suppose that g : E — E is a k-strongly accretive and \g-Lipschitz
continuous onto mapping and P : E — E* is a ~y-strongly n-monotone and Ap-
Lipschitz continuous mapping such that g(E) Ndom P # (. Let for any given
x* € E*, the function h : (y,2) € EXE — h(y, &) = (z*—P(Z),n(y, %)) € RU{+o0}
be 0-DQCV in the first argument and ¢ : E x E — RU {400} be an extended real-
valued bifunction such that for each fivzed v € E, ¢(.,v) : E — RU{+o0} is a
proper, lower semicontinuous and n-subdifferentiable functional on E with g(E) N
domd,¢(.,v) # 0. Let f : E — E* be a Ag-Lipschitz continuous mapping, M :
E*x E* — E* be a A\yy, -Lipschitz continuous and A g, -Lipschitz continuous mapping
in the first and second arguments, respectively, and N : E* x E* x E* — E* be a
AN, -Lipschitz continuous, An,-Lipschitz continuous and An,-Lipschitz continuous
in the first, second and third arguments, respectively. Suppose that the set-valued
mappings A,B,C,F\G : E — CB(E*) and H : E — CB(FE) are D-Lipschitz
continuous with constants A4, AB, Ac, AR, Ag and Ay, respectively. If there exist
constants ¢ € (0, 52 72 ) and p >0 such that

0, , PN . *
(3.8) 17D () — JOSDG)| < <2 —gll, Vi jeEpeE
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and

P()\Nl)\A + ANAB +F AN AC + A AR + A AG)T
<3k = Am) — (Apdg £+ AT,

(k= cAm) > (ApAg + Ap)T,

k> sAy,

(3.9)

then the iterative sequences {pn},{zn}, {un}, {vn}, {wn}, {sn}, {tn} and {z,} gen-
erated by Algorithm 3.1 converge strongly to p,x,u,v,w, s,t and z, respectively, and
(p,x,u,v,w,s,t, z) is a solution of the GIWHE (3.3).

Proof. Using (3.6), (3.8), Theorem 2.14 and Ag-D-Lipschtiz continuity of the map-
ping H, we derive that for all n > 0,

0 AN 0, Zn
lg(zns1) — g(za) | = [T+ (prir) — T ()]
0 ©2n 0, Zn
< NI (ppa) = TS ()|

Ond(.,zn Ond(.,2n
T80 (py) — IS ()|

-
< gHZN-H - Zn” + ?Hpn-i-l _an
_ T
(3.10) <1+ (1+n)"")D(H(wnt1), H(zn)) + ;Hpnﬂ — Pl
_ T
<14+ (1 +n)"Aulwnis — ol + §||pn+1 — pall-

Since g is k-strongly accretive, it follows that for each n > 0,
19(zn+1) = g(@n)[|Tnt1 — zall = [|g(Tnt1) — g(@n) |17 (Zns1 — 20)||
> (9(zns1) — 9(zn), J (X1 — x0))
> k||$n+1 - $n||2a Vj(xn+1 - -rn) S J($n+1 - $n)a

from which yields

(3.11) 19(2ns1) — g(n)ll = kllzni1 — 2n].
Making use of (3.10) and (3.11), we conclude that

_ T
(3.12) Kllzns1 — @nll < <L+ 1+ 1) D Aarlwnsr — @l + I = pall-

In virtue of the fact that k& > 2¢A g, using (3.12) we deduce that

Yk —s(1+(1+n)"H)Ag) [Pn+1

Applying (3.6) and taking into account that the mapping P is Ap-Lipschitz con-
tinuous, IV is Ay, -Lipschitz continuous, Apy,-Lipschitz continuous and A p,-Lipschitz
continuous in the first, second and third arguments, respectively, M is Ay, -Lipschitz
continuous and Apgz,-Lipschitz continuous in the first and second arguments, re-
spectively, and the mappings A, B, C, F' and G are D-Lipschitz continuous with

(3.13) ||$n+1 _an < _pn”'
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constants A4, Ag, Ac, Ar and Ag, respectively, and the mappings f and g are Ay-
Lipschitz continuous and A,-Lipschitz continuous, respectively, for each n > 0, we

yield

Hpn+2

(3.14)

= Pny1ll = (T = N)prg1 + AP o g)(@ni1) — p(N (Unt1, Vg1, Wnt1)

+ f(@Zns1) — M(spy1,tne1))] + Aeng1 + o1
— (1 = N)pn + AP o g)(zn) — p(N (tn; Vn, wy)
+ f(zn) = M(8n,tn))] + Aen + 10|

< (1= Nllpat1 = pall + A(I(P 0 g)(@ns1) = (P o g)(an)]

+ p(IIN (1, Vg1, Wng1) — N (Un, Un, wh)||

+ 1 f(@nt1) = f@a)ll + 1M (snt15tnt1) — M(Snatn)”))

+ Mlent1 — enll + lIrns1 — |

< (1= Nlpass = pall + A(Aplg(@nin) = gz

+ p([|N (Unt1, Vnt1, Wnt1) — N(Un, Vg1, Wntr) |

+ [N (un, Vnt1; Wng1) = N (tn, vp, W) ||

+ ||N(unyvn7wn+1) - N(”n)vna wn)” + )\fon—‘rl - :L'n”

+ [|M ($p+1, tnt1) — M (s, tng 1) || + (1M (s, tng1) — M(snatn)H)>

+ /\Hen—&-l - en” + Hrn+1 - Tn”

< (1= Mlpwss = pall + A(ApAgllznss — 2l

+ PN [unt1 = unll + ANy [[vnt1 = vnll + Ang lwn 1 — wn

+ Agllnsn = all + Ans st = sall + A s = all))

+ Alent1 = enll + [[Tnt1 — 7all

< (1= Nllpatt = 2all + A(ApAgllnss = ol

+p(An, (L + (1 +1) ") D(A(@nr1), Azn))

+ v, (L+ (1 +n) ") D(B(wn41), B(an))

+ v, (L+ (1 +n) ") D(C(2n11), Clan))

+ Azt = 2all + Aa (1+ (1 +0) 7 ) D(F(2n41), F(za))
+ A (1+ (14 2) )D(Glensn), Glan) )

+ Alent1 = enll + [[7nt1 — 7all

< (1= Nllpatt = 2all + A(ApAgllnss = ol

+ oAy (14 (1+n) "D Aal|znr1 — 2l
+ )\NQ(l + (1 + n)il))\BHﬁn_H — :En”
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+ A (1 (1 2) ™A ll@nss = all + Agllznss —
+ A (L + (1 +n) " HAp||zns1 — 2
+ X (L4 (14 2) " )Aa@ns1 = 2all))
+ Alen+1 = eall + Irarr =7
= (1= Vllpas1 = pall + A(ApAg + p(n; Aa
+ AN, AB + AN AC + A AR
+ 8AG) (1 + (L4 1) ™) 4 Ag ) [@ns1 =
+ Mlent1 = eall + Irns1 = 7al

= (1 = Mlpnt1 — pall + Ao(n)||Tnt1 — 24|
+ Mlent1 — enll + [[ras1 — rall;

where for each n > 0,
o(n) = ApAg + p(AN, Aa + ANy AB + AN Ac + A Ar + A Aa) (14 (1+n) ™) + Ay
It follows from (3.13) and (3.14) that for each n > 0,
1Pnt2 — Prsill < (1 = N)|[Pnt1 — pull
N Ao(n)T
(3.15) Yk =<1+ (1 +n)"")An)

+ Alent1 — enll + |Tns1 — 7l
= (1 = A1 =) Ipn+1 = pull + Mlen+1 — enll + Irn1 — rall,

|Pnt+1 — pall

where for each n > 0,

B o(n)t
M) = i A )

Clearly ¥(n) — ¥, as n — oo, where ¥ = o and

oT
k—cg)
0 = ApAg + p(AN A + AN AB + AN AB + AN A + A AR + A Ag) + Ag.

Letting p(n) = 1 —A(1 —9(n)) for each n > 0, we know that p(n) — ¢, as n — oo,
where ¢ = 1 — A(1 — ¢¥). Clearly, (3.9) implies that ¢ € (0,1), and so ¢ € (0,1).
Thus, there exist ¢ € (0,1) (take ¢ = “"TH € (p,1)) and ng € N such that p(n) < ¢,
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for all n > ng. Then, by (3.15), for all n > ng, we obtain

[Pnt1 = pull < Gllpn = Pr—1ll + Allen — en—1l| + [Irn — ra—il|
< @(@lpn—1 = P2l + Alen—1 — en—2| + lIrn—1 — Tn—2]|)
+ Allen — en—1ll + [lrn — ra—1]
= 952”1771—1 — pn—2|| + A(@llen—1 — en—2|| + [len — €n—1l])

+ @llrn—1 — rn—2ll + lrn — ra1l|

(3.16) <.
n—no
< E"T|Prg+1 — Proll + A Z @’_1\\%—@_1) — en—i|
i=1
n—mo )
+ Z @7’71“7”,1,(7;,1) - Tn—l'”'
i=1

The preceding inequality (3.16) implies that for any m > n > no,

m—1
Hpm _an < Z ||pj+1 _ij

j=n
m—1
< @jino Hpno-i-l — Png H
j=n
(3.17) me1 j—no
+ A Z Z ¢ HMlej— 1) — ejill
j=n i=1
m—17—no
+ Z Z & Hlri—i—1) — rj—ll.
Jj=n i=1

Since ¢ < 1, from (3.7) and (3.17), we infer that for any m > n > ng, ||[pm—pn| — 0
as n — 0o. Consequently, {p,} is a Cauchy sequence in E* and so the completeness
of E* ensures the existence of a point p € E* such that p, — p, as n — oo. Making
use of (3.13), we deduce that the sequence {x,} is also a Cauchy sequence in F and
so relying on the completeness of E, x,, — x for some xz € E, as n — oco. Taking
into consideration the fact that the mapping A is A4-D-Lipschitz continuous, by

(3.6), it follows that for each n > 0,

[ttt — unl| < (14 (14 1) ") D(A(znt1), Azn))
< (14 (1 +n)"Aallznr — znll,
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which implies that {u,} is a Cauchy sequence in E*. Accordingly, there is a point
u € E* such that u,, — u as n — oo. Since u,, € A(z),) for each n > 0, we have

d(u, A(z)) = inf{{lu —gl| : ¢ € A(x)}
< lw = unll + d(un, A(z))
< lu = unl| + d(A(zn), A(2))
< lw = unll + Aallzn — 2|

The right-hand side of the above inequality tends to zero as n — oco. Now, the fact
that A(z) is closed implies that v € A(z). Following the same argument, one can
prove that {v,}, {wy,}, {sn}, {tn} and {z,} are Cauchy sequences in E* and FE,
respectively, and v,, — v, w, = w, s, — s, t, — t and 2, — 2z, as n — 0o, for some
v € B(zx),weC(x),s€ Fx),t € G(x) and z € H(x).

On the other hand, for each n > 0, we obtain

sZn %) yZn 0, 2
[ () — T2 )] < 1295 () — T8 ()|
8 Ond(.,2
(3.18) + 17280 (p) — I08 07 ()
T
< §||Zn - z” + *Hpn _p”'
Y

Owing to the fact that z, — z and p, — p as n — oo, it follows that the right-hand
side of (3.18) approaches zero, as n — oo. Thereby,

Jgﬁ("z")(p ) — Ja”(z)( )(p), as n — 0o.

Making use of (3.6), it follows that g(z) = Jg’}f("z) (p). Now, in the light of the
above-mentioned facts, we deduce that (p, x, u, v, w, s,t,z) € E*x Ex A(x) X B(z) x
C(z) x F(z) x G(z) x H(x) is a solution of the GIWHE (3.3) and so according to
Lemma 3.2, (z,u,v,w,s,t,z) € Ex A(z) x B(z) x C(x) x F(x) x G(x) x H(x) is
a solution of the GSNVLIP (3.1). This completes the proof. O

4. COMMENTS ON CO-PROXIMAL OPERATORS

This section is devoted to the investigation and analysis of the concept of co-
proximal operator introduced in [1]. Some facts relating to co-proximal operator
and the results appeared in [1] are also pointed out. Before dealing with analysis of
the results presented in the above-mentioned paper, we need to recall the following
concepts.

Recall that a normed space E is called strictly convex if the unit sphere in F is
strictly convex. that is, the inequality ||z +y|| < 2 holds, for all distinct unit vectors
xz and y in F. It is said to be smooth if for every unit vector z in F there exists a
unique z* € E* such that ||z*| = (z,2*) = 1.

It is known that F is smooth if E* is strictly convex, and that F is strictly convex
if £ is smooth. A normed space FE is said to be uniformly convez if, for each € > 0,
there is a § > 0 such that if z and y are unit vectors in E with ||z — y|| > 2¢, then
the average (x+v)/2 has norm at most 1 —4. In other words, E is uniformly convex
if for any two distinct points  and y on the unit sphere centred at the origin the
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midpoint of the line segment joining x and y is never on the sphere but is close to
the sphere only if x and y are sufficiently close to each other.
The function dg : [0,2] — [0, 1] given by

. 1
0p(e) =mf{l — Sl +yll 2,y € Bz = [lyll = L, |z —yll = ¢}

is called the modulus of convexity of E. The function g is continuous and increasing
on the interval [0,2] and dg(0) = 0. Obviously, in the light of the definition of the
function 0z, a normed space E is uniformly convex if and only if dg(¢) > 0 for every
e €(0,2].

A normed space E is said to be uniformly smooth if, for all € > 0, thereisa 7 > 0
such that if z and y are unit vectors in F with || — y|| < 27, then the average
(x 4+ y)/2 has norm at least 1 — e7.

The function pg : [0, 4+00) — [0, +00) given by

1
pe(7) = sup{S(lz + 7yl + llz —7yll) = 1: 2,y € B, ||z]| = |lyll = 1}

is called the modulus of smoothness of E. Note that the function pg is convex,
continuous and increasing on the interval [0,+o00) and pg(0) = 0. In addition,
pe(T) < 7 for all 7 > 0. Invoking the definition of the function pg, a normed space
F is uniformly smooth if and only if lim,_,q p%m = 0. It is important to emphasize
that in the definitions of dg(¢) and pg(7), we can as well take the infimum and
supremum over all vectors z,y € E with ||z|, ||y|| < 1. Any uniformly convex and
any uniformly smooth Banach space is reflexive. A Banach space E is uniformly
convex (resp., uniformly smooth) if and only if E* is uniformly smooth (resp.,
uniformly convex).

The spaces [P, LP and W}, 1 < p < oo, m € N, are uniformly convex as well as
uniformly smooth, see [16,22,26]. At the same time, the modulus of convexity and
smoothness of a Hilbert space and the spaces [P, LP and Wk, 1 < p < oo, m € N,
can be found in [16,22,26].

For an arbitrary but fixed real number ¢ > 1, the set-valued mapping J, : £ —

2" given by

Jo(z) == {z" € B* : (z,2") = ||z]|%, "] = |||}, Vz € E,

is called the generalized duality mapping of E. In particular, Jo, = J is the usual
normalized duality mapping. It is known that, in general, J,(z) = ||z||%"2J2(z), for
all z # 0. Note that .J; is single-valued if E is uniformly smooth or equivalently E*
is strictly convex. If F is a Hilbert space, then Jo becomes the identity mapping on
E.

For a real constant g > 1, a Banach space F is called g-uniformly smooth if there
exists a constant C' > 0 such that pg(r) < C79, for all 7 € RY.

It is well known that (see e.g. [35]) Lg (or l4) is g-uniformly smooth for 1 < ¢ <2
and is 2-uniformly smooth if ¢ > 2.

In the study of characteristic inequalities in ¢-uniformly smooth Banach spaces,
Xu [35] proved the following result.
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Lemma 4.1. Let E be a real uniformly smooth Banach space. For a real constant
q > 1, E is g-uniformly smooth if and only if there ewists a constant cq > 0 such
that for all x,y € F,

2+ yll? < lzll* + gy, Jo(2)) + cqllyll.

Throughout the rest of this paper, as it is assumed in [1], F is a real g-uniformly
smooth Banach space with the dual space E*.

Definition 4.2 ([1, Definition 2.8]). Let J, : E — 2F" (the generalized duality
mapping) and H,g : F — E be the mappings. Then

(i) H is said to be Lipschitz continuous, if there exists a constant 7 > 0 such
that

IH(z) = H)l < 7llz —yl, Vz,y € E;

(ii) Jy is said to be cocoercive with respect to H if, there exists a constant ; > 0
such that

(Jo(H(z)) = Jo(H(y)), x —y) =2 | H(z) = Hy)|?, Vax,y € E;

(iii) Jy is said to be relaxed cocoercive with respect to H if, there exists a constant
Y2 > 0 such that

(Jo(H(z)) = Jo(H(y)),z —y) = —7llH(z) - H)|?, Vz,y € E;
(iv) g is said to be strongly accretive if, there exists a constant d;, > 0 such that
(9(x) = 9(y), Jo(z —y)) = §gllz —yll, Va,y € E.

In support of Definition 4.2 (that is, [1, Definition 2.8]), Ahmad et al. [1] gave an
example as follows.

Example 4.3 ([1, Example 2.9]). Let E = R = E* with usual inner product and
let the mappings g, H : E — E and Jy : E — E* be defined by H(z) = —u=,
g(z) = v+ a and Jo(z) = 5 for all x € E, where a > 0 is an arbitrary constant.
They showed that H is an m-Lipschitz continuous mapping for n = 1,2,...; g is
%—strongly accretive and n-relaxed cocoercive with respect to H forn = 2, 3,4, ...,
and Jo is n-relaxed cocoercive with respect to H for n =1,2,3,....

But, it should be pointed out that since £ = R is a Hilbert space, we have
Jo = I, that is, the identity mapping on E. In other words, the normalized duality
mapping J from £ = R into E* = R cannot be defined as J(z) = § for all
x € E. Accordingly, it seems that there is a fatal error in Example 4.3 (that
is, [1, Example 2.9]) and contrary to the claim of the authors in [1], this example
cannot be considered in support of Definition 4.2.

Ahmad et al. [1] defined the notion of co-proximal operator as a new proximal
operator as follows.

Definition 4.4 ([1, Definition 2.10]). Let ¢ : E — R U {400} be a proper and
subdifferentiable functional, J, : E — E* (the generalized duality mapping) and
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H : EF — FE be the mappings. If for any «* € E* and p > 0, there exists a unique
x € F satisfying

(Jo(I — H)z — 2",y — x) + po(y) — pp(z) =2 0, Vy € E,

then, the mapping «* — x, denoted by Jg ¢(m*), is said to be co-proximal operator
of ¢, where I is the identity mapping on E. Then we have z* —J,(I — H)x € pd¢(x),
and it follows that

T3 a") = [JoI — H) + p06] ! ().
Defining the mapping P : E — E* by P(z) = J,(I — H)x for all x € E, we have

(Jo(I = H)z — 2%,y — x) + pp(y) — pop(x) = (P(z) — 2%,y — ) + pd(y) — p(z) > 0,

for all y € E. Then invoking Definition 2.9, the mapping x* — x, denoted by
Jpafg = J;?,Z(I—H) = J(;% is the P = J,(I — H)-proximal mapping of ¢. Clearly, in
the light of Definition 2.5, we have 2* — P(z) = «* — J,({ — H)x € pO¢(x) and then

it follows that
T = I3 = ) @) = T (T) = (Pt pde) )
= (Jo(I = H) + pdp) " (z*).

Hence, in virtue of the above-mentioned fact, contrary to the claim in [1], the
notion of co-proximal operator introduced in [1] is the same concept of P-proximal
mapping introduced by Ding and Xia [20], and is not a new proximal operator.

By presenting [1, Theorem 2.11], the authors claimed that under some appropriate
conditions, the co-proximal operator of a given proper, lower semicontinuous and
subdifferentiable functional ¢ : E — R U {+o0} is well defined necessarily.

Theorem 4.5 ([1, Theorem 2.11]). Let ¢ : E — R U {400} be a proper, lower
semicontinuous and subdifferentiable functional. Let H : B — E be a dg-strongly
accretive and Ap-Lipschitz continuous mapping such that qdp — cq)\% > 1, where
cq > 0 is a constant guaranteed by Lemma 4.1. Let J, : E — E* be the generalized
duality mapping such that J, is y-relawed cocoercive with respect to I — H, where
I is the identity mapping on E. Let for any x € E, the functional h(y,z) =
(x* — Jy(I — H)x,y — z) be 0-DQCV in y. Then, for any p > 0 and any z* € E*,
there exists a unique point x € E such that

41)  (Jo(I - H)z — 2",y —x) + pp(y) — pp(z) >0,  for all y € E;
i.e., T = J?¢(a;*), and so the co-proximal operator ¢ is well defined.

It should be remarked that by a careful reading the proof of Theorem 2.1 of [1],
we found that there is a small mistake in the inequality (2.1) of [1]. In fact, the
inequality

(Jo(I — H)z,y — x) + pp(y) — pp(z) >0, forallyeE

in [1] must be replaced by (4.1), as is done in Theorem 4.5.
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At the same time, it is also remarkable that there is a fatal error in its proof
which makes it incorrect. Now, in order to detect and point out the fatal error in
the proof of Theorem 2.11 of [1], let us analyze its proof.

For any p > 0 and z* € E*, the authors [1] defined a functional f : E x E —
R U {+00} by

fly,x) = (a" = Jy(I = H)z,y — x) + pp(x) — pd(y), forall z,y € E,

and took a point § € dom ¢ arbitrarily but fixed. Taking into account that ¢ is
subdifferentiable at y, they deduced the existence of a point f7 € E* such that

(4.2) o(z) —oy) = (f;,v—y), forallxek.

Then, on page 1098 of [1], making use of (4.2) and Lemma 4.1, and in the light of
the facts that J, is y-relaxed cocoercive with respect to I —H, and H is -strongly
accretive and Ag-Lipschitz continuous, they obtained the following relations:

f(@, ) = (@" = Jy(I = H)z,§ — x) + pp(x) — pd(y)
> —H)y— I - H)z|*—[||z"]]
(4.3) + 1o = H)@) + ol f51115 — |
> (a0 — cgXfy = Dy — 277" = [||l2"]
+ 1o (I = H)@) + ll 51117 — 2]
It follows from (4.2) that
I = H)g— (I = H)z||! = y(adn — cgAy — D7 — 2|7,

which, because y(gdg — ¢gA\f; —1) > 0 > —~, is a contradiction.

Hence, contrary to the claim in [1], the second inequality in (4.2) does not hold.
Thereby, under the assumptions mentioned in the context of Theorem 4.5 (that
is, [1, Theorem 2.11]), the co-proximal operator of ¢ is not well defined necessarily.

Let E be a real g-uniformly smooth Banach space, A,B : E — CB(FE) be the
set-valued mappings, and J, : E — E* (the generalized duality mapping) and
P,f,g: E — E be the single-valued mappings. Let ¢ : E x E — RU {400} be an
extended real-valued bifunction such that for each x € E, ¢(.,x) : E — RU {400}
is a proper, lower semicontinuous and subdifferentiable functional satisfying g(F) €
dom 9¢(.,x) # (). At the first of section 3 of [1], the authors considered the problem
of finding x € FE, u € A(xz) and v € B(x) such that g(x) € dom d¢(.,x) and

(4.4) (Jy(P(u) = f(v),y —g(x)) = ¢(g(z),x) — d(y,x), forallyeE.

With the aim of obtaining a characterization of a solution of the problem (4.4)
(that is, [1, problem (3.1)]), they deduced the following conclusion in which the
equivalence between the problem (4.4) and a fixed point problem is asserted.

Theorem 4.6 ([1, Theorem 3.1]). The triplet (x,u,v), where z € E, u € A(x) and
v € B(x) is a solution of the co-variational inclusion problem (4.4) if and only if it
satisfies the following relation:

(4.5) g(w) = JPPUIIG (I = H)g(x) = p(Jo(P(u) = f(v)))},
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where p > 0 is a constant and J(;%(-;c) = [Jy(I — H) 4 pdé(., )] is co-proximal
operator of ¢(.,x).
Using the fixed point formulation (4.5) (that is, [1, the fixed point formulation

(3.5)]), Ahmad et al. [1] suggested an iterative algorithm for finding a solution of
the problem (4.4) as follows.

Algorithm 4.1 ([1, Algorithm 3.2]). Let A,B : E — CB(FE) be the set-valued
mappings, and P, f,g : E — E and J, : E — E* be the single-valued mappings with
g(E)=E. Let ¢ : E x E — RU {400} be an extended real-valued bifunction such
that for each fixed x € E, ¢(.,z) : E — RU{+0o0} is a proper, lower semicontinuous
and subdifferentiable functional satisfying g(F) N dom d¢(., ) # (.

Step 1. Choose an arbitrary initial point xg € E such that ug € A(xg) and vy €
B(xg).

Step 2. Since g(F) = E, there exists a point x; € E such that

w1 = (1= t)ao + tlzo — g(xo) + JJ?0"N{ Iy (I — H)g(wo) — p(J4(P(uo) — f(v0)))}],

where ¢ € (0,1] and p > 0 are constants.
By Nadler’s theorem [27], there exist u; € A(x) and v; € B(z) such that

luo — u1]| < D(A(wo), A1),
lvo — v1]| < D(B(z0), B(x1)).

Step 3. Let

2y = (1= t)ay + tler — g(z1) + JPPC{TG (I — H)g(z1) — p(Jg(P(ur) — f(v1))}],

and continue the above process inductively.
Step 4. Compute the sequences {z,}, {un} and {v,} by the following scheme:

(4.6) Tt = (1 = )@y + tan — glan) + JOPH Ty (1 — H)g(wn)
= p(Jg(P(un) = f(vn)))},

(4.7) un € A(@n); lun — up—1|| < D(A(zn), A(®n-1)),

(4.8) vy € B(xn); [|vn — vp-1l| < D(B(xy), B(wn-1)).

Step 5. If {x,}, {u,} and {v,} satisfy Step 4 to an amount accuracy, then stop.
Otherwise, set n := n + 1 and repeat the above process.

As it was pointed out before, for each fixed x € E, the co-proximal operator
J(? 90 55 not well defined necessarily. Hence, the fixed point formulation (4.5)
(that is, [1, (3.5)]) does not hold in general. Accordingly, Algorithm 3.2 in [1]
which has been constructed based on the fixed point formulation (3.5) of [1] is not
well defined necessarily. Even, without considering this fact, by a careful reading
Algorithm 3.2 in [1], we found that the sequences {z,}, {un} and {v,} generated by
Algorithm 3.2 in [1] are not well defined necessarily. In fact, for any given z¢ € F,
ug € A(zg) and vy € B(zg), the authors computed z,, € FE by induction on n using
the iterative scheme (4.6), and then they claimed that one can choose u,, € A(xy)
and v, € B(x,) satisfying (4.7) and (4.8), respectively.
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Invoking Lemma 3.3, if F is a complete metric space and T : E — CB(E) is a
set-valued mapping, then for any € > 0 and for any given z,y € E, u € T(x), there
exists v € T'(y) such that

d(u,v) < (14 ¢€)D(T(2), T (y))-
But, for given x,y € E and u € T'(z), there may not be a point v € T'(y) such that
d(u,0) < D(T(x), T(y)).
This fact is illustrated in the following example.

Example 4.7. Consider E = [®(Z) = {z = {zp}32 _oo|Suppez |2n| < 00,2, € C},
the Banach space consisting of all bounded complex sequences z = {z,}72 _  with
the supremum norm ||z||oc = sup,ez |2n|. An arbitrary element z = {z,}52_ €

—0oQ
[°(Z) can be written as follows:
= {ZTL}'?LO:—OO = {xn + iyn}?zo:—oo
= ) [(. 50,000, 0,Top—1 + 121, 0, Tagq1 + Wok11,0, .. .)
ke{£1,43,..}
+ ( ) 07 o ,0,$2k + iy2k707372k+2 + iy2k+2707 o ):|
Yok—1 + Yort+1 — H(T2p—1 + Tory1 . .
= Z * 2( +)(...,O,...,O,ng_1,0,12k+1,0,...>
ke{+1,+3,...}
Yok—1 — Yok+1 — (Top—1 — Togt1 . .
+ + 2( +)(...,0,...,O,ng_l,o,—22k+1,0,...)
ok + Y2k42 — 1(Tok + Tog4o . .
4 Y2 T Y2kt 2( +)(...,0,...,O,ng,0,22k+2,0,...)
Yok — Y2k+2 — U( T2k — Topi2 4 .
+ + 2( +)(...,0,...,O,ZQ,C,(),—ZQ,HQ,O,...)
B Yok—1 + Yor+1 — (Tan—1 + $2k+1)5
= Z 5 2k—1,2k+1
ke{+1,£3,...}
4 Y2kt T Yok = i(xop—1 — $2k+1)5,
5 2k—1,2k+1
Yok + Yokt — i(Tok + Topt2) 5
+ 7 2k, 2k+2
Yor — Yort2 — 4(Tak — $2k+2)5/
+ 5 2k, 2k+2 | 1

where for each k € {:l:l, +3,... }, 52k71,2k+1 = ( .5 0,...,0,295-1,0, %941, 0, . .. ),
i at the (2k — 1)th and (2k + 1)th coordinates, and all other coordinates are zero,
5ék—172k+1 = (...,0,...,0,i9%-1,0, —i2k11,0,...), i and —i at the (2k — 1)th and
(2k + 1)th coordinates, respectively, and all other coordinates are zero, dop 2512 =
(...,0,...,0,49%,0,i9%12,0,...), 7 at the (2k)th and (2k + 2)th coordinates, and all
other coordinates are zero, and 55,672,“_2 =(...,0,...,0,i9,0, —i2k12,0,...), i and
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—i at the (2k)th and (2k 4 2)th coordinates, respectively, and all other coordinates
are zero. Thus, the set

! !
B = {52"3_172143-‘!-17 O9k—1,2k+15 02k, 2k+2 Ok 242 * kb = £1,£3,. .. }

spans the Banach space [°°(Z). It is easy to see that the set B is linearly independent
and so it is a Schauder basis for the Banach space {*°(Z). Let T': E — CB(E) be
a set-valued mapping defined by

roy— | gt e s By o = L3 070
{02k—1,2k+1, 02k 2k42 - k=1, £3,...},

where p € [-1,0) and § > 1 are arbitrary but fixed real numbers, p € N\{1} is an
arbitrary but fixed natural number, o and v are arbitrary but fixed even natural
numbers, and m € {£1,£3,...} is chosen arbitrarily but fixed.

Take 09, 19,11 # © € E arbitrarily but fixed, y = d5,, 19,41 and u =

V]
L= 62m—1,2m+17

___ 0 4100
{ Wﬂyﬂ!z}n:—oo'
Ifa = {Wi}fﬁ:_m, then because ¢ < 0, for any k € {£1,+3,...}, we yield

o .
d(a, dok—1,2k+1) = ||{WZ}Z°:JO — O2k—1,2k+1l00

_]_‘7

B 0 0
— Sup{’ e/na!ﬁny! ’7 ‘ E: /(2k — 1)0&!&(2’6*1)7!
| 0 —1|:ineZn+2%k—1,2k+1}

(2k‘ 4 1)a!5(2k+1)7!

= —1|, ifke{20+1joc e NU{0}},

_ (2k—1)1pk=1)7!

1 9 -1}, ifke{-(20+1)c e NU{0}}
§/(2k+1)2152k+1)7! ; ’
~ Ve eapeom k€ {20+ 1]o € NU{0}},

-\ 1- 4 if k€ {—(20 +1)|c € NU{0}},

V(2k+1)a]ﬁ(2k+1)7! )

and

d(a, 6o 2k+2) = ”{{’/nTYQ'B””i}?LOZOO — 02k 2k+2 00

0 0
N -1
Sup{‘ Wﬁn’vl ‘7 | (2]{7)04!5(2]6)’” ‘7
o
—1|:n € Z,n # 2k, 2k +2
TR~ M n e Zin# 2,2 +2)

e @ _
_ | 17w 1
- ¢ )
|(/Wﬂ<2k+2w 1,
1

_ e
_ {/ERR e
1— 4

R/(2k+2)15(2k+2)717

if k € {20+ 1jc e NU{0}},
if k € {—(20 +1)|c € NU{0}},

if k€ {20+ 1|c e NU{0}},
if ke {—(20+1)lc e NU{0}}.
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Since p € [—1,0), it follows that
d(a,T(y)) = inf d(a,b) =inf

Y
1-— :
beT (y) { {/(2k + )l B2kt

r:O,il,Q;k:il,iS,...}zl.

For the case when a = 0%, ;5. for some t € {£1,43,...}, then for each k €
{£1,43,...}, we get

Sy — 0212t 41100 k=t
d(a,dor—12k+1) = { Hiiiii — 5%1:2,;1H\|0;, k # t:
B { 2, k=t
1, k #t,
and
d(a, 0ok 2k+2) = Hdét—lztﬂ — ok 2k+2[l00 = 1.
Therefore,

d(a,T(y)) = beigfy) d(a,b) = 1.

If a = 5§j72j+2 for some j € {£1,4£3,...}, relying on the facts that for each k €
{£1,43,...},

d(a, dak—1,26+1) = [105j2j42 — O2k—1,2k+1llc0 = 1

and » H
0gj9j+2 — 02j,2j+2 k=j
d a,(g e 2jv2j+2 J,4] (e o)} .,
(% O2k242) { 109,242 = 02k 2k+42llccs K # 7,

— 2’ k = j7

L k#S

we deduce that
d(a, T(y)) =, I d(a,b) =1

and so

sup d(a, T(y)) = 1.
a€T(x)

For the case when b = 251 2541 for some s € {£1,+£3,...}, thanks to the fact that
o < 0, we yield
Y .
d({WZ}ZO:—W 025—1,25+1)

Y .
= ”{Wz}ifm — 02512541 |lo0
1,

_ 0 4%
fSUP{‘ mﬁnwy ) Wﬁ(gsfl)v!

N
0
| (25 + D)elp@s+T lin€Zn#2s—1,25+1}
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| {/(2371)5!5(2871)7! —1|, ifse€ {20+ 1jc e NU{0}},

| (/@Tl)flﬁ(%ﬂ)” —1|, ifse{—(20+1)c e NU{0}},

b 3/(2571)§!5<2s—mz’ if 5 € {20 + 1o € NU{0}},

_ (/(2?1)5!6@”1”” if se{—(20+1)|c e NU{0}},
and for each k € {£1,£3,...},

d(o 025-1,2541) = { Héés_1,2s+1 — 02512541/l k=s,
2oL TR A 1055 -1, 9541 — O25—1,2541llocs Kk # 5,

|2, k=s,
VL k#s

(0%, ok 425 025-1,25+1) = 109k o2 — 02512541 /lo0 = 1.

and

Taking into account that ¢ < 0, we conclude that

d(T(x),b) = aeigl(;) d(a,b) = 1.

If b = 024,24+2 for some ¢ € {£1,£3,...}, then in virtue of the fact that o < 0, we
get

0 .
d({WZ}ZO:—W 02q,2q+2)
0 .
= H{WZ e —oo — 02.2¢+2(l 00

0
|” _1’7

{/ (2q)1pC0

—1l:n€Z,n#2q,2q+ 2}

{Vna!lgn"/!
| 0
(2q + 2)!13(24+2)"!

|@@§%@W”4L if g € {20 + 1o € NU{0}},
e — b e (-0 +Dlo eNU{0},

L= agepen if g € {20 +1]o € NU{0}},

1-— mﬁ@qﬁ)“’ if ge {—(20+1)lc € NU{0}},
and for each k € {£1,£3,...},
d(5§k—1,2k+1752q,2q+2) = ||5§k—1,2k+1 - 52q72q+2Hoo =1
and

J — 02g,2¢+2 |00 k=gq
d (S/ 52 2to) = { H 2q,2q+2 q,49 ’ ’
( 2k, 2k T2 ) H‘%k,2k+2 - 52q,2q+2||007 k # q,

_J 2, k=g
11, k # q.
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Owing to the fact that ¢ < 0, it follows that
d(T(x),b) = inf d(a,b) =
(T'(x),b) ot (a,b)

Accordingly,

sup d(T(x),b) = 1.
beT (y)

Then, we have

D(T(z), T(y)) = max{ sup d(a,T(y)), sup d(T(:z:),b)} =1.
a€T(x) beT (y)

Since ¢ € [-1,0), we conclude that for each k € {£1,+£3,...},

H{Wﬁm' oo — 02k—1,2k+1l0o

1-— £ >1, ifke{20+1lc e NU{0}},

{/(gk,l)alﬁ(zk—nw
_ v@?niw“m’ >1, ifke{—(20+1)|oc e NU{0}},

and

H{{.ﬁﬁm, ne—oco — 02k 2k+2([ o

B 1—W>1, if k€ {20+ 1joc e NU{0}},
1-— (/mm%%’)“ >1, ifke{—(20+1)lc e NU{0}}.

These facts imply that for any v € T'(y),

d(u,v) = [lu = vllee > D(T(2),T(y))-
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