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the presence of the vector-valued term η(y, x) in the formulation of a variational-
like inequality makes limitations for us in using of solution methods to compute
approximate solutions of variational-like inequalities. Indeed, the auxiliary princi-
ple technique and the proximal method are the most studied methods for solving
variational-like inequalities. It is significant to emphasize that we cannot employ
the projection method to construct and propose any iterative algorithm for solving
variational-like inequalities in the setting of Banach spaces. This is mainly because
the standard projection method strictly depend on the inner product property of
Hilbert spaces. This drawback motivated the researchers to introduce proximal
(resolvent) mappings to overcome and resolve the above-mentioned problem. The
concepts of η-subdifferential and η-proximal point mappings of a proper functional
were initially introduced by Ding and Luo [18] and Lee et al. [25], independently, and
under some suitable conditions, the existence and Lipschitz continuity of η-proximal
mapping of a proper functional are proved. At the same time, they developed some
perturbed η-proximal point algorithms for computing the approximate solutions of
some classes of variational-like inequalities in a Hilbert space context. In order to
develop and construct efficient iterative algorithms for solving variational-like in-
equalities in the framework of Banach spaces, Ding and Xia [20] succeeded to intro-
duce the concept of J-proximal mapping for a nonconvex lower semicontinous and
subdifferentiable proper functional on Banach space. Under some appropriate con-
ditions, they proved the existence and Lipschitz continuity of J-proximal mapping
of a lower semicontinuous subdifferentiable proper functional. In the meanwhile,
they applied the concept of J-proximal mapping and a similar technique of resol-
vent operator in the context of Hilbert spaces and proposed an iterative algorithm
to compute the approximate solution of a new class of variational-like inequalities
with nonconvex functional in the framework of reflexive Banach spaces. After that,
in 2005, Ahmad et al. [2] and Kazmi and Bhat [24] were, independently, the first to
introduce the concept of Jη-proximal (also referred to as P -η-proximal) mapping for
a nonconvex lower semicontinuous η-subdifferentiable proper functional on Banach
space which can be viewed as a generalization of the notion of J-proximal mapping
introduced in [20]. They proved the existence and Lipschitz continuity of such map-
pings under some suitable hypotheses and suggested some iterative algorithms for
finding the approximate solutions of some classes of generalized multivalued nonlin-
ear variational-like inequalities in the setting of Banach spaces. They also studied
the convergence analysis of the sequences generated by their proposed iterative al-
gorithms under some suitable conditions.

Recently, Ahmad et al. [1] introduced a proximal operator associated with a
proper, lower semicontinuous and subdifferentiable functional called co-proximal
operator and claimed that it is a new one. Under some assumptions, they also
asserted that such an operator exists and proved its Lipschitz continuity. They
considered a generalized co-variational inequality problem in the setting of a q-
uniformly smooth Banach space and using co-proximal operator they proposed an
iterative algorithm for computing its approximate solution. At the end of their pa-
per, they claimed that under some appropriate conditions, the sequences generated
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by their suggested iterative algorithm converge strongly to a solution of the problem
considered in [1].

The organization of this article is as follows. In Sect. 2, we recall basic definitions
and facts about P -η-proximal mappings. In Sect. 3, a variational-like inequality
problem involving a proper lower semicontinuous and η-subdifferentiable functional
named generalized set-valued nonlinear variational-like inequality problem (in short,
(GSNVLIP) is considered and its equivalence with a fixed point problem is proved
under some suitable conditions. Applying the concept of P -proximal mapping, an
iterative algorithm for approximating the solution of the GSNVLIP is proposed.
Section 3 by the study of the convergence analysis of the sequences generated by
our proposed iterative algorithm is concluded. Section 4 deals with the investigation
and analysis of the concept of co-proximal operator introduced in [1]. We show that
under the assumptions considered in [1], contrary to the claim of the authors in [1],
the concept co-proximal operator is not a new one. Indeed, it is the same notion
of J-proximal mapping introduced by Ding and Xia [20]. We prove that, contrary
to the claim in [1], under the conditions mentioned in it, the co-proximal operator
associated with a proper, lower semicontinous and subdifferentiable functional is
not well defined necessarily. We also show that the proposed iterative algorithm
in [1] is not necessarily well defined and point out that the results given in [1] are
not correct.

2. Notation, basic definitions and fundamental properties

Throughout the paper, unless otherwise specified, we use the following notations,
terminology and assumptions.

For a real Banach space E, we denote by E∗ its dual Banach space of bounded
linear functionals. As usual, x∗ will stand for the weak star topology in E∗, and ⟨., .⟩
will represent the duality pairing of E and E∗. The value of a functional x∗ ∈ E∗

at x ∈ E is denoted by either ⟨x, x∗⟩ or x∗(x), as is convenient. For the sake of
simplicity, the norms of E and E∗ are denoted by the symbol ∥.∥. We use the
symbol 2E (resp., CB(E)) to represent the set of all nonempty (resp., nonempty
closed and bounded) subsets of E.

For any given function f : E → R ∪ {±∞}, dom f = {x ∈ E, f(x) < +∞} is
called the effective domain of f . Such a function is said to be proper if its effective
domain is nonempty and it is real-valued on its effective domain, what is equivalent,
f is proper if f(x) > −∞ for all x ∈ E and f(x) < +∞ for at least one x ∈ E.

Definition 2.1. A function f : E → R ∪ {+∞} is called

(i) convex if the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for every λ ∈ [0, 1] and all x, y ∈ E, for which the right-hand side is
meaningful;

(ii) lower semicontinuous at x0 ∈ E, provided that f(x0) ≤ lim infn f(xn), for
every sequence {xn} ⊂ E satisfying limn xn = x0.
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If the property mentioned in Definition 2.1(ii) holds for every point x0 ∈ E we
say that f is lower semicontinuous on E.

Definition 2.2. The function f : E×E → R∪{+∞} is called lower semicontinuous
in the second argument on E if for each x ∈ E, the function f(x, .) : E → R∪{+∞}
is lower semicontinuous on E.

Similarly, one can define the lower semicontinuity of the function f in the first
argument.

Definition 2.3 ([38]). An extended real-valued functional f : (x, y) ∈ E × E →
f(x, y) ∈ R ∪ {±∞} is said to be 0-diagonally quasi-concave (in short, 0-DQCV)

(i) in the first argument (or with respect to x), if for any finite subset {x1, x2, . . . ,
xn} of E and any x̂ ∈ Co({x1, x2, . . . , xn}), we have

min
1≤i≤n

f(xi, x̂) ≤ 0,

where for any given set A ⊂ E, Co(A) denotes the closed convex hull of
A consisting of all vectors of the form

∑n
i=1 λiui with ui ∈ Ai, λi ∈ R+ =

[0,+∞) and
∑n

i=1 λi = 1;
(ii) in the second argument (or with respect to y), if for any finite subset

{y1, y2, . . . , yn} of E and any ŷ ∈ Co({y1, y2, . . . , yn}), we have

min
1≤i≤n

f(ŷ, yi) ≤ 0.

Lemma 2.4 ([19]). Let D be a nonempty convex subset of a topological vector space
and let f : D ×D → R ∪ {±∞} be an extended real-valued functional such that

(i) f is lower semicontinuous in the second argument on every nonempty com-
pact subset of D;

(ii) f is 0-DQCV in the first argument;
(iii) there exists a nonempty compact convex subset D0 of D and a nonempty

compact subset K of D such that for each y ∈ D\K, there is an x ∈ Co(D0∪
{y}) satisfying f(x, y) > 0.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ D.

Definition 2.5. A proper functional ϕ : E → R ∪ {+∞} is said to be subdifferen-
tiable at a point x ∈ E if there exists a point x∗ ∈ E∗ such that

ϕ(y)− ϕ(x) ≥ ⟨x∗, y − x⟩, ∀y ∈ E.

Such a point x∗ is called subgradient of ϕ at x. The set of all subgradients of ϕ at
x is denoted by ∂ϕ(x). The mapping ∂ϕ : E → 2E

∗
defined by

∂ϕ(x) = {x∗ ∈ E∗ : ϕ(y)− ϕ(x) ≥ ⟨x∗, y − x⟩, ∀y ∈ E}, ∀x ∈ E,

is said to be subdifferential of ϕ at x.

The introduction and study of the notion of η-subdifferential, in a more general
setting than that given in [37], was first initiated by Lee et al. [25] and Ding and
Luo [18], independently, as follows.
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Definition 2.6 ([18,25]). Let η : E×E → E be a vector-valued mapping. A proper
functional ϕ : E → R ∪ {+∞} is said to be η-subdifferentiable at a point x ∈ E if
there exists a point x∗ ∈ E∗ such that

⟨x∗, η(y, x)⟩ ≤ ϕ(y)− ϕ(x), ∀y ∈ E.

Such a point x∗ is called η-subgradient of ϕ at x. The set of all η-subgradients of
ϕ at x is denoted by ∂ηϕ(x). We can associate with each ϕ the η-subdifferential
mapping ∂ηϕ defined by

∂ηϕ(x) =

{
{x∗ ∈ E∗ : ⟨x∗, η(y, x)⟩ ≤ ϕ(y)− ϕ(x), ∀y ∈ E}, x ∈ domϕ,
∅, x /∈ domϕ.

For x ∈ domϕ, ∂ηϕ(x) is called the η-subdifferential of ϕ at x.

Here it is to be noted that in the definition of η-subdifferential in the sense of
Yang and Craven [37], the function ϕ needs to be local Lipschitz and cannot take
the value +∞. We now present a new example which illustrates that the notion of
η-subdifferential introduced in [18,25] is more general than that given in [37].

Example 2.7. Suppose that E is the set of all real numbers endowed with the
Euclidean norm ∥.∥ = |.| and the mappings ϕ : E → R∪ {+∞} and η : E ×E → E
are defined, respectively, by

ϕ(x) =

{
α(

∑ k+1
2

p=1 x
2p−1|x|+

∑ k−1
2

p=1
2p+1
√
x|x|) + β, x ≤ 0,

+∞, x > 0,

and η(x, y) = ϱ(
∑ k+1

2
p=1 x

2p−1|x|+
∑ k−1

2
p=1

2p+1
√
x|x|)+ς(

∑ k+1
2

p=1 y
2p−1|y|+

∑ k−1
2

p=1
2p+1
√
y|y|),

for all x, y ∈ E, where k is an arbitrary but fixed odd natural number, and α, ϱ, ς > 0
and β ∈ R are arbitrary constants. We now show that for given x ∈ domϕ,
∂ηϕ(x) = [αϱ ,+∞). For this aim, take x ∈ domϕ arbitrarily. Then, we have

ϕ(x) = α(
∑ k+1

2
p=1 x

2p−1|x|+
∑ k−1

2
p=1

2p+1
√

x|x|) + β and x ≤ 0.

If γ ∈ ∂ηϕ(x), then

γ(ϱ(

k+1
2∑

p=1

y2p−1|y|+

k−1
2∑

p=1

2p+1
√
y|y|) + ς(

k+1
2∑

p=1

x2p−1|x|+

k−1
2∑

p=1

2p+1
√

x|x|))

≤ ϕ(y)− α(

k+1
2∑

p=1

x2p−1|x|+

k−1
2∑

p=1

2p+1
√

x|x|)− β, ∀y ∈ E.
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Since ϕ(y) = +∞ for all y > 0, it follows that

γ(ϱ(

k+1
2∑

p=1

y2p−1|y|+

k−1
2∑

p=1

2p+1
√
y|y|) + ς(

k+1
2∑

p=1

x2p−1|x|+

k−1
2∑

p=1

2p+1
√
x|x|))

≤ α(

k+1
2∑

p=1

y2p−1|y|+

k−1
2∑

p=1

2p+1
√
y|y|) + β − α(

k+1
2∑

p=1

x2p−1|x|+

k−1
2∑

p=1

2p+1
√

x|x|)− β

= α(

k+1
2∑

p=1

(y2p−1|y| − x2p−1|x|) +

k−1
2∑

p=1

( 2p+1
√
y|y| − 2p+1

√
x|x|)), ∀y ≤ 0.

(2.1)

If x = 0, then making use of (2.1), we conclude that

γϱ(

k+1
2∑

p=1

y2p−1|y|+

k−1
2∑

p=1

2p+1
√
y|y|) ≤ α(

k+1
2∑

p=1

y2p−1|y|+

k−1
2∑

p=1

2p+1
√
y|y|), ∀y ≤ 0,

which implies that γ ≥ α
ϱ .

For the case when x < 0, due to the fact that

ϱ(

k+1
2∑

p=1

y2p−1|y|+

k−1
2∑

p=1

2p+1
√
y|y|) + ς(

k+1
2∑

p=1

x2p−1|x|+

k−1
2∑

p=1

2p+1
√

x|x|) < 0,

recalling (2.1), for all y ≤ 0, we yield

γ ≥
α(

∑ k+1
2

p=1(y
2p−1|y| − x2p−1|x|) +

∑ k−1
2

p=1 (
2p+1
√
y|y| − 2p+1

√
x|x|))

ϱ(
∑ k+1

2
p=1 y

2p−1|y|+
∑ k−1

2
p=1

2p+1
√

y|y|) + ς(
∑ k+1

2
p=1 x

2p−1|x|+
∑ k−1

2
p=1

2p+1
√
x|x|)

.

(2.2)

Passing to the limit in (2.2) as y → −∞, we deduce that γ ≥ α
ϱ . Hence, in any

case, we infer that γ ≥ α
ϱ , and so, ∂ηϕ(x) ⊆ [αϱ ,+∞) for all x ≤ 0. To prove

∂ηϕ(x) = [αϱ ,+∞), it is sufficient to show that [αϱ ,+∞) ⊆ ∂ηϕ(x) for all x ≤ 0.

Take γ ∈ [αϱ ,+∞) arbitrarily and on the contrary, suppose that γ /∈ ∂ηϕ(x0) for

some x0 ≤ 0. Then there exists y0 ≤ 0 such that

γ(ϱ(

k+1
2∑

p=1

y2p−1
0 |y0|+

k−1
2∑

p=1

2p+1
√
y0|y0|) + ς(

k+1
2∑

p=1

x2p−1
0 |x0|+

k−1
2∑

p=1

2p+1
√
x0|x0|))

> α(

k+1
2∑

p=1

(y2p−1
0 |y0| − x2p−1

0 |x0|) +

k−1
2∑

p=1

( 2p+1
√

y0|y0| − 2p+1
√
x0|x0|)).

(2.3)

It is obvious that the case where x0 = y0 = 0 cannot happen. If x0, y0 < 0, then
taking into account that

ϱ(

k+1
2∑

p=1

y2p−1
0 |y0|+

k−1
2∑

p=1

2p+1
√
y0|y0|) + ς(

k+1
2∑

p=1

x2p−1
0 |x0|+

k−1
2∑

p=1

2p+1
√
x0|x0|) < 0,
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by using (2.3), yields

α

ϱ
≤ γ

<
α(

∑ k+1
2

p=1(y
2p−1
0 |y0| − x2p−1

0 |x0|) +
∑ k−1

2
p=1 (

2p+1
√
y0|y0| − 2p+1

√
x0|x0|))

ϱ(
∑ k+1

2
p=1 y

2p−1
0 |y0|+

∑ k−1
2

p=1
2p+1
√

y0|y0|) + ς(
∑ k+1

2
p=1 x

2p−1
0 |x0|+

∑ k−1
2

p=1
2p+1
√

x0|x0|)
,

for which it follows that

α(ς + ϱ)(

k+1
2∑

p=1

x2p−1
0 |x0|+

k−1
2∑

p=1

2p+1
√
x0|x0|) > 0.(2.4)

Taking into consideration the fact that α, ς, ϱ > 0 and k is an odd natural number,
using (2.4) we conclude that x0 > 0, which is a contradiction. If x0 < 0 and y0 = 0,
then making use of (2.3), we deduce that γ < −α

ς , which leads to a contradiction.

Finally, for the case when x0 = 0 and y0 < 0, then employing (2.3), we deduce
that γ < α

ϱ , which is also a contradiction. Thanks to these facts, it follows that

[αϱ ,+∞) ⊆ ∂ηϕ(x), for all x ≤ 0. Consequently, ∂ηϕ(x) = [αϱ ,+∞) for all x ≤ 0.

Definition 2.8 ( [2, 24]). Let η : E × E → E be a vector-valued mapping, ϕ :
E → R∪{+∞} be a proper η-subdifferentiable (may not be convex) functional and
P : E → E∗ be a mapping. If for any given x∗ ∈ E∗ and ρ > 0, there exists a
unique point x ∈ E satisfying

⟨P (x)− x∗, η(y, x)⟩+ ρϕ(y)− ρϕ(x) ≥ 0, ∀y ∈ E,

then the mapping x∗ → x, denoted by J
∂ηϕ
ρ,P , is called P -η-proximal mapping of ϕ.

Evidently, in the light of Definition 2.6, we have x∗ − P (x) ∈ ρ∂ηϕ(x) and then it

follows that x = J
∂ηϕ
ρ,P (x∗) = (P + ρ∂ηϕ)

−1(x∗).

It should be pointed out that if η(u, v) = u − v for all u, v ∈ E, then Definition
2.8 reduces to the following definition of a P -proximal mapping.

Definition 2.9 ([20]). Let ϕ : E → R ∪ {+∞} be a proper subdifferentiable (not
necessarily convex) functional and P : E → E∗ be a mapping. If for any given point
x∗ ∈ E∗ and ρ > 0, there exists a unique point x ∈ E satisfying

⟨P (x)− x∗, y − x⟩+ ρϕ(y)− ρϕ(x) ≥ 0, ∀y ∈ E,

then the mapping x∗ → x, denoted by J∂ϕ
ρ,P , is said to be P -proximal mapping of

ϕ. Clearly, invoking Definition 2.6, we have x∗ −P (x) ∈ ρ∂ϕ(x) and then it follows

that x = J∂ϕ
ρ,P (x

∗) = (P + ρ∂ϕ)−1(x∗).

Definition 2.10. Let P : E → E∗ and η : E × E → E be two vector-valued
mappings. P is said to be

(i) k-strongly η-monotone if there exists a constant k > 0 such that

⟨P (x)− P (y), η(x, y)⟩ ≥ k∥x− y∥2, ∀x, y ∈ E;
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(ii) λP -Lipschitz continuous if there exists a constant λP > 0 such that

∥P (x)− P (y)∥ ≤ λP ∥x− y∥, ∀x, y ∈ E.

Definition 2.11. A vector-valued mapping η : E×E → E is said to be τ -Lipschitz
continuous if there exists a constant τ > 0 such that ∥η(x, y)∥ ≤ τ∥x − y∥, for all
x, y ∈ E.

A natural question then arises whether for given mappings η : E × E → E
and P : E → E∗, an η-subdifferentiable (not necessarily convex) proper functional
ϕ : E → R ∪ {+∞} and an arbitrary real constant ρ > 0, the P -η-proximal map-
ping associated with the mappings ϕ, P , η and the constant ρ > 0 is well defined
necessarily? Under some appropriate conditions, an affirmative answer is given by
Ahmad et al. [2] and Kazmi and Bhat [24] by the next theorem.

Theorem 2.12 ([2, 24]). Let E be a reflexive Banach space, η : E × E → E be a
τ -Lipschitz continuous mapping such that η(x, y)+ η(y, x) = 0 for all x, y ∈ E, and
let P : E → E∗ be a γ-strongly η-monotone continuous mapping. Suppose that for
any given x∗ ∈ E∗, the function

h : (y, x) ∈ E × E → h(y, x) = ⟨x∗ − P (x), η(y, x)⟩ ∈ R ∪ {+∞}

is 0-DQCV in the first argument. Moreover, let ϕ : E → R ∪ {+∞} be a lower
semicontinuous η-subdifferentiable proper functional on E, which may not be convex.
Then for any given ρ > 0 and x∗ ∈ E∗, there exists a unique point x ∈ E such that

⟨P (x)− x∗, η(y, x)⟩ ≥ ρϕ(x)− ρϕ(y), ∀y ∈ E,

that is, x = J
∂ηϕ
ρ,P (x∗) and so the P -η-proximal mapping associated with ϕ, P , η and

ρ is well defined.

It is very essential to note that by a careful reading the proof of Theorem 3.1 in [24]
and by comparing it with the assumptions appeared in its context, we found that the
mapping η must be τ -Lipschitz continuous. In fact, in the context of [24, Theorem
3.1], the continuity hypothesis of the mapping η must be replaced by the τ -Lipschitz
continuity assumption, as we have done in the context of Theorem 2.12.

We now give a new example in which the existence of the two mappings η :
E×E → E and P : E → E∗ satisfying all the conditions of Theorem 2.12 is shown.

Example 2.13. Consider E = R with the Euclidean norm ∥.∥ = |.| and let the
mappings η : E × E → E and P : E → E∗ be defined by

η(x, y) =


α(e

k
√

|xy| + |xy|m + µ)(x− y), if |xy| < p,

β(a
n
√

|xy| + γlogb|xy|)(x− y), if p ≤ |xy| < q,

( ξ
s
√

|xy|+|xy|l+b|xy|
+ ϱ)(x− y), if q ≤ |xy|,

and P (x) = ςx for all x, y ∈ E, where α, β, γ, ξ, ϱ, ς,m, l are arbitrary real constants
that are strictly bigger than zero, k, n, s ∈ N\{1} are arbitrary constants, and
a, b, p, q are arbitrary real constants such that a, b > 1 and q, p ≥ 1. It is easy to
observe that η(x, y) + η(y, x) = 0 for all x, y ∈ E.
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Taking into account that for all x, y ∈ E,

|η(x, y)| =


α(e

k
√

|xy| + |xy|m + µ)|x− y|, if |xy| < p,

β(a
n
√

|xy| + γlogb|xy|)|x− y|, if p ≤ |xy| < q,

( ξ
s
√

|xy|+|xy|l+b|xy|
+ ϱ)|x− y|, if q ≤ |xy|,

with the help of the assumptions, we derive that

µ < e
k
√

|xy| + |xy|m + µ < e
k
√
p + pm + µ, ∀x, y ∈ E with |xy| < p,(2.5)

0 < a
n
√
p + γlogbp ≤ a

n
√

|xy| + γlogb|xy| < a
n
√
q + γlogbq,(2.6)

for all x, y ∈ E with p ≤ |xy| < q, and

ϱ <
ξ

s
√
|xy|+ |xy|l + b|xy|

+ ϱ <
ξ

s
√
q + ql + bq

+ ϱ,(2.7)

for all x, y ∈ E with |xy| ≥ q.
Making use of (2.5)–(2.7) and in view of the fact that α, β > 0, we obtain

|η(x, y)| ≤ max
{
α(e

k
√
p + pm + µ), β(a

n
√
q + γlogbq),

ξ
s
√
q + ql + bq

+ ϱ
}
|x− y|,

for all x, y ∈ E, which means that η is a
max

{
α(e

k
√
p+pm+µ), β(a

n√a+γlogbq),
ξ

s
√
q+ql+bq

+ϱ
}
-Lipschitz continuous map-

ping. Define, associated with each z ∈ E, a correspondence hz : E×E → R∪{+∞}
for each (y, x) ∈ E × E by

hz(y, x) = ⟨z − P (x), η(y, x)⟩ = (z − P (x))η(y, x).

Using proof by contradiction, we now prove that the function hz is 0-DQCV in the
first argument. For this end, suppose that there exist a finite set {y1, y2, . . . , yn}
and t =

∑n
i=1 λiyi with λi ≥ 0 and

∑n
i=1 λi = 1 such that for each i ∈ {1, 2, . . . , n},

0 < hz(yi, t) =


α(z − ςt)(e

k
√

|yit| + |yit|m + µ)(yi − t), if |yit| < p,

β(a
n
√

|yit| + γlogb|yit|)(yi − t), if p ≤ |yit| < q,

( ξ
s
√

|yit|+|yit|l+b|yit|
+ ϱ)(yi − t), if q ≤ |yit|.

Therefore, (z − ςt)(yi − t) > 0 for each i ∈ {1, 2, . . . , n} which ensures that

0 <

n∑
i=1

λi(z − ςt)(yi − t) = (z − ςt)(

n∑
i=1

λiyi −
n∑

i=1

λit) = (z − ςt)(t− t) = 0,

which leads to a contradiction. Hence, for any given z ∈ E the function hz is
0-DQCV in the first argument. Since for all x, y ∈ E,

⟨P (x)− P (y), η(x, y)⟩ =


ας(e

k
√

|xy| + |xy|m + µ)|x− y|2, if |xy| < p,

βς(a
n
√

|xy| + γlogb|xy|)|x− y|2, if p ≤ |xy| < q,

ς( ξ
s
√

|xy|+|xy|l+b|xy|
+ ϱ)|x− y|2, if q ≤ |xy|,
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utilizing (2.5)–(2.7), it follows that

⟨P (x)− P (y), η(x, y)⟩ ≥ αςµ|x− y|2, ∀x, y ∈ E with |xy| ∈ [0, p),

⟨P (x)− P (y), η(x, y)⟩ ≥ βς(a
n
√
p + γlogbp)|x− y|2, ∀x, y ∈ E with |xy| ∈ [p, q)

and

⟨P (x)− P (y), η(x, y)⟩ ≥ ςϱ|x− y|2, ∀x, y ∈ E with |xy| ∈ [q,+∞).

Consequently,

⟨P (x)− P (y), η(x, y)⟩ ≥ min
{
αςµ, βς(a

n
√
p + γlogbp), ςϱ

}
|x− y|2, ∀x, y ∈ E,

that is, P is a min
{
αςµ, βς(a

n
√
p + γlogbp), ςϱ

}
-strongly η-monotone mapping.

Thereby, the two mappings P and η are satisfied all the conditions of Theorem
2.12.

Under some appropriate conditions, the Lipschitz continuity of the P -η-proximal

mapping J
∂ηϕ
ρ,P associated with the mappings ϕ, P , η and the constant ρ > 0 is proved

in [2, 24] and an estimate of its Lipschitz constant is also computed as follows.

Theorem 2.14 ([2,24]). Let E be a reflexive Banach space with the dual space E∗,
η : E ×E → E be a τ -Lipschitz continuous mapping such that η(x, y) + η(y, x) = 0
for all x, y ∈ E, and P : E → E∗ be a γ-strongly η-monotone continuous mapping.
Suppose that for given x∗ ∈ E∗, the function h : (y, x) ∈ E × E → h(y, x) =
⟨x∗−P (x), η(y, x)⟩ ∈ R∪{+∞} is 0-DQCV in the first argument, ϕ : E → R∪{+∞}
is a lower semicontinuous η-subdifferentiable proper functional on E and ρ > 0 is an

arbitrary real constant. Then, the P -η-proximal mapping J
∂ηϕ
ρ,P : E∗ → E associated

with ϕ, P , η and ρ > 0 is τ
γ -Lipschitz continuous, i.e.,

∥J∂ηϕ
ρ,P (x∗)− J

∂ηϕ
ρ,P (y∗)∥ ≤ τ

γ
∥x∗ − y∗∥, ∀x∗, y∗ ∈ E∗.

3. Formulation, algorithm and convergence theorem

Let A,B,C, F,G : E → CB(E∗) and H : E → CB(E) be set-valued mappings;
and f : E → E∗, g : E → E, η : E × E → E, M : E∗ × E∗ → E∗ and N :
E∗ × E∗ × E∗ → E∗ be single-valued mappings. Suppose that ϕ : E × E →
R ∪ {+∞} is an extended real-valued bifunction such that for each fixed ν ∈ E,
ϕ(., ν) : E → R ∪ {+∞} is a proper lower semicontinuous and η-subdifferentiable
functional on E with g(E) ∩ dom ∂ηϕ(., ν) ̸= ∅. We consider the problem of finding
x ∈ E, u ∈ A(x), v ∈ B(x), w ∈ C(x), s ∈ F (x), t ∈ G(x) and z ∈ H(x) such that
g(x) ∈ dom ∂ηϕ(., z) and

⟨N(u, v, w) + f(x)−M(s, t), η(y, g(x))⟩ ≥ ϕ(g(x), z)− ϕ(y, z), ∀y ∈ E,(3.1)

which is called a generalized set-valued nonlinear variational-like inequality problem
(in short, GSNVLIP).

If f = M ≡ 0 and H = D, then the GSNVLIP (3.1) reduces to the problem of
finding x ∈ E, u ∈ A(x), v ∈ B(x), w ∈ C(x) and z ∈ D(x) such that

⟨N(u, v, w), η(y, g(x))⟩ ≥ ϕ(g(x), z)− ϕ(y, z), ∀y ∈ E,
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which was introduced and studied by Kazmi and Bhat [24].
If N ≡ 0 and H : E → E is a single-valued mapping, then the GSNVLIP

(3.1) becomes the problem of finding x ∈ E, s ∈ F (x) and t ∈ G(x) such that
g(x) ∈ dom ∂ηϕ(., x) and

⟨f(x)−M(s, t), η(y, g(x))⟩ ≥ ϕ(g(x), x)− ϕ(y, x), ∀y ∈ E,

which was introduced and studied by Ahmad et al. [2].
We remark that for a suitable choices of the mappings A,B,C, F,G,H,M,N, ϕ, f ,

g, η and the underlying space E, a number of known problems of variational-like
and variational inequalities can be obtained as special cases of the GSNVLIP (3.1),
see, for example, [2, 17,18,20,24,31] and the references therein.

The following conclusion, which tells the GSNVLIP (3.1) is equivalent to a fixed
point problem under some appropriate conditions, gives a characterization of the
solution of the GSNVLIP (3.1).

Lemma 3.1. Let E be a reflexive Banach space with its dual space E∗, and let
A,B,C, F,G, H,M,N, ϕ, f, g be the same as in the GSNVLIP (3.1). Assume that
η : E × E → E is a τ -Lipschitz continuous mapping such that η(x̂, ŷ) + η(ŷ, x̂) = 0
for all x̂, ŷ ∈ E, and let P : E → E∗ be an α-strongly η-monotone continuous
mapping such that g(E)∩ dom(P ) ̸= ∅. Suppose that for any x∗ ∈ E∗, the function
h : (x̂, ŷ) ∈ E × E → h(x̂, ŷ) = ⟨x∗ − P (ŷ), η(x̂, ŷ)⟩ ∈ R ∪ {+∞} is 0-DQCV in the
first argument. Then (x, u, v, w, s, t, z) ∈ E×A(x)×B(x)×C(x)×F (x)×G(x)×H(x)
is a solution of the GSNVLIP (3.1) if and only if g(x) ∈ domP and

g(x) = J
∂ηϕ(.,z)
ρ,P [(P ◦ g)(x)− ρ(N(u, v, w) + f(x)−M(s, t))],(3.2)

where J
∂ηϕ(.,ẑ)
ρ,P = (P+ρ∂ηϕ(., ẑ))

−1 is P -η-proximal mapping of ϕ(., ẑ) for each fixed
ẑ ∈ E, P ◦ g denotes P composition g, and ρ > 0 is a constant.

Proof. Invoking Definitions 2.6 and 2.8, we deduce that (x, u, v, w, s, t, z) ∈ E ×
A(x) × B(x) × C(x) × F (x) × G(x) ×H(x) is a solution of the GSNVLIP (3.1) if
and only if

ϕ(y, z)− ϕ(g(x), z) ≥ ⟨−(N(u, v, w) + f(x)−M(s, t)), η(y, g(x))⟩, ∀y ∈ E,

⇔ −(N(u, v, w) + f(x)−M(s, t)) ∈ ∂ηϕ(g(x), z)

⇔ (P ◦ g)(x)− ρ(N(u, v, w) + f(x)−M(s, t)) ∈ (P ◦ g)(x) + ρ∂ηϕ(g(x), z)

= (P + ρ∂ηϕ(., z))(g(x))

⇔ g(x) = J
∂ηϕ(.,z)
ρ,P [(P ◦ g)(x)− ρ(N(u, v, w) + f(x)−M(s, t))],

where J
∂ηϕ(.,z)
ρ,P = (P + ρ∂ηϕ(., z))

−1. □
Let E,A,B,C, F,G,H,M,N, ϕ, η, f, g, h be the same as in Lemma 3.1 such that

domP∩J∂ηϕ(.,ẑ)
ρ,P (E∗) ̸= ∅ for any ẑ ∈ E. Related to the GSNVLIP (3.1), we consider

the problem of finding p ∈ E∗, x ∈ E, u ∈ A(x), v ∈ B(x), w ∈ C(x), s ∈ F (x),
t ∈ G(x) and z ∈ H(x) such that

ρ(N(u, v, w) + f(x)−M(s, t) + ρ−1R
∂ηϕ(.,z)
ρ,P (p) = 0,(3.3)
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where ρ > 0 is a constant, R
∂ηϕ(.,z)
ρ,P = I −P ◦J∂ηϕ(.,z)

ρ,P and I is the identity mapping

on E. The problem (3.3) is called a generalized implicit Wiener-Hopf equation (in
short, GIWHE).

Accordance with the following conclusion, the GSNVLIP (3.1) and the GIWHE
(3.3) are equivalent.

Lemma 3.2. Let E,A,B,C, F,G,H,M,N, P, ϕ, η, f, g, h be the same as in
Lemma 3.1 and let all the conditions of Lemma 3.1 hold. Moreover, let domP ∩
J
∂ηϕ(.,ẑ)
ρ,P (E∗) ̸= ∅ for any ẑ ∈ E. Then, (x, u, v, w, s, t, z) ∈ E × A(x) × B(x) ×

C(x) × F (x) ×G(x) ×H(x) is a solution of the GSNVLIP (3.1) if and only if the
GIWHE (3.3) has a solution (p, x, u, v, w, s, t, z) ∈ E∗ ×E ×A(x)×B(x)×C(x)×
F (x)×G(x)×H(x) satisfying{

g(x) = J
∂ηϕ(.,z)
ρ,P (p),

p = (P ◦ g)(x)− ρ(N(u, v, w) + f(x)−M(s, t)),
(3.4)

where J
∂ηϕ(.,z)
ρ,P , P ◦ g and ρ are the same as in Lemma 3.1.

Proof. Suppose that (x, u, v, w, s, t, z) ∈ E×A(x)×B(x)×C(x)×F (x)×G(x)×H(x)
is a solution of the GSNVLIP (3.1). From Lemma 3.1 it follows that

g(x) = J
∂ηϕ(.,z)
ρ,P [(P ◦ g)(x)− ρ(N(u, v, w) + f(x)−M(s, t))].

Taking p = (P ◦ g)(x) − ρ(N(u, v, w) + f(x) − M(s, t)) in the latter equation, we
conclude that

g(x) = J
∂ηϕ(.,z)
ρ,P (p) ⇔ (P ◦ g)(x) = (P ◦ J∂ηϕ(.,z)

ρ,P )(p)

⇔ ρ(N(u, v, w) + f(x)−M(s, t)) = (P ◦ J∂ηϕ(.,z)
ρ,P )(p)

− (P ◦ g)(x) + ρ(N(u, v, w) + f(x)−M(s, t))

⇔ ρ(N(u, v, w) + f(x)−M(s, t)) = −(p− (P ◦ J∂ηϕ(.,z)
ρ,P )(p))

⇔ ρ(N(u, v, w) + f(x)−M(s, t)) = −(I − P ◦ J∂ηϕ(.,z)
ρ,P )(p)

⇔ ρ(N(u, v, w) + f(x)−M(s, t)) = −R
∂ηϕ(.,z)
ρ,P (p)

⇔ N(u, v, w) + f(x)−M(s, t) + ρ−1R
∂ηϕ(.,z)
ρ,P (p) = 0,

where R
∂ηϕ(.,z)
ρ,P = I−P◦J∂ηϕ(.,z)

ρ,P and I is the identity mapping on E∗. Thereby, every

solution of the GSNVLIP (3.1) is a solution of the GIWHE (3.3) and vice versa.
Hence, the two problems (3.1) and (3.3) are equivalent. The proof is finished. □

Lemma 3.3. [27] Let E be a complete metric space and T : E → CB(E) be a
set-valued mapping. Then for any ε > 0 and for any given x, y ∈ E, u ∈ T (x),
there exists v ∈ T (y) such that

d(u, v) ≤ (1 + ε)D(T (x), T (y)),(3.5)



GENERALIZED SET-VALUED NONLINEAR VARIATIONAL-LIKE INEQUALITY PROBLEMS 61

where D(., .) is the Hausdorff metric on CB(E) defined by

D(A,B) = max
{
sup
x∈A

inf
y∈B

∥x− y∥, sup
y∈B

inf
x∈A

∥x− y∥
}
, ∀A,B ∈ CB(E).

The fixed Point formulation (3.4) and Nadler’s technique [27] allow us to construct
the following iterative algorithm for approximating a solution of the GSNVLIP (3.1).

Algorithm 3.1. Let E,A,B,C, F,G,H,M,N, P, ϕ, η, f, g, h be the same as in
Lemma 3.1 such that g is an onto mapping. For any given p0 ∈ E∗, x0 ∈ E,
u0 ∈ A(x0), v0 ∈ B(x0), w0 ∈ C(x0), s0 ∈ F (x0), t0 ∈ G(x0) and z0 ∈ H(x0), define
the iterative sequences {pn}, {xn}, {un}, {vn}, {wn}, {sn} {tn} and {zn} in the
following way:

g(xn) = J
∂ηϕ(.,zn)
ρ,P (pn),

pn+1 = (1− λ)pn + λ[(P ◦ g)(xn)− ρ(N(un, vn, wn) + f(xn)
−M(sn, tn))] + λen + rn,

un ∈ A(xn); ∥un+1 − un∥ ≤ (1 + (1 + n)−1)D(A(xn+1), A(xn)),
vn ∈ B(xn); ∥vn+1 − vn∥ ≤ (1 + (1 + n)−1)D(B(xn+1), B(xn)),
wn ∈ C(xn); ∥wn+1 − wn∥ ≤ (1 + (1 + n)−1)D(C(xn+1), C(xn)),
sn ∈ F (xn); ∥sn+1 − sn∥ ≤ (1 + (1 + n)−1)D(F (xn+1), F (xn)),
tn ∈ G(xn); ∥tn+1 − tn∥ ≤ (1 + (1 + n)−1)D(G(xn+1), G(xn)),
zn ∈ H(xn); ∥zn+1 − zn∥ ≤ (1 + (1 + n)−1)D(H(xn+1),H(xn)),

(3.6)

where n = 0, 1, 2, . . . ; ρ > 0 is a constant, λ ∈ (0, 1] is a relaxation parameter,
D(., .) is the Hausdorff metric on CB(E) and {en}, {rn} are two sequences in E∗

to take into account a possible inexact computation of the P -η-proximal mapping
points satisfying the following conditions:{

limn→∞ ∥en∥ = limn→∞ ∥rn∥ = 0,∑∞
n=0 ∥en − en−1∥ < ∞,

∑∞
n=0 ∥rn − rn−1∥ < ∞.

(3.7)

Before proceeding to the main result of this paper, let us to recall the following
definitions which will be used in the sequel.

Recall that a mapping J : E → 2E
∗
satisfying the condition

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2∗}, ∀x ∈ E,

is called the normalized duality mapping on E. The Hahn-Banach theorem guar-
antees that J(x) ̸= ∅ for every x ∈ E. In the sequel, we shall denote a selection of
the normalized duality mapping J by j.

Definition 3.4. A set-valued mapping T : E → CB(E) is said to be D-Lipschitz
continuous with constant λT (or λT -D-Lipschitz continuous) if there exists a con-
stant λT > 0 such that

D(T (x), T (y)) ≤ λT ∥x− y∥, ∀x, y ∈ E,

where D(., .) is the Hausdorff metric on CB(E).
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Definition 3.5. A mapping g : E → E is said to be k-strongly accretive, if there
exists a constant k > 0 such that for any x, y ∈ E,

⟨g(x)− g(y), j(x− y)⟩ ≥ k∥x− y∥2, ∀j(x− y) ∈ J(x− y),

where J is the normalized duality mapping from real Banach space E into its dual
space E∗.

Definition 3.6. The mapping N : E × E × E → E is said to be

(i) λN1-Lipschitz continuous in the first argument if there exists a constant
λN1 > 0 such that

∥N(x, y, z)−N(x̂, y, z)∥ ≤ λN1∥x− x̂∥, ∀x, x̂, y, z ∈ E;

(ii) λN2-Lipschitz continuous in the second argument if there exists a constant
λN2 > 0 such that

∥N(x, y, z)−N(x, ŷ, z)∥ ≤ λN2∥y − ŷ∥, ∀x, y, ŷ, z ∈ E;

(iii) λN3-Lipschitz continuous in the third argument if there exists a constant
λN3 > 0 such that

∥N(x, y, z)−N(x, y, ẑ)∥ ≤ λN3∥z − ẑ∥, ∀x, y, z, ẑ ∈ E.

Similarly, one can define the Lipschitz continuity of a bifunction M : E×E → E
in the first and second arguments.

This section is closed by the following theorem in which under sufficient con-
ditions, the strong convergence of the sequences generated by Algorithm 3.1 to a
solution of the GSNVLIP (3.1) is proved.

Theorem 3.7. Let E be a reflexive Banach space with the dual space E∗ and
η : E ×E → E be a τ -Lipschitz continuous mapping such that η(x̂, ŷ) + η(ŷ, x̂) = 0
for all x̂, ŷ ∈ E. Suppose that g : E → E is a k-strongly accretive and λg-Lipschitz
continuous onto mapping and P : E → E∗ is a γ-strongly η-monotone and λP -
Lipschitz continuous mapping such that g(E) ∩ domP ̸= ∅. Let for any given
x∗ ∈ E∗, the function h : (y, x̂) ∈ E×E → h(y, x̂) = ⟨x∗−P (x̂), η(y, x̂)⟩ ∈ R∪{+∞}
be 0-DQCV in the first argument and ϕ : E ×E → R ∪ {+∞} be an extended real-
valued bifunction such that for each fixed ν ∈ E, ϕ(., ν) : E → R ∪ {+∞} is a
proper, lower semicontinuous and η-subdifferentiable functional on E with g(E) ∩
dom ∂ηϕ(., ν) ̸= ∅. Let f : E → E∗ be a λf -Lipschitz continuous mapping, M :
E∗×E∗ → E∗ be a λM1-Lipschitz continuous and λM2-Lipschitz continuous mapping
in the first and second arguments, respectively, and N : E∗ × E∗ × E∗ → E∗ be a
λN1-Lipschitz continuous, λN2-Lipschitz continuous and λN3-Lipschitz continuous
in the first, second and third arguments, respectively. Suppose that the set-valued
mappings A,B,C, F,G : E → CB(E∗) and H : E → CB(E) are D-Lipschitz
continuous with constants λA, λB, λC , λF , λG and λH , respectively. If there exist
constants ς ∈ (0, k

2λH
) and ρ > 0 such that

∥J∂ηϕ(.,x̂)
ρ,P (p̂)− J

∂ηϕ(.,ŷ)
ρ,P (p̂)∥ ≤ ς∥x̂− ŷ∥, ∀x̂, ŷ ∈ E, p̂ ∈ E∗(3.8)
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and 
ρ(λN1λA + λN2λB + λN3λC + λM1λF + λM2λG)τ
< γ(k − ςλH)− (λPλg + λf )τ,
γ(k − ςλH) > (λPλg + λf )τ,
k > ςλH ,

(3.9)

then the iterative sequences {pn}, {xn}, {un}, {vn}, {wn}, {sn}, {tn} and {zn} gen-
erated by Algorithm 3.1 converge strongly to p, x, u, v, w, s, t and z, respectively, and
(p, x, u, v, w, s, t, z) is a solution of the GIWHE (3.3).

Proof. Using (3.6), (3.8), Theorem 2.14 and λH -D-Lipschtiz continuity of the map-
ping H, we derive that for all n ≥ 0,

∥g(xn+1)− g(xn)∥ = ∥J∂ηϕ(.,zn+1)
ρ,P (pn+1)− J

∂ηϕ(.,zn)
ρ,P (pn)∥

≤ ∥J∂ηϕ(.,zn+1)
ρ,P (pn+1)− J

∂ηϕ(.,zn)
ρ,P (pn+1)∥

+ ∥J∂ηϕ(.,zn)
ρ,P (pn+1)− J

∂ηϕ(.,zn)
ρ,P (pn)∥

≤ ς∥zn+1 − zn∥+
τ

γ
∥pn+1 − pn∥

≤ ς(1 + (1 + n)−1)D(H(xn+1),H(xn)) +
τ

γ
∥pn+1 − pn∥

≤ ς(1 + (1 + n)−1)λH∥xn+1 − xn∥+
τ

γ
∥pn+1 − pn∥.

(3.10)

Since g is k-strongly accretive, it follows that for each n ≥ 0,

∥g(xn+1)− g(xn)∥∥xn+1 − xn∥ = ∥g(xn+1)− g(xn)∥∥j(xn+1 − xn)∥
≥ ⟨g(xn+1)− g(xn), j(xn+1 − xn)⟩
≥ k∥xn+1 − xn∥2, ∀j(xn+1 − xn) ∈ J(xn+1 − xn),

from which yields

∥g(xn+1)− g(xn)∥ ≥ k∥xn+1 − xn∥.(3.11)

Making use of (3.10) and (3.11), we conclude that

k∥xn+1 − xn∥ ≤ ς(1 + (1 + n)−1)λH∥xn+1 − xn∥+
τ

γ
∥pn+1 − pn∥.(3.12)

In virtue of the fact that k > 2ςλH , using (3.12) we deduce that

∥xn+1 − xn∥ ≤ τ

γ(k − ς(1 + (1 + n)−1)λH)
∥pn+1 − pn∥.(3.13)

Applying (3.6) and taking into account that the mapping P is λP -Lipschitz con-
tinuous, N is λN1-Lipschitz continuous, λN2-Lipschitz continuous and λN3-Lipschitz
continuous in the first, second and third arguments, respectively, M is λM1-Lipschitz
continuous and λM2-Lipschitz continuous in the first and second arguments, re-
spectively, and the mappings A, B, C, F and G are D-Lipschitz continuous with
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constants λA, λB, λC , λF and λG, respectively, and the mappings f and g are λf -
Lipschitz continuous and λg-Lipschitz continuous, respectively, for each n ≥ 0, we
yield

∥pn+2 − pn+1∥ = ∥(1− λ)pn+1 + λ[(P ◦ g)(xn+1)− ρ(N(un+1, vn+1, wn+1)

+ f(xn+1)−M(sn+1, tn+1))] + λen+1 + rn+1

− ((1− λ)pn + λ[(P ◦ g)(xn)− ρ(N(un, vn, wn)

+ f(xn)−M(sn, tn))] + λen + rn)∥

≤ (1− λ)∥pn+1 − pn∥+ λ
(
∥(P ◦ g)(xn+1)− (P ◦ g)(xn)∥

+ ρ(∥N(un+1, vn+1, wn+1)−N(un, vn, wn)∥

+ ∥f(xn+1)− f(xn)∥+ ∥M(sn+1, tn+1)−M(sn, tn)∥)
)

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥

≤ (1− λ)∥pn+1 − pn∥+ λ
(
λP ∥g(xn+1)− g(xn)∥

+ ρ(∥N(un+1, vn+1, wn+1)−N(un, vn+1, wn+1)∥
+ ∥N(un, vn+1, wn+1)−N(un, vn, wn+1)∥
+ ∥N(un, vn, wn+1)−N(un, vn, wn)∥+ λf∥xn+1 − xn∥

+ ∥M(sn+1, tn+1)−M(sn, tn+1)∥+ ∥M(sn, tn+1)−M(sn, tn)∥)
)

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥

≤ (1− λ)∥pn+1 − pn∥+ λ
(
λPλg∥xn+1 − xn∥

+ ρ(λN1∥un+1 − un∥+ λN2∥vn+1 − vn∥+ λN3∥wn+1 − wn∥

+ λf∥xn+1 − xn∥+ λM1∥sn+1 − sn∥+ λM2∥tn+1 − tn∥)
)

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥

≤ (1− λ)∥pn+1 − pn∥+ λ
(
λPλg∥xn+1 − xn∥(3.14)

+ ρ(λN1(1 + (1 + n)−1)D(A(xn+1), A(xn))

+ λN2(1 + (1 + n)−1)D(B(xn+1), B(xn))

+ λN3(1 + (1 + n)−1)D(C(xn+1), C(xn))

+ λf∥xn+1 − xn∥+ λM1(1 + (1 + n)−1)D(F (xn+1), F (xn))

+ λM2(1 + (1 + n)−1)D(G(xn+1), G(xn))
)

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥

≤ (1− λ)∥pn+1 − pn∥+ λ
(
λPλg∥xn+1 − xn∥

+ ρ(λN1(1 + (1 + n)−1)λA∥xn+1 − xn∥
+ λN2(1 + (1 + n)−1)λB∥xn+1 − xn∥
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+ λN3(1 + (1 + n)−1)λC∥xn+1 − xn∥+ λf∥xn+1 − xn∥
+ λM1(1 + (1 + n)−1)λF ∥xn+1 − xn∥

+ λM2(1 + (1 + n)−1)λG∥xn+1 − xn∥)
)

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥

= (1− λ)∥pn+1 − pn∥+ λ
(
λPλg + ρ(λN1λA

+ λN2λB + λN3λC + λM1λF

+ λM2λG)(1 + (1 + n)−1) + λf

)
∥xn+1 − xn∥

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥
= (1− λ)∥pn+1 − pn∥+ λϱ(n)∥xn+1 − xn∥
+ λ∥en+1 − en∥+ ∥rn+1 − rn∥,

where for each n ≥ 0,

ϱ(n) = λPλg + ρ(λN1λA + λN2λB + λN3λC + λM1λF + λM2λG)(1 + (1 + n)−1) + λf .

It follows from (3.13) and (3.14) that for each n ≥ 0,

∥pn+2 − pn+1∥ ≤ (1− λ)∥pn+1 − pn∥

+
λϱ(n)τ

γ(k − ς(1 + (1 + n)−1)λH)
∥pn+1 − pn∥

+ λ∥en+1 − en∥+ ∥rn+1 − rn∥
= (1− λ(1− ϑ(n))∥pn+1 − pn∥+ λ∥en+1 − en∥+ ∥rn+1 − rn∥,

(3.15)

where for each n ≥ 0,

ϑ(n) =
ϱ(n)τ

γ(k − ς(1 + (1 + n)−1)λH)
.

Clearly ϑ(n) → ϑ, as n → ∞, where ϑ = ϱτ
γ(k−ςλH) and

ϱ = λPλg + ρ(λN1λA + λN2λB + λN2λB + λN3λC + λM1λF + λM2λG) + λf .

Letting φ(n) = 1− λ(1−ϑ(n)) for each n ≥ 0, we know that φ(n) → φ, as n → ∞,
where φ = 1 − λ(1 − ϑ). Clearly, (3.9) implies that ϑ ∈ (0, 1), and so φ ∈ (0, 1).

Thus, there exist φ̂ ∈ (0, 1) (take φ̂ = φ+1
2 ∈ (φ, 1)) and n0 ∈ N such that φ(n) ≤ φ̂,
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for all n ≥ n0. Then, by (3.15), for all n > n0, we obtain

∥pn+1 − pn∥ ≤ φ̂∥pn − pn−1∥+ λ∥en − en−1∥+ ∥rn − rn−1∥
≤ φ̂(φ̂∥pn−1 − pn−2∥+ λ∥en−1 − en−2∥+ ∥rn−1 − rn−2∥)
+ λ∥en − en−1∥+ ∥rn − rn−1∥

= φ̂2∥pn−1 − pn−2∥+ λ(φ̂∥en−1 − en−2∥+ ∥en − en−1∥)
+ φ̂∥rn−1 − rn−2∥+ ∥rn − rn−1∥

≤ · · ·

≤ φ̂n−n0∥pn0+1 − pn0∥+ λ

n−n0∑
i=1

φ̂i−1∥en−(i−1) − en−i∥

+

n−n0∑
i=1

φ̂i−1∥rn−(i−1) − rn−i∥.

(3.16)

The preceding inequality (3.16) implies that for any m ≥ n > n0,

∥pm − pn∥ ≤
m−1∑
j=n

∥pj+1 − pj∥

≤
m−1∑
j=n

φ̂j−n0∥pn0+1 − pn0∥

+ λ

m−1∑
j=n

j−n0∑
i=1

φ̂i−1∥ej−(i−1) − ej−i∥

+

m−1∑
j=n

j−n0∑
i=1

φ̂i−1∥rj−(i−1) − rj−i∥.

(3.17)

Since φ̂ < 1, from (3.7) and (3.17), we infer that for any m ≥ n > n0, ∥pm−pn∥ → 0
as n → ∞. Consequently, {pn} is a Cauchy sequence in E∗ and so the completeness
of E∗ ensures the existence of a point p ∈ E∗ such that pn → p, as n → ∞. Making
use of (3.13), we deduce that the sequence {xn} is also a Cauchy sequence in E and
so relying on the completeness of E, xn → x for some x ∈ E, as n → ∞. Taking
into consideration the fact that the mapping A is λA-D-Lipschitz continuous, by
(3.6), it follows that for each n ≥ 0,

∥un+1 − un∥ ≤ (1 + (1 + n)−1)D(A(xn+1), A(xn))

≤ (1 + (1 + n)−1)λA∥xn+1 − xn∥,
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which implies that {un} is a Cauchy sequence in E∗. Accordingly, there is a point
u ∈ E∗ such that un → u as n → ∞. Since un ∈ A(xn) for each n ≥ 0, we have

d(u,A(x)) = inf{∥u− q∥ : q ∈ A(x)}
≤ ∥u− un∥+ d(un, A(x))

≤ ∥u− un∥+ d(A(xn), A(x))

≤ ∥u− un∥+ λA∥xn − x∥.
The right-hand side of the above inequality tends to zero as n → ∞. Now, the fact
that A(x) is closed implies that u ∈ A(x). Following the same argument, one can
prove that {vn}, {wn}, {sn}, {tn} and {zn} are Cauchy sequences in E∗ and E,
respectively, and vn → v, wn → w, sn → s, tn → t and zn → z, as n → ∞, for some
v ∈ B(x), w ∈ C(x), s ∈ F (x), t ∈ G(x) and z ∈ H(x).

On the other hand, for each n ≥ 0, we obtain

∥J∂ηϕ(.,zn)
ρ,P (pn)− J

∂ηϕ(.,z)
ρ,P (p)∥ ≤ ∥J∂ηϕ(.,zn)

ρ,P (pn)− J
∂ηϕ(.,z)
ρ,P (pn)∥

+ ∥J∂ηϕ(.,z)
ρ,P (pn)− J

∂ηϕ(.,z)
ρ,P (p)∥

≤ ς∥zn − z∥+ τ

γ
∥pn − p∥.

(3.18)

Owing to the fact that zn → z and pn → p as n → ∞, it follows that the right-hand
side of (3.18) approaches zero, as n → ∞. Thereby,

J
∂ηϕ(.,zn)
ρ,P (pn) → J

∂ηϕ(.,z)
ρ,P (p), as n → ∞.

Making use of (3.6), it follows that g(x) = J
∂ηϕ(.,z)
ρ,P (p). Now, in the light of the

above-mentioned facts, we deduce that (p, x, u, v, w, s, t, z) ∈ E∗×E×A(x)×B(x)×
C(x)× F (x)×G(x)×H(x) is a solution of the GIWHE (3.3) and so according to
Lemma 3.2, (x, u, v, w, s, t, z) ∈ E × A(x) × B(x) × C(x) × F (x) ×G(x) ×H(x) is
a solution of the GSNVLIP (3.1). This completes the proof. □

4. Comments on co-proximal operators

This section is devoted to the investigation and analysis of the concept of co-
proximal operator introduced in [1]. Some facts relating to co-proximal operator
and the results appeared in [1] are also pointed out. Before dealing with analysis of
the results presented in the above-mentioned paper, we need to recall the following
concepts.

Recall that a normed space E is called strictly convex if the unit sphere in E is
strictly convex. that is, the inequality ∥x+y∥ < 2 holds, for all distinct unit vectors
x and y in E. It is said to be smooth if for every unit vector x in E there exists a
unique x∗ ∈ E∗ such that ∥x∗∥ = ⟨x, x∗⟩ = 1.

It is known that E is smooth if E∗ is strictly convex, and that E is strictly convex
if E∗ is smooth. A normed space E is said to be uniformly convex if, for each ε > 0,
there is a δ > 0 such that if x and y are unit vectors in E with ∥x− y∥ ≥ 2ε, then
the average (x+y)/2 has norm at most 1−δ. In other words, E is uniformly convex
if for any two distinct points x and y on the unit sphere centred at the origin the
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midpoint of the line segment joining x and y is never on the sphere but is close to
the sphere only if x and y are sufficiently close to each other.

The function δE : [0, 2] → [0, 1] given by

δE(ε) := inf{1− 1

2
∥x+ y∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ = ε}

is called the modulus of convexity of E. The function δE is continuous and increasing
on the interval [0, 2] and δE(0) = 0. Obviously, in the light of the definition of the
function δE , a normed space E is uniformly convex if and only if δE(ε) > 0 for every
ε ∈ (0, 2].

A normed space E is said to be uniformly smooth if, for all ε > 0, there is a τ > 0
such that if x and y are unit vectors in E with ∥x − y∥ ≤ 2τ , then the average
(x+ y)/2 has norm at least 1− ετ .

The function ρE : [0,+∞) → [0,+∞) given by

ρE(τ) := sup{1
2
(∥x+ τy∥+ ∥x− τy∥)− 1 : x, y ∈ E, ∥x∥ = ∥y∥ = 1}

is called the modulus of smoothness of E. Note that the function ρE is convex,
continuous and increasing on the interval [0,+∞) and ρE(0) = 0. In addition,
ρE(τ) ≤ τ for all τ ≥ 0. Invoking the definition of the function ρE , a normed space

E is uniformly smooth if and only if limτ→0
ρE(τ)

τ = 0. It is important to emphasize
that in the definitions of δE(ε) and ρE(τ), we can as well take the infimum and
supremum over all vectors x, y ∈ E with ∥x∥, ∥y∥ ≤ 1. Any uniformly convex and
any uniformly smooth Banach space is reflexive. A Banach space E is uniformly
convex (resp., uniformly smooth) if and only if E∗ is uniformly smooth (resp.,
uniformly convex).

The spaces lp, Lp and W p
m, 1 < p < ∞, m ∈ N, are uniformly convex as well as

uniformly smooth, see [16,22,26]. At the same time, the modulus of convexity and
smoothness of a Hilbert space and the spaces lp, Lp and W p

m, 1 < p < ∞, m ∈ N,
can be found in [16,22,26].

For an arbitrary but fixed real number q > 1, the set-valued mapping Jq : E →
2E

∗
given by

Jq(x) := {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥q, ∥x∗∥ = ∥x∥q−1}, ∀x ∈ E,

is called the generalized duality mapping of E. In particular, J2 = J is the usual
normalized duality mapping. It is known that, in general, Jq(x) = ∥x∥q−2J2(x), for
all x ̸= 0. Note that Jq is single-valued if E is uniformly smooth or equivalently E∗

is strictly convex. If E is a Hilbert space, then J2 becomes the identity mapping on
E.

For a real constant q > 1, a Banach space E is called q-uniformly smooth if there
exists a constant C > 0 such that ρE(τ) ≤ Cτ q, for all τ ∈ R+.

It is well known that (see e.g. [35]) Lq (or lq) is q-uniformly smooth for 1 ≤ q ≤ 2
and is 2-uniformly smooth if q > 2.

In the study of characteristic inequalities in q-uniformly smooth Banach spaces,
Xu [35] proved the following result.
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Lemma 4.1. Let E be a real uniformly smooth Banach space. For a real constant
q > 1, E is q-uniformly smooth if and only if there exists a constant cq > 0 such
that for all x, y ∈ E,

∥x+ y∥q ≤ ∥x∥q + q⟨y, Jq(x)⟩+ cq∥y∥q.

Throughout the rest of this paper, as it is assumed in [1], E is a real q-uniformly
smooth Banach space with the dual space E∗.

Definition 4.2 ([1, Definition 2.8]). Let Jq : E → 2E
∗
(the generalized duality

mapping) and H, g : E → E be the mappings. Then

(i) H is said to be Lipschitz continuous, if there exists a constant τ > 0 such
that

∥H(x)−H(y)∥ ≤ τ∥x− y∥, ∀x, y ∈ E;

(ii) Jq is said to be cocoercive with respect to H if, there exists a constant γ1 > 0
such that

⟨Jq(H(x))− Jq(H(y)), x− y⟩ ≥ γ1∥H(x)−H(y)∥q, ∀x, y ∈ E;

(iii) Jq is said to be relaxed cocoercive with respect toH if, there exists a constant
γ2 > 0 such that

⟨Jq(H(x))− Jq(H(y)), x− y⟩ ≥ −γ2∥H(x)−H(y)∥q, ∀x, y ∈ E;

(iv) g is said to be strongly accretive if, there exists a constant δg > 0 such that

⟨g(x)− g(y), Jq(x− y)⟩ ≥ δg∥x− y∥q, ∀x, y ∈ E.

In support of Definition 4.2 (that is, [1, Definition 2.8]), Ahmad et al. [1] gave an
example as follows.

Example 4.3 ([1, Example 2.9]). Let E = R = E∗ with usual inner product and
let the mappings g,H : E → E and J2 : E → E∗ be defined by H(x) = −x,
g(x) = x + a and J2(x) = x

2 for all x ∈ E, where a > 0 is an arbitrary constant.
They showed that H is an n-Lipschitz continuous mapping for n = 1, 2, . . . ; g is
1
n -strongly accretive and n-relaxed cocoercive with respect to H for n = 2, 3, 4, . . . ,
and J2 is n-relaxed cocoercive with respect to H for n = 1, 2, 3, . . . .

But, it should be pointed out that since E = R is a Hilbert space, we have
J2 = I, that is, the identity mapping on E. In other words, the normalized duality
mapping J2 from E = R into E∗ = R cannot be defined as J(x) = x

2 for all
x ∈ E. Accordingly, it seems that there is a fatal error in Example 4.3 (that
is, [1, Example 2.9]) and contrary to the claim of the authors in [1], this example
cannot be considered in support of Definition 4.2.

Ahmad et al. [1] defined the notion of co-proximal operator as a new proximal
operator as follows.

Definition 4.4 ([1, Definition 2.10]). Let ϕ : E → R ∪ {+∞} be a proper and
subdifferentiable functional, Jq : E → E∗ (the generalized duality mapping) and
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H : E → E be the mappings. If for any x∗ ∈ E∗ and ρ > 0, there exists a unique
x ∈ E satisfying

⟨Jq(I −H)x− x∗, y − x⟩+ ρϕ(y)− ρϕ(x) ≥ 0, ∀y ∈ E,

then, the mapping x∗ → x, denoted by J∂ϕ
q (x∗), is said to be co-proximal operator

of ϕ, where I is the identity mapping on E. Then we have x∗−Jq(I−H)x ∈ ρ∂ϕ(x),
and it follows that

J∂ϕ
q (x∗) = [Jq(I −H) + ρ∂ϕ]−1(x∗).

Defining the mapping P : E → E∗ by P (x) = Jq(I −H)x for all x ∈ E, we have

⟨Jq(I −H)x− x∗, y − x⟩+ ρϕ(y)− ρϕ(x) = ⟨P (x)− x∗, y − x⟩+ ρϕ(y)− ρ(x) ≥ 0,

for all y ∈ E. Then invoking Definition 2.9, the mapping x∗ → x, denoted by

J∂ϕ
ρ,P = J∂ϕ

ρ,Jq(I−H) = J∂ϕ
q is the P = Jq(I −H)-proximal mapping of ϕ. Clearly, in

the light of Definition 2.5, we have x∗−P (x) = x∗−Jq(I−H)x ∈ ρ∂ϕ(x) and then
it follows that

x = J∂ϕ
q (x∗) = J∂ϕ

ρ,Jq(I−H)(x
∗) = J∂ϕ

ρ,P (x
∗) = (P + ρ∂ϕ)−1(x∗)

= (Jq(I −H) + ρ∂ϕ)−1(x∗).

Hence, in virtue of the above-mentioned fact, contrary to the claim in [1], the
notion of co-proximal operator introduced in [1] is the same concept of P -proximal
mapping introduced by Ding and Xia [20], and is not a new proximal operator.

By presenting [1, Theorem 2.11], the authors claimed that under some appropriate
conditions, the co-proximal operator of a given proper, lower semicontinuous and
subdifferentiable functional ϕ : E → R ∪ {+∞} is well defined necessarily.

Theorem 4.5 ( [1, Theorem 2.11]). Let ϕ : E → R ∪ {+∞} be a proper, lower
semicontinuous and subdifferentiable functional. Let H : E → E be a δH-strongly
accretive and λH-Lipschitz continuous mapping such that qδH − cqλ

q
H > 1, where

cq > 0 is a constant guaranteed by Lemma 4.1. Let Jq : E → E∗ be the generalized
duality mapping such that Jq is γ-relaxed cocoercive with respect to I − H, where
I is the identity mapping on E. Let for any x ∈ E, the functional h(y, x) =
⟨x∗ − Jq(I −H)x, y − x⟩ be 0-DQCV in y. Then, for any ρ > 0 and any x∗ ∈ E∗,
there exists a unique point x ∈ E such that

⟨Jq(I −H)x− x∗, y − x⟩+ ρϕ(y)− ρϕ(x) ≥ 0, for all y ∈ E;(4.1)

i.e., x = J∂ϕ
q (x∗), and so the co-proximal operator ϕ is well defined.

It should be remarked that by a careful reading the proof of Theorem 2.1 of [1],
we found that there is a small mistake in the inequality (2.1) of [1]. In fact, the
inequality

⟨Jq(I −H)x, y − x⟩+ ρϕ(y)− ρϕ(x) ≥ 0, for all y ∈ E

in [1] must be replaced by (4.1), as is done in Theorem 4.5.
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At the same time, it is also remarkable that there is a fatal error in its proof
which makes it incorrect. Now, in order to detect and point out the fatal error in
the proof of Theorem 2.11 of [1], let us analyze its proof.

For any ρ > 0 and x∗ ∈ E∗, the authors [1] defined a functional f : E × E →
R ∪ {+∞} by

f(y, x) = ⟨x∗ − Jq(I −H)x, y − x⟩+ ρϕ(x)− ρϕ(y), for all x, y ∈ E,

and took a point ȳ ∈ domϕ arbitrarily but fixed. Taking into account that ϕ is
subdifferentiable at ȳ, they deduced the existence of a point f∗

ȳ ∈ E∗ such that

ϕ(x)− ϕ(y) ≥ ⟨f∗
ȳ , x− ȳ⟩, for all x ∈ E.(4.2)

Then, on page 1098 of [1], making use of (4.2) and Lemma 4.1, and in the light of
the facts that Jq is γ-relaxed cocoercive with respect to I−H, and H is δH -strongly
accretive and λH -Lipschitz continuous, they obtained the following relations:

f(ȳ, x) = ⟨x∗ − Jq(I −H)x, ȳ − x⟩+ ρϕ(x)− ρϕ(ȳ)

≥ −γ∥(I −H)ȳ − (I −H)x∥q − [∥x∗∥
+ ∥Jq(I −H)(ȳ)∥+ ρ∥f∗

ȳ ∥]∥ȳ − x∥
≥ [γ(qδH − cqλ

q
H − 1)∥ȳ − x∥q−1 − [∥x∗∥

+ ∥Jq(I −H)(ȳ)∥+ ρ∥f∗
ȳ ∥]∥ȳ − x∥.

(4.3)

It follows from (4.2) that

−γ∥(I −H)ȳ − (I −H)x∥q ≥ γ(qδH − cqλ
q
H − 1)∥ȳ − x∥q,

which, because γ(qδH − cqλ
q
H − 1) > 0 > −γ, is a contradiction.

Hence, contrary to the claim in [1], the second inequality in (4.2) does not hold.
Thereby, under the assumptions mentioned in the context of Theorem 4.5 (that
is, [1, Theorem 2.11]), the co-proximal operator of ϕ is not well defined necessarily.

Let E be a real q-uniformly smooth Banach space, A,B : E → CB(E) be the
set-valued mappings, and Jq : E → E∗ (the generalized duality mapping) and
P, f, g : E → E be the single-valued mappings. Let ϕ : E × E → R ∪ {+∞} be an
extended real-valued bifunction such that for each x ∈ E, ϕ(., x) : E → R ∪ {+∞}
is a proper, lower semicontinuous and subdifferentiable functional satisfying g(E) ∈
dom ∂ϕ(., x) ̸= ∅. At the first of section 3 of [1], the authors considered the problem
of finding x ∈ E, u ∈ A(x) and v ∈ B(x) such that g(x) ∈ dom ∂ϕ(., x) and

⟨Jq(P (u)− f(v)), y − g(x)⟩ ≥ ϕ(g(x), x)− ϕ(y, x), for all y ∈ E.(4.4)

With the aim of obtaining a characterization of a solution of the problem (4.4)
(that is, [1, problem (3.1)]), they deduced the following conclusion in which the
equivalence between the problem (4.4) and a fixed point problem is asserted.

Theorem 4.6 ([1, Theorem 3.1]). The triplet (x, u, v), where x ∈ E, u ∈ A(x) and
v ∈ B(x) is a solution of the co-variational inclusion problem (4.4) if and only if it
satisfies the following relation:

g(x) = J∂ϕ(.,x)
q {Jq(I −H)g(x)− ρ(Jq(P (u)− f(v)))},(4.5)
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where ρ > 0 is a constant and J
∂ϕ(.,x)
q = [Jq(I − H) + ρ∂ϕ(., x)]−1 is co-proximal

operator of ϕ(., x).

Using the fixed point formulation (4.5) (that is, [1, the fixed point formulation
(3.5)]), Ahmad et al. [1] suggested an iterative algorithm for finding a solution of
the problem (4.4) as follows.

Algorithm 4.1 ([1, Algorithm 3.2]). Let A,B : E → CB(E) be the set-valued
mappings, and P, f, g : E → E and Jq : E → E∗ be the single-valued mappings with
g(E) = E. Let ϕ : E ×E → R ∪ {+∞} be an extended real-valued bifunction such
that for each fixed x ∈ E, ϕ(., x) : E → R∪{+∞} is a proper, lower semicontinuous
and subdifferentiable functional satisfying g(E) ∩ dom ∂ϕ(., x) ̸= ∅.
Step 1. Choose an arbitrary initial point x0 ∈ E such that u0 ∈ A(x0) and v0 ∈

B(x0).
Step 2. Since g(E) = E, there exists a point x1 ∈ E such that

x1 = (1− t)x0 + t[x0 − g(x0) + J∂ϕ(.,x0)
q {Jq(I −H)g(x0)− ρ(Jq(P (u0)− f(v0)))}],

where t ∈ (0, 1] and ρ > 0 are constants.
By Nadler’s theorem [27], there exist u1 ∈ A(x) and v1 ∈ B(x) such that

∥u0 − u1∥ ≤ D(A(x0), A(x1)),

∥v0 − v1∥ ≤ D(B(x0), B(x1)).

Step 3. Let

x2 = (1− t)x1 + t[x1 − g(x1) + J∂ϕ(.,x1)
q {Jq(I −H)g(x1)− ρ(Jq(P (u1)− f(v1)))}],

and continue the above process inductively.
Step 4. Compute the sequences {xn}, {un} and {vn} by the following scheme:

xn+1 = (1− t)xn + t[xn − g(xn) + J∂ϕ(.,xn)
q {Jq(I −H)g(xn)(4.6)

− ρ(Jq(P (un)− f(vn)))}],
un ∈ A(xn); ∥un − un−1∥ ≤ D(A(xn), A(xn−1)),(4.7)

vn ∈ B(xn); ∥vn − vn−1∥ ≤ D(B(xn), B(xn−1)).(4.8)

Step 5. If {xn}, {un} and {vn} satisfy Step 4 to an amount accuracy, then stop.
Otherwise, set n := n+ 1 and repeat the above process.

As it was pointed out before, for each fixed x ∈ E, the co-proximal operator

J
∂ϕ(.,x)
q is not well defined necessarily. Hence, the fixed point formulation (4.5)

(that is, [1, (3.5)]) does not hold in general. Accordingly, Algorithm 3.2 in [1]
which has been constructed based on the fixed point formulation (3.5) of [1] is not
well defined necessarily. Even, without considering this fact, by a careful reading
Algorithm 3.2 in [1], we found that the sequences {xn}, {un} and {vn} generated by
Algorithm 3.2 in [1] are not well defined necessarily. In fact, for any given x0 ∈ E,
u0 ∈ A(x0) and v0 ∈ B(x0), the authors computed xn ∈ E by induction on n using
the iterative scheme (4.6), and then they claimed that one can choose un ∈ A(xn)
and vn ∈ B(xn) satisfying (4.7) and (4.8), respectively.
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Invoking Lemma 3.3, if E is a complete metric space and T : E → CB(E) is a
set-valued mapping, then for any ε > 0 and for any given x, y ∈ E, u ∈ T (x), there
exists v ∈ T (y) such that

d(u, v) ≤ (1 + ε)D(T (x), T (y)).

But, for given x, y ∈ E and u ∈ T (x), there may not be a point v ∈ T (y) such that

d(u, v) ≤ D(T (x), T (y)).

This fact is illustrated in the following example.

Example 4.7. Consider E = l∞(Z) = {z = {zn}∞n=−∞| supn∈Z |zn| < ∞, zn ∈ C},
the Banach space consisting of all bounded complex sequences z = {zn}∞n=−∞ with
the supremum norm ∥z∥∞ = supn∈Z |zn|. An arbitrary element z = {zn}∞n=−∞ ∈
l∞(Z) can be written as follows:

z = {zn}∞n=−∞ = {xn + iyn}∞n=−∞

=
∑

k∈{±1,±3,... }

[
(. . . , 0, . . . , 0, x2k−1 + iy2k−1, 0, x2k+1 + iy2k+1, 0, . . . )

+ (. . . , 0, . . . , 0, x2k + iy2k, 0, x2k+2 + iy2k+2, 0, . . . )
]

=
∑

k∈{±1,±3,... }

[y2k−1 + y2k+1 − i(x2k−1 + x2k+1)

2
(. . . , 0, . . . , 0, i2k−1, 0, i2k+1, 0, . . . )

+
y2k−1 − y2k+1 − i(x2k−1 − x2k+1)

2
(. . . , 0, . . . , 0, i2k−1, 0,−i2k+1, 0, . . . )

+
y2k + y2k+2 − i(x2k + x2k+2)

2
(. . . , 0, . . . , 0, i2k, 0, i2k+2, 0, . . . )

+
y2k − y2k+2 − i(x2k − x2k+2)

2
(. . . , 0, . . . , 0, i2k, 0,−i2k+2, 0, . . . )

]
=

∑
k∈{±1,±3,... }

[y2k−1 + y2k+1 − i(x2k−1 + x2k+1)

2
δ2k−1,2k+1

+
y2k−1 − y2k+1 − i(x2k−1 − x2k+1)

2
δ′2k−1,2k+1

+
y2k + y2k+2 − i(x2k + x2k+2)

2
δ2k,2k+2

+
y2k − y2k+2 − i(x2k − x2k+2)

2
δ′2k,2k+2

]
,

where for each k ∈ {±1,±3, . . . }, δ2k−1,2k+1 = (. . . , 0, . . . , 0, i2k−1, 0, i2k+1, 0, . . . ),
i at the (2k − 1)th and (2k + 1)th coordinates, and all other coordinates are zero,
δ′2k−1,2k+1 = (. . . , 0, . . . , 0, i2k−1, 0,−i2k+1, 0, . . . ), i and −i at the (2k − 1)th and

(2k + 1)th coordinates, respectively, and all other coordinates are zero, δ2k,2k+2 =
(. . . , 0, . . . , 0, i2k, 0, i2k+2, 0, . . . ), i at the (2k)th and (2k+2)th coordinates, and all
other coordinates are zero, and δ′2k,2k+2 = (. . . , 0, . . . , 0, i2k, 0,−i2k+2, 0, . . . ), i and
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−i at the (2k)th and (2k+2)th coordinates, respectively, and all other coordinates
are zero. Thus, the set

B =
{
δ2k−1,2k+1, δ

′
2k−1,2k+1, δ2k,2k+2, δ

′
2k,2k+2 : k = ±1,±3, . . .

}
spans the Banach space l∞(Z). It is easy to see that the setB is linearly independent
and so it is a Schauder basis for the Banach space l∞(Z). Let T : E → CB(E) be
a set-valued mapping defined by

T (x)=

{{
{ ϱ

p√
nα!βnγ !

i}∞n=−∞, δ′2k−1,2k+1, δ
′
2k,2k+2 : k = ±1,±3, . . .

}
, x ̸=δ′2m−1,2m+1,

{δ2k−1,2k+1, δ2k,2k+2 : k = ±1,±3, . . . }, x=δ′2m−1,2m+1,

where ϱ ∈ [−1, 0) and β > 1 are arbitrary but fixed real numbers, p ∈ N\{1} is an
arbitrary but fixed natural number, α and γ are arbitrary but fixed even natural
numbers, and m ∈ {±1,±3, . . . } is chosen arbitrarily but fixed.

Take δ′2m−1,2m+1 ̸= x ∈ E arbitrarily but fixed, y = δ′2m−1,2m+1 and u =

{ ϱ
p√
nα!βnγ !

i}∞n=−∞.

If a = { ϱ
p√
nα!βnγ !

i}∞n=−∞, then because ϱ < 0, for any k ∈ {±1,±3, . . . }, we yield

d(a, δ2k−1,2k+1) = ∥{ ϱ
p
√
nα!βnγ !

i}∞n=−∞ − δ2k−1,2k+1∥∞

= sup{| ϱ
p
√
nα!βnγ !

|, | ϱ
p
√
(2k − 1)α!β(2k−1)γ !

− 1|,

| ϱ
p
√
(2k + 1)α!β(2k+1)γ !

− 1| : n ∈ Z, n ̸= 2k − 1, 2k + 1}

=

 | ϱ
p
√

(2k−1)α!β(2k−1)γ !
− 1|, if k ∈ {2σ + 1|σ ∈ N ∪ {0}},

| ϱ
p
√

(2k+1)α!β(2k+1)γ !
− 1|, if k ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

=

 1− ϱ
p
√

(2k−1)α!β(2k−1)γ !
, if k ∈ {2σ + 1|σ ∈ N ∪ {0}},

1− ϱ
p
√

(2k+1)α!β(2k+1)γ !
, if k ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

and

d(a, δ2k,2k+2) = ∥{ ϱ
p
√
nα!βnγ !

i}∞n=−∞ − δ2k,2k+2∥∞

= sup{| ϱ
p
√
nα!βnγ !

|, | ϱ
p
√
(2k)α!β(2k)γ !

− 1|,

| ϱ
p
√
(2k + 2)α!β(2k+2)γ !

− 1| : n ∈ Z, n ̸= 2k, 2k + 2}

=

 | ϱ
p
√

(2k)α!β(2k)γ !
− 1|, if k ∈ {2σ + 1|σ ∈ N ∪ {0}},

| ϱ
p
√

(2k+2)α!β(2k+2)γ !
− 1|, if k ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

=

 1− ϱ
p
√

(2k)α!β(2k)γ !
, if k ∈ {2σ + 1|σ ∈ N ∪ {0}},

1− ϱ
p
√

(2k+2)α!β(2k+2)γ !
, if k ∈ {−(2σ + 1)|σ ∈ N ∪ {0}}.
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Since ϱ ∈ [−1, 0), it follows that

d(a, T (y)) = inf
b∈T (y)

d(a, b) = inf
{
1− ϱ

p
√

(2k + r)α!β(2k+r)γ !
:

r = 0,±1, 2; k = ±1,±3, . . .
}
= 1.

For the case when a = δ′2t−1,2t+1 for some t ∈ {±1,±3, . . . }, then for each k ∈
{±1,±3, . . . }, we get

d(a, δ2k−1,2k+1) =

{
∥δ′2t−1,2t+1 − δ2t−1,2t+1∥∞, k = t,

∥δ′2t−1,2t+1 − δ2k−1,2k+1∥∞, k ̸= t,

=

{
2, k = t,
1, k ̸= t,

and

d(a, δ2k,2k+2) = ∥δ′2t−1,2t+1 − δ2k,2k+2∥∞ = 1.

Therefore,

d(a, T (y)) = inf
b∈T (y)

d(a, b) = 1.

If a = δ′2j,2j+2 for some j ∈ {±1,±3, . . . }, relying on the facts that for each k ∈
{±1,±3, . . . },

d(a, δ2k−1,2k+1) = ∥δ′2j,2j+2 − δ2k−1,2k+1∥∞ = 1

and

d(a, δ2k,2k+2) =

{
∥δ′2j,2j+2 − δ2j,2j+2∥∞, k = j,

∥δ′2j,2j+2 − δ2k,2k+2∥∞, k ̸= j,

=

{
2, k = j,
1, k ̸= j,

we deduce that

d(a, T (y)) = inf
b∈T (y)

d(a, b) = 1

and so

sup
a∈T (x)

d(a, T (y)) = 1.

For the case when b = δ2s−1,2s+1 for some s ∈ {±1,±3, . . . }, thanks to the fact that
ϱ < 0, we yield

d({ ϱ
p
√
nα!βnγ !

i}∞n=−∞, δ2s−1,2s+1)

= ∥{ ϱ
p
√
nα!βnγ !

i}∞n=−∞ − δ2s−1,2s+1∥∞

= sup{| ϱ
p
√
nα!βnγ !

|, | ϱ
p
√

(2s− 1)α!β(2s−1)γ !
− 1|,

| ϱ
p
√
(2s+ 1)α!β(2s+1)γ !

− 1| : n ∈ Z, n ̸= 2s− 1, 2s+ 1}
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=

 | ϱ
p
√

(2s−1)α!β(2s−1)γ !
− 1|, if s ∈ {2σ + 1|σ ∈ N ∪ {0}},

| ϱ
p
√

(2s+1)α!β(2s+1)γ !
− 1|, if s ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

=

 1− ϱ
p
√

(2s−1)α!β(2s−1)γ !
, if s ∈ {2σ + 1|σ ∈ N ∪ {0}},

1− ϱ
p
√

(2s+1)α!β(2s+1)γ !
, if s ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

and for each k ∈ {±1,±3, . . . },

d(δ′2k−1,2k+1, δ2s−1,2s+1) =

{
∥δ′2s−1,2s+1 − δ2s−1,2s+1∥∞, k = s,

∥δ′2k−1,2k+1 − δ2s−1,2s+1∥∞, k ̸= s,

=

{
2, k = s,
1, k ̸= s,

and

d(δ′2k,2k+2, δ2s−1,2s+1) = ∥δ′2k,2k+2 − δ2s−1,2s+1∥∞ = 1.

Taking into account that ϱ < 0, we conclude that

d(T (x), b) = inf
a∈T (x)

d(a, b) = 1.

If b = δ2q,2q+2 for some q ∈ {±1,±3, . . . }, then in virtue of the fact that ϱ < 0, we
get

d({ ϱ
p
√
nα!βnγ !

i}∞n=−∞, δ2q,2q+2)

= ∥{ ϱ
p
√
nα!βnγ !

i}∞n=−∞ − δ2q,2q+2∥∞

= sup{| ϱ
p
√
nα!βnγ !

|, | ϱ
p
√

(2q)α!β(2q)γ !
− 1|,

| ϱ
p
√

(2q + 2)α!β(2q+2)γ !
− 1| : n ∈ Z, n ̸= 2q, 2q + 2}

=

 | ϱ
p
√

(2q)α!β(2q)γ !
− 1|, if q ∈ {2σ + 1|σ ∈ N ∪ {0}},

| ϱ
p
√

(2q+2)α!β(2q+2)γ !
− 1|, if q ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

=

 1− ϱ
p
√

(2q)α!β(2q)γ !
, if q ∈ {2σ + 1|σ ∈ N ∪ {0}},

1− ϱ
p
√

(2q+2)α!β(2q+2)γ !
, if q ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

and for each k ∈ {±1,±3, . . . },

d(δ′2k−1,2k+1, δ2q,2q+2) = ∥δ′2k−1,2k+1 − δ2q,2q+2∥∞ = 1

and

d(δ′2k,2k+2, δ2q,2q+2) =

{
∥δ′2q,2q+2 − δ2q,2q+2∥∞, k = q,

∥δ′2k,2k+2 − δ2q,2q+2∥∞, k ̸= q,

=

{
2, k = q,
1, k ̸= q.



GENERALIZED SET-VALUED NONLINEAR VARIATIONAL-LIKE INEQUALITY PROBLEMS 77

Owing to the fact that ϱ < 0, it follows that

d(T (x), b) = inf
a∈T (x)

d(a, b) = 1.

Accordingly,

sup
b∈T (y)

d(T (x), b) = 1.

Then, we have

D(T (x), T (y)) = max
{

sup
a∈T (x)

d(a, T (y)), sup
b∈T (y)

d(T (x), b)
}
= 1.

Since ϱ ∈ [−1, 0), we conclude that for each k ∈ {±1,±3, . . . },

∥{ ϱ
p
√
nα!βnγ !

i}∞n=−∞ − δ2k−1,2k+1∥∞

=

 1− ϱ
p
√

(2k−1)α!β(2k−1)γ !
> 1, if k ∈ {2σ + 1|σ ∈ N ∪ {0}},

1− ϱ
p
√

(2k=1)α!β(2k+1)γ !
> 1, if k ∈ {−(2σ + 1)|σ ∈ N ∪ {0}},

and

∥{ ϱ
p
√
nα!βnγ !

i}∞n=−∞ − δ2k,2k+2∥∞

=

 1− ϱ
p
√

(2k)α!β(2k)γ !
> 1, if k ∈ {2σ + 1|σ ∈ N ∪ {0}},

1− ϱ
p
√

(2k+2)α!β(2k+2)γ !
> 1, if k ∈ {−(2σ + 1)|σ ∈ N ∪ {0}}.

These facts imply that for any v ∈ T (y),

d(u, v) = ∥u− v∥∞ > D(T (x), T (y)).
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