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ABSTRACT. As described in this paper, we study the strong convergence prop-
erties of variants of the primal-dual splitting algorithm for structured monotone
inclusion problems. For this purpose, we first consider a strongly convergent fixed
point algorithm in a real Hilbert space and then provide a convergence analysis
under mild assumptions. Then, by making use of primal-dual techniques we can
employ the proposed fixed point algorithms when solving monotone inclusion
problems involving parallel sums and compositions of maximally monotone oper-
ators with linear continuous ones. We show strong convergence of the iteratively
generated sequences to the solution.

1. INTRODUCTION

Many problems in the fields of engineering and applied mathematics such as
signal and image processing, compressive sensing, machine learning, and statistics
can be reduced to solving a structured monotone inclusion problem involving parallel
sums and compositions with linear operators. To solve such problems, primal-dual
splitting algorithms have been proposed and studied as described in the literature
[15, 2, 16, 18, 31, 7, 9]. The perspective that we adopt for this paper is solving
the structured monotone inclusion problem directly by characterizing the solutions
of the original problem in terms of a system of fixed point equations via mappings
of nonexpansive type in an appropriate product space with the use of primal-dual
techniques investigated as described earlier in [16, 31, 9].

The primal-dual splitting algorithms in [10, 16, 31, 9] are existing algorithms
that solve the structured monotone inclusion problems in real Hilbert spaces. The
generated sequences show weak convergence to a solution. In general, the weak
convergence of these algorithms cannot be improved to strong convergence without
additional hypotheses on the operators such as those described in the literature as
[10, Theorem 2.5 (iii)], [16, Theorem 3.1 (ii)(e) and (ii)(f)], [31, Theorem 3.1 (i)
and (ii)], and [9, Theorem 2.1 (i)(c) and (ii)]. Indeed, in the special case in which
the problem reduces to a problem of finding a zero of a maximal monotone opera-
tor, algorithms in [10, 16, 31] can be expressed in the form of the proximal point
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algorithm [27], which is known to converge weakly but not strongly [20]. Moreover,
the algorithm in [9] has the structure of the Douglas—Rachford splitting algorithm
[23, 19], which is known to converge weakly but not strongly [12]. Therefore, to
ensure strong convergence, new techniques should be developed to analyze the con-
vergence of algorithms for solving the problem.

Herein, we introduce and investigate strongly convergent primal-dual splitting
algorithms without assuming restrictive properties for the involved operators. For
this purpose, we first develop an error tolerant fixed point algorithm and study its
convergence properties. The idea of the algorithm comes from the existing regular-
ization method used for the proximal point algorithm [33, page 120], [28, 32] and
the proximal gradient method [23, 25]. Because the proposed algorithm and the
proximal gradient method have similar forms (see Remark 3.1), we further consider
the inertial version of the proposed algorithm using the idea of the accelerated prox-
imal gradient method [5]. Then, the proposed algorithms can be applied directly
to solve the structured monotone inclusion problem. Indeed, using some techniques
elaborated in earlier work [16, 31, 9], a solution of the structured monotone inclu-
sion problem can be regarded as a fixed point of mappings of nonexpansive type.
Relying on this, we derive primal-dual algorithms. We are able to guarantee strong
convergence of the proposed algorithms. The main contributions of the present
paper are described below.

e We present the error tolerant fixed point algorithm (Algorithm 3.1) designed
for finding a common fixed point of a sequence of mappings of nonexpan-
sive type. Under suitable conditions of the iterative parameters and error
sequences (Assumption 3.3), it is guaranteed that the sequence generated
by the algorithm converges strongly to the solution (Theorem 3.5).

e Making use of the proposed algorithms and primal-dual techniques [31, 16,
9], we then proceed to solve the structured monotone inclusion problem
(Problem 4.1). We present the strongly convergent primal-dual algorithm
(Algorithm 4.2). Under suitable conditions on the iterative parameters and
error sequences (Assumption 4.4), it is guaranteed that the sequences gen-
erated by the algorithms converge strongly to the solution (Theorem 4.5).
For convergence, our algorithms require no additional hypothesis on the op-
erators, such as uniform monotonicity, which are necessary in [10, 16, 31, 9].

For related algorithms with strong convergence properties, we refer to [8]. Unlike
[8], our algorithm incorporates numerical errors and can be applied to fixed point
problem of a countable family of mappings of strongly (quasi)nonexpansive.

The remainder of this paper is organized as follows. After some preliminaries are
presented in Section 2, we show convergence of the proposed algorithm in Section
3. In Section 4, we formulate the primal-dual splitting algorithm and study its
convergence. Concrete problems and special cases of our algorithm are elucidated
as described in Section 5. Finally, Section 6 concludes the paper.
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2. PRELIMINARIES

The following notation is used for this study: R represents the set of real numbers;
R, denotes the set of strictly positive real numbers; R stands for the extended
real line, i.e., R = RU {—o00,4+00}; N = {1,2,...} represents the set of positive
integers; ‘H denotes a real Hilbert space; for any x,y € H, (x,y) denotes the inner
product of z and y; for any z € H, ||2| denotes the norm of z, i.e., ||z] = \/(z, 2);
for any {zx} € H and x € H, x — = and xp — z stand for the strong and
weak convergences of {x;} to x, respectively; I stands for the identity mapping
on H. For an arbitrary set-valued operator A : H = H, dom(A) represents the
domain of A4, i.e., dom(A4) = {z € H : A(z) # 0}; ran(A) signifies the range of
A, ie., ran(4) = |J{A(z) : * € dom(A)}, gr(A) stands for the graph of A, i.e.,
gr(A) = {(z,2*) : 2* € A(z)}; The set of zero points of A is expressed as A~1(0),
ie, A71(0) = {# € dom(A) : 0 € A(2)}; For a function f : H — R, dom(f)
represents the domain of f, i.e., dom(f) = {z € H : f(z) € R}. I'(H) denotes the
family of proper, convex and lower semicontinuous extended real-valued functions.

A fized point of a mapping T : H — H is a point x € H satisfying T'(z) = xz. The
set of

Fix(T) :=={x e H:T(z) =z}
is called a fized point set of T. I — T is said to be demiclosed at zero if p € Fix(T)
whenever {z} is a sequence in H such that xj — p and limg_, o ||zx — T'(zx)|| = 0.
Let o € (0,1). T is said to be

(i) nonezpansive if
1T (z) =Tl < llz —yll (Va,y € H);
(ii) firmly nonexpansive if
IT(x) = T(y)|* < (& -y, T(z) = T(y)) (Va,y € H);
(iii) a-averaged if there exists a nonexpansive mapping R : H — H such that
T=(01-a«a)l+aR;
(iv) quasinonezpansive if Fix(T') # () and
1T (z) = ull < [lz —ul| (V(z,u) € H x Fix(T));

(v) strongly nonexpansive if T' is nonexpansive and ||z —yr— (T () —T (yx))|| —
0 whenever {xp},{yx} C H are bounded such that ||z — yi| — |T(xk) —

T(yr)|l = 0:
(vi) strongly quasinonexpansive if T is quasinonexpansive and ||z —T'(x)|| — 0
whenever {z;} C H is bounded such that ||z — u| — [|T(zx) — u|]| — 0 for

some u € Fix(T);
(vii) cocoercive if v > 0 and

(& =y, T(x) = T(y)) 2 v T(x) = T(W)|* (Vz,y € H).
For properties and insights into these mappings, we refer to [13, 6, 30]. If T is

nonexpansive, then it is known that I — T is demiclosed at zero. The fixed point
set of T is closed and convex [30, 6].
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Remark 2.1.

e The class of nonexpansive mappings having a fixed point is an essential
subclass of quasinonexpansive mappings. Moreover, the class of averaged
mappings is a proper subclass of the class of strongly nonexpansive mappings
[13, Section 2].

e As described in earlier reports [3, Section 4] and [22, Section 3], the problem
of finding a common fixed point for a countable family of nonexpansive
mappings can be transformed into the problem of finding a common fixed
point for countable family of strongly nonexpansive mappings.

e As described in earlier reports [6, 20, 12], the weakly convergent algorithm
for strongly nonexpansive mappings cannot be improved to strong conver-
gence in general.

Example 2.2.

e The metric projection Po! onto a nonempty, closed convex set C(C H), is
firmly nonexpansive with Fix(Pc) = C' [6, Proposition 4.16 (4.19)].

o Let f: H — R be a Fréchet differentiable and convex function with the
Lipschitz continuous gradient and C' be a nonempty, closed, and convex set
in H. Denote by V f the gradient of f and L the Lipschitz constant of V f.
By the Baillon-Haddad Theorem (see [6, Corollary 18.17]), V f is cocoercive.
Moreover, for v € (0,2/L], Pco(I =~V f) is a-averaged for some o > 0 and
Fix(Pc o (I —yVf)) = argmin, - f(x) [6, Theorem 26.14].

e Let g : H — R be a continuous convex function. Let £ € R be such that
C = lev§§g2 # (), and let s be a selection of dg, where 9g is defined in
(2.1). The subgradient projector [6, Subchapter 29.6] onto C associated
with (g,&,s) is

T+ 80 s(2) (9(x) > €);
x (g(x) <€)
Then Fix(G) = C and G are firmly quasinonexpansive® [6, Proposition
29.41 (i), (iii)]. Particularly, G is strongly quasinonexpansive. Indeed, let

{z} C H be bounded such that ||z —u|| —|[|G(zg) —u|| — 0 for some u € C.
The firm quasinonexpansiveness of G yields

G:H—)’H:mH{

1G (@) = arll® < o = ull* = |G (ax) — ul® — 0.

Moreover, I — G is demiclosed at 0 under the additional assumption that ¢
is bounded on every bounded subset of H [6, Proposition 29.41 (vii)].

W et C(C H) be a nonempty, closed convex set. The metric projection Pc : H — C onto C is
defined for all z € H by Pco(z) € C and ||z — Po(x)|| = infyec ||z — y|| [6, Subchapter 3.2].

2The lower level set lev<¢g of g at height £ is defined as lev<eg = {z € H : g(z) < &} [6,
Definition 1.4].

3T : H — H is said to be firmly quasinonezpansive if Fix(T) # 0 and ||T(z) —u||*+||T(z)—z|* <
llz —ul|* (V(z,u) € H x Fix(T)) [6, Definition 4.1 (iv)].
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Let ‘H and G be real Hilbert spaces and let L : H — G be a nonzero bounded
linear operator with induced norm ||L|| = sup{||Lz| : = € H with ||z|| < 1}. The
adjoint operator L* : G — H of L is defined as (Lx,y) = (x, L*y) for all z € H and
all y € G.

A set-valued operator A : H = H is said to be

(i) monotone if, for all (z,z*), (y,y*) € gr(A),
(x —y,x* —y*) >0:
(ii) v-strongly monotone, for some v > 0, if, for all (z,z*), (y,y*) € gr(A),
(@ —ya* —y*) 2 vllz -yl

(iii) mazimal monotone if A is monotone and A = B whenever B : H =2 H is a
monotone mapping such that gr(A4) C gr(B).

For set-valued operator A : H = H, and for v € Ry, the resolvent Jy4 : H = H of
A is defined as Jy4 = (I +vA)~. Moreover, if A is maximal monotone, then .J, 4 is
single-valued and dom(.J4) = H. The resolvent of the inverse operator of maximal
monotone operator A can be computed as shown below [6, Proposition 23.20]:

I'=Jya+vJ,-14-10 4.
For set-valued operators A, B : H = H, the parallel sum is defined as
AOB:= (A1 4+ B~ 1)L,
For a function f € I'(H), the subdifferential Of : H = H of f at x € H is defined

as
(2.1) Of () ={z" e M : f(y) = f(x) + (y —z,2%) (Vy € H)}.

We know that the subdifferential 0 f is maximal monotone (see [30, Theorem 4.6.6],
[6, Theorem 20.40]). Its resolvent is given as J,oy = prox,, (see [6]), where

prox, ¢(z) = argmin,e g { f(y) + %Hy —z||?} denotes the prozimal mapping of f. We
say that f is v-strongly conver for some v > 0 if f — v|| - ||?/2 is convex. The con-
jugate of fis f*:H — f*(p) = sup{(p,z) — f(x) : © € H} for all p € H. Moreover,
if f € T'(H), then f* € I'(H), as well, and (0f)~' = 9f*. For g € I'(H), the infimal
convolution fOg : H — R of f and g is defined as fOg(x) = infyen{f(y)+9(z—y)}
for all z € H.

3. FIXED POINT ALGORITHM AND CONVERGENCE RESULTS

We provide a strongly convergent fixed point algorithm together with convergence
results. We consider the following iterative algorithm.

Algorithm 3.1.

Tht1 = Tk(akx + (1 — Oék)l‘k + €k)
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where x, 21 € H, {ex} C H, {ax} C (0,1), and where {T}} is a sequence of mappings
of H into itself that satisfies the following condition:

(3.1) {if {wg;} € H and {T},} C {T}} such that

T, — x € H and xp; — Ty, (wx;) — 0, then z € NP2, Fix(T})

(see [22, page 1564]). The condition (3.1) can be regarded as a generalization of the
demiclosedness property for one mapping.

Remark 3.2.

e Assume that T} is the resolvent of a maximal monotone operator. Then
Algorithm 3.1 has the same structure of the error-tolerant regularization
proximal point algorithm [33]. It is noteworthy that the algorithm in [33]
and the strongly convergent proximal point algorithm in [21, Algorithm
(3.3)] are the same (see [28, Remark 3]).

e In the error free case (i.e. e, = 0), Algorithm 3.1 can be written equivalently
as

(3.2) Tp1 = Ti(xr — a Vh(zy)),

where h : H — R, h(y) = (1/2)||y — =|>. Assume that T} is the proximal
mapping of a proper, convex, and lower semicontinuous function. Then (3.2)
has the structure of the proximal gradient algorithm [25, 23].

e The following variant of the Krasnoselskii-Mann fixed point algorithm has
been considered in [8]:

(3.3) Tpy1 = Brwr + (T (Brwr) — Brr),

where zg € H, {\} C (0,00) and {fx} C (0,00). In case Ty, = (1 — ) +
AT, (3.3) becomes

(3.4) Try1 = Te(Brwr),

which can be considered as the particular case of Algorithm 3.1 when z =0
and e, = 0.

3.1. Convergence analysis. To establish strong convergence of the sequence gen-
erated by Algorithm 3.1, we require the following assumptions:
Assumption 3.3. We assume that {ay} and {ej} satisfy the following conditions:
(Al) limpyoo o = 0 and > 72| o = 00;
(A2) (i) 252, llexl] < o, or (i) Timyac lex /o = 0.

Remark 3.4. Assumption 3.3 is investigated in [32, Theorem 3] and [28, Theorem
3.1] to demonstrate strong convergence of the regularization method for the proximal
point algorithm.

We present the following result, which is the main result of this section.
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Theorem 3.5. Let {T}} be a sequence of strongly nonexpansive mappings Ty :
M — M such that N2, Fia(Ty,) # 0 and (5.1) is satisfied. Assume that Assumption
3.3 holds for {ax} and {ex}. Then the sequence {x} generated by Algorithm 3.1
converges strongly to szozlpix(Tk)(ZL').

Proof. We consider the following algorithm:

(3.5) Yrt1 = o + (1 — ) Ti(yr) + e,
where y; € H. Algorithm (3.5) is known as the error tolerant Halpern fixed
point algorithm [22, page 1567]. Under the assumptions that limy_,. ax = 0 and
limg_ 0 |lex]| = 0. Algorithm 3.1 and (3.5) are equivalent, i.e., {z} generated by
Algorithm 3.1 converges if and only if {yx} generated by (3.5) does. Indeed, assume
that the convergence of the sequence generated by Algorithm 3.1 is guaranteed. Let
{yr} be generated by (3.5) and letting {zx} be defined as

21, := Ti(yr,) and T, := Thy1,
for every k € N, then we observe that {zx} can be written as

Zhr1 = Thor (k1) = Tr(apz + (1 — ag)zx + ex).

Also, {zx} converges to some z* € H because {z} has the structure of Algorithm
3.1. In this case,

lyer1 — 2% = llagz + (1 — o)z + ex — 27|
< aglle — 2% + (1 — o) ||lze — 2¥|| + |lex]| = 0 (k — o0).

Conversely, assume that the convergence of the sequence generated by (3.5) is
guaranteed. Let {x} be generated by Algorithm 3.1 and {wy} be defined as

W = QT + (1 — Oék)l’k + ek, dk = Okt and ék = €k+1
for every k € N. We observe that {wy} can be written as
We1 = Q17 + (1 — Q1) o1 + €11
(3.6) = Qpr + (1 — éak)Tk(wk) + €ék.

Also, {wy} converges to some w* € H because {wy} has the structure of (3.5). In
this case,

w —w* = ag(z —w*) + (1 — ag)(zr — W) + ex.

Therefore,
* 1 * *
o =0l < = (o =0+ anlle = w|+ fewl) = 0 (6 > o).
Assumption 3.3 guarantees that limg_,oo ax = 0 and limg_, |lex]] = 0. More-

over, according to [22, Theorem 3.3], the sequence {y;} generated by (3.5) converges
strongly to Pree  pix(73,) (x). Consequently, {x}} converges strongly to Pree Fix(Ty) (x)
- - O
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Remark 3.6. In the Banach space setting, (3.5) has been considered in [3] when
er = 0 and T} is nonexpansive.

Assumption of {T}} can be relaxed to strongly quasinonexpansive. The result is
straightforward (e.g., using [22, Theorem 3.1] and [26, Lemma 5.3]). Therefore, we
omit the proof of the following result.

Theorem 3.7. Let {T}} be a sequence of strongly quasinonerpansive mappings
Ty : H — H such that N3, Fix(Ty) # 0 and (3.1) is satisfied. Assume that (A1)
and (A2) (i) of Assumption 3.3 hold for {ay} and {er}. Then the sequence {x\}
generated by Algorithm 3.1 converges strongly to szcélpm(qﬂk)(x).

Remark 3.8. Algorithm 3.1 and (3.3) are designed to solve the same type of
problem and have the strong convergence property. Algorithm 3.1 incorporates
numerical errors and the assumptions on the iterative parameters are mild.

3.2. Fixed point algorithm involving inertial terms. This section considers
an inertial variant of Algorithm 3.1. Using the idea of an inertial variant of the
proximal gradient method [5], we consider the following iterative algorithm.

Algorithm 3.9.
{ T = xp + tp(zrp — xp—1)
Tr+1 = Tk (akx + (1 - Oék)fk)
where zg,x1,2 € H, {tx} C [0,00), and {a} C (0,1).

Remark 3.10.

e Algorithm 3.9 can be written equivalently as
{ Ty = o + tp(zr — xp—1)

(3.7) w1 = Ty (Th — axVh(Ty)) ,

where h : H — R, h(y) = (1/2)|ly — =|>. On the assumption that T is
the proximal mapping of a proper, convex, and lower semicontinuous func-
tion, then (3.7) has the same structure of the accelerated proximal gradient
method [5].

e For related fixed point algorithm with inertial terms, we refer to [29]. Nu-
merical examples in [29, Section 7] illustrate the attractive properties of
inertia compared to existing algorithms. Unlike [29], our algorithm can be
applied to a problem of finding a common fixed point for a countable family
of strongly (quasi)nonexpansive mappings.

To establish convergence of the sequence generated by Algorithm 3.9, the follow-
ing assumptions must be made.

Assumption 3.11. Let {x;} be a sequence generated by Algorithm 3.9, one can
also assume that {¢;} satisfies the following condition:

(i) Z:ozl tkak — .%'k,1H < 00, Or (ii) limkﬁoo tkH{L‘k — ka,lH/Ozk =0.

Remark 3.12. Let us provide the sufficient conditions of Assumption 3.11.
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o Let {tx} be defined as

- {ek/nxk — ol (o # w)
k=

(3.8) :
0 (otherwise)

where {0} C [0,00). When 0} := 1/k? (k € N), {tz} satisfies (i) of As-
sumption 3.11. When 6 := 1/k* (k € N,a > 1), and oy := 1/k (k € N),
{tx} satisfies (ii) of Assumption 3.11. Consequently, Assumption 3.11 is
implemented easily.

e (3.8) can be modified as

(3.9) t = min{yg, O /||zr — 1]} (2 # Tr—1)
' " 0 (otherwise)

where {7y}, {0k} C [0,00). When 6, := 1/k? (k € N), {t;} satisfies (i) of
Assumption 3.11. When 6y := 1/k* (k € N,a > 1), and oy, := 1/k (k € N),
{tx} satisfies (ii) of Assumption 3.11. It is noteworthy that we can choose
{7k} as the inertial sequences adopted in earlier studies of [1, 5, 14, 2]

without extra assumptions about the iterative parameters or on the inertial
sequences.

Using Theorems 3.5 and 3.7, the following result can be derived.

Corollary 3.13. Let {T};} be a sequence of mappings such that N2, Fia(T},) # 0
and (3.1) is satisfied and let {x} be a sequence generated by Algorithm 3.9. Then
the following hold:

(a) Assume that {T}} is a sequence of strongly nonexrpasive mappings, (A1) of
Assumption 3.8 holds for {ax} and Assumption 3.11 holds for {ty}. Then
{z1} converges strongly to PﬂiilFifE(Tk)(aj)'

(b) Assume that {T}} is a sequence of strongly quasinonexpasive mappings, (A1)
of Assumption 3.3 holds for {ax} and (i) of Assumption 3.11 holds for {ty}.
Then {x} converges strongly to szilpix(;pk)(x).

Proof. By the definition of {z}}, we have
arx + (1 — ag)Tr = agz + (1 — o) (xg + tp(zr — Tk—1))
= apr + (1 — ag)wp + tr(1 — o) (2 — Tp—1).
Therefore,
1 = Tlogzr + (1 — ag)zp + (1 — ag)(zr — x-1)),

which can be considered as the particular case of Algorithm 3.1 when ey := t;(1 —
ap)(Tk — Tp—1)-

The claim follows from Theorems 3.5 and 3.7 because Algorithm 3.9 is the special
instance of Algorithm 3.1. O
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4. PRIMAL-DUAL SPLITTING ALGORITHMS AND CONVERGENCE RESULTS
In this section, we consider the following structured monotone inclusion problem.

Problem 4.1. Let m be a strictly positive integer and let I := {1,2,...,m}, we
consider the following primal inclusion problem [15, 31]

(4.1) find z € H such that z € Az + Y _ Ly (BiOD;) (Liz — 14)) + Ca,
i=1
and its dual inclusion problem

find v1 € G1,...,vm € Gy, such that

z—>" Lfvie Az + Cx

4.2 Jr e H
( ) ( x ){UZ‘G (BiDDi)(LZ':B—TZ'), 1=1,2,...,m,

where

e H,Gi,...,G,, are real Hilbert spaces.

ze€H and (r1,...,7m) €G1 X -+ X Gp.

A:H =Hand B; : G; = G; (i € I) are maximal monotone operators.

C : H — H is cocoercive for some p > 0.

D;: G, = G; (i € I) is y;-strongly monotone for some v; € (0,00)

Li:H — G (i € I) is a nonzero bounded linear operator with adjoint L.

It can be said that (Z,v1,...,0p) € H X G1 X -+ X Gy, is a primal-dual solution to
Problem 4.1 if

m
(43) 2= Liv; € AT+ CT and v; € (BOD)(LZ —ri) i =1,2,...,m.

j=1
If Z is a solution to (4.1), then there exists (vU1,...,0y) € G1 X -+ X G, such that
(Z,V1,...,Uy) is a primal-dual solution to Problem 4.1, and if (v1,...,7,,) is a
solution to (4.2), then there exists Z € H such that (Z,v1,...,7,,) is a primal-dual
solution to Problem 4.1. If (Z,v1,...,7,,) is a primal-dual solution to Problem 4.1,
then T is a solution to (4.1) and (7y,...,Ty,) is a solution to (4.2).

Example 4.1. Problem 4.1 is very useful in applications to many practical prob-
lems. Indeed, one can consider the convex optimization problems of the form

(4.4) min { F@)+> gilLiz) + h(m)} :

cH
* i=1

where f € T'(H) and h : H — R are differentiable with the Lipschitz continuous
gradient, for every i € I, g; € I'(G;) and L; : H — G; is a bounded linear opera-
tor. Under mild assumptions (see [16, Proposition 4.3]) the equivalent monotone
inclusion problem takes the form of

(4.5) find u € H such that 0 € 9f(x) + Z L;0g;(Lix) + Vh(x),
i=1
which is a special instance of (4.1).
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In order to show the results, we need the following notation. We consider the
Hilbert space G := G; X --- x G,,, endowed with the inner product and associated

norm defined for u = (uy,...,um),v = (v1,...,0m) € G as
(w,0)g = 3 ur, vig, and ullg = /(s u)g,
i=1

respectively. Furthermore, we let IC = H x G be the Hilbert space endowed with
inner product and associated norm defined for every (z,u), (y,v) € IC as

(4'6) <($,U,), (yav»lc = <$7y>’H + <uvv>g and H(xvu)”K = \/<(x’u)7 (SU"U'»K,’

respectively. Furthermore, we consider the set-valued operator

(4.7) M :K = K : (z,v1,...,0m) = (—z+ Az,r1 + By 1), oo mm + Bt om)),

We next consider the linear continuous operator of
m

(4.8) S K—=K:(x,v1,...,um)— (ZLfvi,—le, - —me> )
i=1

We consider the single-valued operator
(4.9) Q:K—-K:(z,v1,...,0m)— (C;U,Dflvl, e ,D;llvm) .
According to [31, page 672], Q is [S-cocoercive with

B =min{pu,v1,...,Vn}.

We next introduce the bounded linear operator as
(4.10)
1 = 1 1
ViK—=K:(z,01,...,0p)— (x — ZLfvi,—le—l— —v1, ..., — Lz + Um> .
i=1 o1

T m

Then V is self-adjoint, with p-strongly positive for

m
p;:min{'r_l,o‘fl,...,d;ll} 1-— TZU’LHLZHQ >0
=1

when (4.11) holds (see [31]).

4.1. Strongly convergent primal—dual splitting algorithm and convergence
analysis. This subsection presents the following algorithm for solving Problem 4.1.
Algorithm 4.2. (primal-dual splitting algorithm of forward-backward-type)
T = QT + (1 — ak)wk + ek
Uik = apvi + (1 —og)vip + e (VieI)
m
Trr1 = Jra (wk -7 (Z Lf@@k + Cxp, — 2’))
i=1
Vi k1 = JO'Z'B;1 (@Lk + 0; (Li(2$k+1 — fk) — l)z-_lﬁuC — T’Z)) (VZ € I)
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where (z,v1,...,0m), (1,011, .., Um,1) € HXG1 XX G, {(ex, €1k, €mpi)} C
Hx Gy XX G, {ag} C(0,1), and 7,01,...,0, > 0 such that

(4.11) 2-min{r Y o7t o min{ vy, v | 1 -

m
Y ol Lill? | > 1.
=1

Remark 4.3. Assume that m =1, 2 =0, a; =0,¢, =0,e1,=0,7 =0, C =0,
and D1 : Gt = G, D1(0) = G, and Di(v) = 0 for all v € G\ {0}. Then Algorithm
4.2 can be written as

{wkﬂ = Jra(zy — TLivig),

4.12
( ) V1 k1 = J01Bl_1 (Ul,k +o01L1(2xp11 — k).

Algorithm (4.12) is known as the primal-dual splitting algorithm [7, Algorithm 1].
Also, (4.12) has been introduced into [15] in the context of the convex optimization
problem. Its fundamental convergence properties have been investigated in [7, 18,
31]. Weak convergence of this type of algorithm is obtained in [31, Theorem 3.1
(i)] and [18, Theorem 3.2]. Moreover, the uniform monotonicity of A and B;!
(¢ € I) ensures strong convergence of (4.12) [31, Theorem 3.1 (ii) and (iii)]. It
is noteworthy that Algorithm 4.2 we propose has the strong convergence property
without assuming restrictive properties for the involved operators.

By making use of primal-dual techniques [16, 31}, we derive strong convergence
of Algorithm 4.2. To establish convergence of the algorithm, we need the following
assumption.

Assumption 4.4. We assume that {oy} and {(ex, €1, ...,em)} satisfy the fol-
lowing conditions:

(A1) limp_yoo o = 0 and > 72| a = 00;
(A2) (1) 2252 llew|l < ccand 3752 fleskll < oo (Vi € I), or (if) limyo0 (x| /o =
0 and limy_, ||€i,k||/ak =0 (Vl S I).

We show the following result.

Theorem 4.5. In Problem 4.1, presume that

m
(4.13) z € ran (A + Z Ly ((B;OD;) (L; - —73)) + C) .

i=1
Let {(xg,v1k,--.,Ump)} be a sequence generated by Algorithm 4.2. Assume that As-
sumption 4.4 holds for {a} and {(eg,e1k,...,emx)}. Then there exists a primal-
dual solution © = (Z,U1,...,0m) to Problem 4.1 such that {(xg, Vi, ..., Ump)}
converges strongly to v.

Proof. By using an argument similar to that in [31, Theorem 3.1], Algorithm 4.2
becomes

(4.14) Vpr1 =Jao (I — B)(akv + (1 — ak)vk + ek),
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where v, := (T, Vi, -+, Um k), ¥ i= (T, 01, ..., Vm), € = (€, €145 EmE), A=
V-YM + S) and B := V'Q. Consequently, it has the structure of Algorithm
3.1 when T := Ja o (I — B). Therefore, it is sufficient to check the convergence
conditions of Algorithm 3.1 to demonstrate our claim.

One can consider a Hilbert space Ky endowed with the inner product and norm
defined for x,y € K as

(4.15) <x,y>,cv = <x7Vy>K and HmH’CV = <$7x>7<2v

respectively. Because operators M + S and Q are maximal monotone on I, the
operators A and B are maximal monotone on Ky [31]. Furthermore, B is fp-
cocoercive on ICy. Additionally, we have (A + B)~1(0) = (M + S + Q)~'(0). Set
a:=28p/(48p—1) € (0,1). Then it follows from (4.11) that T'= Jao(I — B) is a-
averaged and Fix(T) = (A+B)~1(0) = (M +S+Q)~*(0) (see [6, Proposition 26.1
(iv)]). According to [11, Proposition 1.3], T" is strongly nonexpansive. Moreover,
because V is self-adjoint and p-strongly positive, weak and strong convergence in
Ky are respectively equivalent with weak and strong convergence in IC.

(A2) (i) and (A2) (ii) of Assumption 4.4 made on the error sequences
{ex, €1y, emp} yield

o0
> llerllxc < oo, and lim |lekllxc/ax = 0.
o k—o00

By the linearity and boundedness of V' it follows that

[e.e]

> llerllxy, < oo, and lim |legxcy /o = 0.
o k—o0

According to Theorem 3.5, the sequence {vy} converges strongly in /Cy and, con-
sequently, in IC to T := Ppix7)(v) € (M + S+ Q)~'(0). This result implies that v
is a primal—dual solution to Problem 4.1. The conclusion follows. O

Remark 4.6.
(a) When o, =0 and e, = 0, (4.14) reduces to

Vi1 = JA (¢] (I — B)(’Uk),

which is the forward-backward splitting algorithm [23, 25].

(b) When C = 0 and for every i = 1,--- ,m, one takes D;(0) = G; and D;(v) = ()
for all v € G; \ {0}. The results of Theorem 4.5 are valid with condition
(4.11) replaced by

m
Ty il Li? <1
=1

(see [31, Remark 3.3]).
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(¢) Algorithm 4.2 and a primal-dual algorithm of forward—backward-type with
Tikhonov regularization terms in [8] are designed to solve the same type of
problem and to have the strong convergence property. Unlike [8, Theorem
14], Algorithm 4.2 incorporates numerical errors. The assumptions on the
iterative parameters are mild.

When ey, 1= t5(1 — o) (2 — x—1) and e; 1, := t5(1 — ag)(vi kg — vik—1), Algorithm
4.2 reduces to the following algorithm:
Algorithm 4.7. (inertial primal-dual splitting algorithm of forward-backward-
type).
T = g + (1 — o) + ti(1 — o) (zg — Tp—1)
Uik = Qgv; + (1 — ozk)vi,k + tk(l - ak)(vi,k — Ui,kfl) (VZ € I)

Tht1 = Jra (iUk -7 <Z Liv; 1, + CTj — Z))

=1
Viftl = JO'iBi_l (Eak + o (LZ'(QJTk_H —Ty) — D;lﬁi,k — T‘Z)) (Viel)

where (x,v1,...,Um), (0,01,0,- - s Um,0), (X1, V1,1, -, Um1) € H X G X -+ X Gy,
{(er, €1, remp)} CHXGL XX G, {ag} C(0,1), and 7,01, ...,0, > 0 such
that (4.11) holds.

Establishing convergence of Algorithm 4.7 requires the following assumption:

Assumption 4.8. Let {z;} and {(vig,...,vmk)} be sequences generated by Al-
gorithm 4.7. We assume that {t;} satisfies the following condition:
(1) Dopoy tkllze —xp—1]] < oo and Y37 til|vik —vig—1]| < oo (Vi € I) or (ii)
limy o0 tkak —Tk-1 H/ak =0 and limp_, tk””i,k — vi’k,lH/ak =0 (VZ S I)

Using Corollary 3.13 and Theorems 3.5 and 4.5, we present the following result.

Corollary 4.9. For Problem 4.1, we presume that (4.11) and (4.13) hold.
Let {(zk,vi k..., Umk)} be a sequence generated by Algorithm 4.7. Assume that
(A1) of Assumption 4.4 holds for {ay} and Assumption 4.8 holds for {ty}. Then
there exists a primal-dual solution © = (T,01,...,Um) to Problem 4.1 such that
{(@k, V1 k-, Um i)} converges strongly to ©.

Proof. For the proof, we use Theorem 4.5 in the same setting as in the proof of
Theorem 4.5. In this setting, Algorithm 4.7 can be written equivalently in the form
of

(4.16) Vi1 = Jao (I — B)(agv + (1 — ag)vr + (1 — ag)tp(vp — vi—1)),
where
Vi = (g, V1 gy - -, Umke) a0d 0 1= (2,01, ..., Um),

for every k € N. Set ey, := (1 — a)tp(xr — z—1) and e; , := (1 — o)tx(vig — vig—1)
for every k € N.
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Both (i) and (ii) of Assumption 4.8 made on the sequence {t;} yield

o (o ¢]
> llerll < 0o and > [leik

k=0 k=0

< oo (Viel)

or

lim |lex||/ar =0 and lim |e; x|l /o =0 (Vi € I).

k—o00 k—o00
According to (a) of Theorem 4.5, the sequence {vy} converges strongly to a primal—
dual solution to Problem 4.1. The conclusion follows.

g

Remark 4.10. Using the same idea as that expressed in [9, 8|, a strongly conver-
gent Douglas—Rachford primal-dual splitting algorithm and its inertial variant are
straightforward. For that reason, we omit them here.

5. APPLICATIONS

In this section, we present a concrete problem that reduces to Problem 4.1. We
apply the proposed algorithm to the following optimization [16, Problem 4.1].

Problem 5.1. Let f € I'(H) and h : H — R be a convex and differentiable function
with a g~ !-Lipschitz continuous gradient, for some p > 0. For every i € I, let G; be
a real Hilbert space. Also, let r; € G; and let g;,[; € T'(G;) such that [; is v;-strongly
convex, for some v; > 0. Let L; : H — G; be a nonzero bounded linear operator.
Consider primal problem

(5.1) min {f(m) + ) (000 (Liz — i) + h(x) — (z, Z>H}

EH
v i=1

and dual problem

(5.2) min {(f*Dh*) <z - ZLva) + Z(gf(vz) + 17 (v;) + <vi,ri>gi)} )
i=1

vlegly~~~7vm€gm i=1

Remark 5.1. In Problem 5.1, if z = 0, and if [; and r; are respectively indicator
functions of {0} and r; = 0, then (5.1) reduces to (4.4).

Corollary 5.2. In Problem 5.1, presume that

i=1
Let {(xg,v1k,---,Umk)} be a sequence generated by

( T = apx + (1 — ak)xk + ek
Vi) = QgV; + (1 — Ozk)vi’k + €k (Vi S I)

Tgy1 = ProxX, ¢ (mk -7 (Z L;v; , + Vh(zy) — z))

i=1
L Vik+l = pI‘OXUigZ (@@k + o; (Li(2$k+1 — Ek) — VZ;EM — T’l)) (VZ (S I),




46 SHIN-YA MATSUSHITA

where (z,v1,...,Um), (T1,01,1, .-, Um1) € HXG1 XX G, {(ex, €1k, €mpr)} C
H X G XX G, {ag} C(0,1), and 7,071,...,0, > 0 such that

m
Y aillLif? ] > 1.
=1

Assume that Assumption 4.4 holds for {ow} and {(ex, €1k, .. ,emi)}. Then there
exists U = (T,01,...,Um) € H X G1 X -+ X Gy, such that {(xg,v1 k..., Vmpi)} con-
verges strongly to U, T is a solution of problem (5.1), and (v1,...,Uy) is a solution

of problem (5.2).

Proof. We can define
A:=090f,C=Vh,B; =0g; and D :=9l; (i € I).

It follows from [6, Theorem 20.40] that operators A and B; (i € I) are maximal
monotone. Moreover, the Baillon-Haddad Theorem (see [6, Corollary 18.16]) en-
sures that C is p-cocoercive. Because [; is v;-strongly convex, D; is v;-strongly mono-
tone for every ¢ € I. However, for every ¢ € I, it follows from the v;-strong convexity
of [; and [6, Corollary 13.38 and Theorem 18.15] that [} is Fréchet differentiable on
G; with a 1/y;-Lipschitz continuous gradient, and from [6, Corollary 16.30] that
D, 1 - VIi*. The strong convexity of the functions /; guarantees that g;(l; € I'(G;)
(see [6, Corollary 11.17,Proposition 12.14]) and 9(¢g;0;) = 0¢;001; (i € I) (see [6,
Proposition 15.7]). It follows from Theorem 4.9 that the sequence {x}} converges
strongly to some T € H such that

2- min{ril,al_l,...,a,;l} ~min{p, vi, ... Um}- | 1—

2 €0f(@) + Y Li((09:001))(LiT — ;) + Vh(T),

i=1
and that the sequence {(vif,...,Umi)} converges strongly to some (T1,...,Tpm)
such that
(3 € H) z—>" L, € Ax + C:L.'
v; € (B;OD;)(Liz — 1), i =1,2,...,m.
Then 7 is a solution of the problem (5.1). Moreover, (U1,...,Uy) is a solution of
the problem (5.2) (see [16, Theorem 4.2]). O

6. CONCLUSIONS

As described in this paper, we have proposed an error-tolerant fixed point al-
gorithm and studied its convergence properties. The proposed algorithm is ap-
plicable for finding a common fixed point of a sequence of mappings of strongly
(quasi)nonexpansive in a real Hilbert space. Moreover, by making use of the pro-
posed algorithm and primal-dual techniques, we present the stronglyconvergent
primal-dual splitting algorithm. As described in [1, 2, 4, 5, 14, 15, 29, 8], inertial
terms are known to contribute to the acceleration of the convergence behavior of the
algorithms. To the best of our knowledge, this is the first paper to investigate the
error-tolerant fixed point algorithm with strong convergence properties, including
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inertial algorithms as a special case. Directions for future work include convergence
speed, the practical error case, and the case when inertial sequence goes to 1.
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