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functional differential equations with infinite delay, which are the main concerns of
several papers [15,17,23,31,37,49,60].

Controllability is one of the most important properties of dynamic system. Nowa-
days, controllability theory for linear and nonlinear systems has already been well es-
tablished, see the monographs [54]) for results in finite dimensional systems and [18]
for infinite dimensional systems, respectively. In the study of controllability of non-
linear system, there are three frequently used approaches, namely, methods based on
the stability theory of Lyapnov, method based on geometric theory and fixed-point
method. The investigation of controllability problems for nonlinear systems by the
methods of fixed-point theory go backs to 1960s. By using a fixed point theorem due
to Bohnenblust-Karlin, Tarnove [55] first obtain in 1967 a sufficient condition for
the controllability of a nonlinear system in a finite dimenaional space. Since then,
controllability of abstract semilinear equations in finite and infinite dimensional
spaces have been studied by many authors, and we cite [20, 44, 45, 56, 58, 61, 62, 64]
for only a few of the huge amount of works in this field.

In recent years the corresponding parts of multivalued analysis are applied to
obtain various controllability results for semilinear differential inclusions in infinite-
dimensional Banach spaces (see [4–6,12,13,39] and many others). To contribute the
literaure of this topic, we are primarily concerened in the present article, with the
approximate controllability for the impulsive neutral evolution differential inclusions
with infinite delay in a Banach space X. More precisely, we consider the following
class of evolution system:

d

dt
[x(t) + g(t, xt)] ∈ A(t)x(t) + F (t, xt) +Bu(t), t ∈ [0, T ], t 6= ti

∆x(ti) = Ii(xti), i = 1, 2, . . . ,m,(1.1)

x0 = ϕ ∈ B,

where T > 0, {A(t)}t∈[0,T ] is a family of linear operators in X generating an evolu-
tion operator; 0 < t1 < · · · < ti < · · · < tm < T are pre-fixed numbers; the history
xt : (−∞, 0] → X,xt(s) = x(t + s), belongs to some abstract phase space B which
will be defined axiomatically later; g : [0, T ]× B → X is some suitable function; F
is a multimap from [0, T ]×B to the collection of all nonempty, compact and convex
subset of X; for each t ∈ [0, T ]; B is a bounded linear operator from a Banach space
U into X and the control u takes value in U such that B(.)u(.) ∈ Lp([0, T ], X);
Ii : B → X, i = 1, 2, . . . ,m are suitable mappings satisfying some conditions which
will be specified later and the symbol ∆x(t) represents the jump of the function x
at t, which is defined by ∆x(t) = x(t+) − x(t−), where x(t+i ) and x(t−i ) represent

the right and left limits of x(t) at t = ti. Throughout this work, 2X denotes the
family of nonempty subsets of X.

As mensioned above, the problem of controllability for various kinds of impulsive
differential systems has been extensively studied by many authors in recent years
using different approaches. There are several papers investigate the exact control-
lability for nonlinear systems using a method proposed in [51]. For example, the
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following autonomous version of system (1.1) is studied in [39]:

d

dt
[x(t) + g(t, xt)] ∈ Ax(t) + F (t, xt) +Bu(t), t ∈ [0, T ], t 6= ti

∆x(ti) = Ii(xti), i = 1, 2, . . . ,m,

x0 = ϕ ∈ B,

assuming that the linear controllability operator

Wu =

∫ T

0
S(T − s)Bu(s)ds

is pseudo-invertible (i.e., W is surjective), where {S(t)}t≥0 is a strongly continuous
semigroup of bounded linear operators generated by A. However, as it was pointed
out in [57,59], this assumption on W can not be satisfied in the cases when X is an
infinite-dimensional space and/or B is a compact operator. Therefore, the concept
of exact controllability is too strong. Regarding the lack of exact controllability in
this situation, many authors consider a weaker concept of controllability, namely
approximate controllability, see for instances [34,45,53,61].

A dynamic system is said to be approximately controllable if it has a dense
reachability set (see section 4 for the definition of reachability set). In this work,
we use the technique of fixed point principle for condensing multivalued maps to
develop an unified approach to the cases when the multivalued nonlinearity satisfies
the Carathéodory condition. We first examine the mild solution of problem (1.1) and
propose the solution multimap according to the formulation of mild solution. Then
the concept of a measure of non-compactness is empolyed to show the existence
of the fixed-ponit of the solution multimap. Thanks to theories from multivalued
analysis, we are able to investigate the topological structure of the selution set,
which allows us to show, by using similar arguments as in [53], that control system
(1.1) and its corresponding linear problem have the same reachability set.

This article is organized in the following way. In Section 2, we prove the existence
result for (1.1) under suitable assumptions on g and F . It is assumed that the
range of g is contained in the common domain of the family {A(t)}t∈[0,T ] and the
multivalued nonlinearity F satisfies the Carathéodory condition and a regularity
condition expressed in terms of a measure of non-compactness. These allow us
to employ the fixed point principle for condensing maps to obtain the existence
result. We investigate some properties related to the topological structure of the
solution set in Section 3. In particular, we prove that the solution set is an Rδ-set
by showing that the multivalued nonlinearity F is σ-Ca-selectionable and mLL-
selectionable. This result is usd in section 4 to prove the invariance of reachability
set for our problem under nonlinear perturbations, which in turn verifies that the
controlled problem (1.1) is approximately controllable provided the corresponding
linear problem is. In the last section, a Gurtin-Pipkin type system is provided as
an illustrating example for our abstract theory.
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2. Existence Result

In this paper, T > 0 is a fixed number and (X, ‖ · ‖) is a Banach space. We
denote by L(X) the Banach space of bounded linear operators on X equipped with
its natural topology. The linear part A(t), t ∈ [0, T ] of equation (1.1) are operators
in X defined in a common domain D which is independent of t and dense in X. A
family of linear operators {U(t, s)}0≤s≤t≤T ⊂ L(X) is called an evolution family of
operators generated by {A(t) : t ∈ [0, T ]} if the following conditions hold (see [50]):

(i) U(s, s) = I,
(ii) U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T ,
(iii) (t, s) → U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ T ,
(iv) The function t→ U(t, s) is differentiable in (s, t] with

∂

∂t
U(t, s) = A(t)U(t, s), 0 ≤ s < t ≤ T.

Let {U(t, s)}0≤s≤t≤T ⊂ L(X) be the evolution family generated by {A(t) : t ∈
[0, T ]}. We assume that the system{

u′(t) = A(t)u(t), 0 ≤ s ≤ t ≤ T,

u(s) = x ∈ X,

has an associated evolution family of operators {U(t, s); 0 ≤ s ≤ t ≤ T}, which is
uniformly bounded and put

M0 = sup
(t,s)∈∆

‖U(t, s)‖L(X),

where ∆ := {(t, s) : 0 ≤ s < t ≤ T}.
Let

PC([0, T ], X) = {x : [0;T ] → X : x(t) be continuous at t 6= ti,

left continuous at t = ti,

and the right limit x(t+i ) exists for i = 1, 2, . . . ,m}.

Evidently PC(0, T ;X) is a Banach space with the norm

‖x‖PC = sup
t∈[0,T ]

‖x(t)‖.

We assume that the state space (B, ‖·‖B) is a semi-norm linear space of functions
mapping (−∞, 0] into X, and satisfying the following axiom (see [28,32]).

: (A) If T > 0 and x : (−∞, T ] → X satisfies that x0 ∈ B and x|[0,T ] ∈
PC(0, T ;X) , then for every t in [0, T ] the following conditions hold:

(i): xt ∈ B,
(ii): |x(t)| ≤ H‖xt‖B,
(iii): ‖xt‖B ≤ K(t) sup0≤s≤t ‖x(s)‖+M(t)‖x0‖B,

: where H is a constant, K : R+ → R+ is continuous and M : R+ → R+ is
locally bounded;

: H,K,M are independent of x(.).
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: (A1) For the function x in (A), xt is a B-valued continuous function for
t in [0, T ].

: (B) The space B is complete.

We suppose that there a Banach space (Y, ‖.‖Y ) continuously imbedded in X
such that Y ⊂ D . Since Y is still a Banach space, it is nature to assume that the
subspace

B := {x ∈ B : x(σ) ∈ Y }
of B also satisfies the following conditions:

: (A’) If T > 0 and x : (−∞, T ] → Y satisfies that x0 ∈ B and x|[0,T ] ∈
PC(0, T ;Y ) , then for every t in [0, T ] the following conditions hold:

(i): xt ∈ B,
(ii): ‖x(t)‖ ≤ H‖xt‖B,
(iii): ‖xt‖B ≤ K(t) sup0≤s≤t ‖x(s)‖Y +M(t)‖x0‖B,

: where H is a constant, K : R+ → R+ is continuous and M : R+ → R+ is
locally bounded;

: H,K,M are independent of x(.).
: (A1’) For the function x in (A’), xt is a B-valued continuous function

for t in [0, T ].
: (B’) The space B is complete.

Let

PC([0, T ], Y ) = {x : [0;T ] → Y : x(t) be continuous at t 6= ti,

left continuous at t = ti,

and the right limit x(t+i ) exists for i = 1, 2, . . . ,m}.

Evidently PC(0, T ;Y ) is a Banach space with the norm

‖x‖PC([0,T ],Y ) = sup
t∈[0,T ]

‖x(t)‖Y .

Let E be the space

{x : (−∞, T ] → X | x0 ∈ B and x|[0,T ] ∈ PC(0, T ;Y )}

with the semi-norm

‖x‖E = ‖x0‖B + ‖x|[0,T ]‖PC([0,T ],Y ).

Definition 2.1. Let X be a Banach space, 2X denote the collection of all nonempty
subsets of X, and (A,≥) a partially ordered set. A function µ : 2X → A is called a
measure of noncompactness in X if

µ(co Ω) = µ(Ω) Ω ∈ 2X ,

where co Ω is the closure of convex hull of Ω. A measure of noncompactness µ is
called

(i) monotone, if for each Ω1,Ω2 ∈ 2X such that Ω1 ⊂ Ω2, we have µ(Ω1) ≤
µ(Ω2);

(ii) nonsingular, if µ({a} ∪ Ω) = µ(Ω) for any a ∈ X,Ω ∈ 2X ;
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(iii) invariant with respect to the union with a compact set, if µ(K ∪ Ω) = µ(Ω)
for every relatively compact set K ⊂ X and Ω ∈ 2X ;

Moreover, if A is a cone in a normed space, we say that µ is

(iv) algebraically semi-additive, if µ(Ω1 ∪Ω2) ≤ µ(Ω1) + µ(Ω2) for any Ω1,Ω2 ∈
2X ;

(v) regular, if µ(Ω) = 0 is equivalent to the relative compactness of Ω.

The so-called Hausdorff measure of noncompactness, defined by

χ(Ω) := inf{ε : Ω has a finite ε net},

satisfies all the above properties. For the main result of the present paper, we
introduce two measure of noncompactness on the space PC([0, T ], X) of continuous
functions on interval [0, T ] taking values in X.

(i) For each Ω ⊂ PC([0, T ], X), the damped modulus of fiber non-compactness
of Ω is defined by

η(Ω) = sup
t∈[0,T ]

e−Ltχ(Ω(t)),

where L is a nonnegative constant, χ is the Hausdorff measure of noncom-
pactness on X and Ω(t) = {ω(t) : ω ∈ Ω};

(ii) For each Ω ⊂ PC([0, T ], X), the modulus of equicontinuity of Ω is defined
by

mod C(Ω) = lim
δ→0

sup
ω∈Ω

max
|t1−t2|<δ

‖ω(t1)− ω(t2)‖.

Now, consider the function ν : 2PC([0,T ],X) → [0,∞]× [0,∞] given by

(2.1) ν(Ω) = max
S∈D(Ω)

(η(S),modC(S)),

where D(Ω) is the collection of all denumerable subsets of Ω and the maximum
is taken in the sense of the partial order in the cone [0,∞] × [0,∞]. It is known
that ν is a measure of noncompactness in the space PC([0, T ], X), which satisfies all
properties in Definition 2.1 and the maximum in (2.1) is attained in D(Ω) (see [33],
Example 2.1.3 for details).

If V and W are topological spaces, a multimap F : V ⊸W has closed, bounded,
compact or convex values if F(v) is closed, bounded, compact or convex, respec-
tively, for all v ∈ V . We shall use the notations:

Pcl(V ) := {U ⊂ V : U is closed}, Pwcl(V ) := {U ⊂ V : U is wealkly closed},
Pb(V ) := {U ⊂ V : U is bounded}, Pwb(V ) := {U ⊂ V : U is wealkly bounded},
Pc(V ) := {U ⊂ V : U is convex}, Pwc(V ) := {U ⊂ V : U is wealkly concex},
Pk(V ) := {U ⊂ V : U is compact}, Pwk(V ) := {U ⊂ V : U is wealkly compact}.

Now, let F : [0, T ] ⊸ X. F is said to be measurable, if it has compact values
and F−1(V ) is measurable for every open subset V of X, where F−1(V ) := {t ∈
I : F(t) ∩ V 6= ∅}. F is integrably bounded if and only if F is measurable and
‖F(.)‖ ∈ L1([0, T ],R), where ‖F(t)‖ = supx∈F(t) ‖x‖. A function f : [0, T ] → X is
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called a selection of F provided f(t) ∈ F(t) for all t ∈ [0, T ]. We denote by Sp
F ,

1 ≤ p ≤ ∞, the set of all selections of F , which belong to the Lebesgue-Bochner
space Lp([0, T ], X), i.e.,

Sp
F = {f ∈ Lp([0, T ], X) : f(t) ∈ F(t) a.e. t ∈ [0, T ]}.

If Sp
F is nonempty and F has closed valued, then it is known that Sp

F is a closed
subset of Lp([0, T ], X)(1 ≤ p ≤ ∞). The following result, which is adapted from [47],
is crucial to our main result.

Lemma 2.2. If F : [0, T ] → Pwk,wc(X) is integrably bounded, then S1
F is nonempty,

convex and weakly compact in L1([0, T ], X).

Denote by W : L1([0, T ], X) → PC([0, T ], X) the operator

(2.2) (Wψ)(t) =

∫ t

0
U(t, s)ψ(s)ds.

This is the so-called generalized Cauchy operator and it is known that it satisfies
the following properties (see [33]):

(W1) there exists a constant C > 0 such that

‖(Wψ1)(t)− (Wψ2)(t)‖ ≤ C

∫ t

0
‖ψ1(s)− ψ2(s)‖ds,

for all ψ1, ψ2 ∈ L1([0, T ], X), t ∈ [0, T ];
(W2) for each compact set K ⊂ X and sequence {ψn} ⊂ L1([0, T ], X) such that

{ψn(t)} ⊂ K for a.e. t ∈ [0, T ], the weak convergence ψn → ψ0 implies
W(ψn) → W(ψ0) strongly in PC([0, T ], X);

(W3) W sends each bounded set to equicontinuous one.

Definition 2.3. A countable set {fn}∞n=1 ⊂ L1([0, T ], X) is said to be semicompact
if

(i) it is integrably bounded, i.e., if there exists ψ ∈ L1([0, T ],R+) such that

‖fn(t)‖ ≤ ψ(t) for a.e t ∈ [0, T ] and every n ∈ N;

(ii) the set {fn(t)}∞n=1 is relatively compact in X for almost every t ∈ [0, T ].

Lemma 2.4. Every semicompact sequence is weakly compact in L1([0, T ], X).

The following several results, which also come from [33], are useful in the proof
of our main result.

Lemma 2.5. For every semicompact set {fn}∞n=1 ⊂ L1([0, T ], X), the set {Wfn}∞n=1

is relatively compact in C([0, T ], X). Moreover, if {fn}∞n=1 converges weakly to f0
in L1([0, T ], X) then Wfn → Wf0 in C([0, T ], X).

Lemma 2.6. Let {ψn} be an integrably bounded sequence in L1([0, T ], X) , i.e.,

‖ψn(t)‖ ≤ η(t) for a.e. t ∈ [0, T ],
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where η ∈ L1([0, T ]). If Q satisfies (W1),(W2) and there exists q ∈ L1([0, T ]) such
that

χ({ψn(t)}∞n=1) ≤ q(t) for a.e. t ∈ [0, T ],

then

χ({Q(ψn)(t)}∞n=1) ≤ 2C

∫ t

0
q(s)ds

for each t ∈ [0, T ], where C > 0 is the constant given in condition (W1).

Definition 2.7. A multimap F : X → Pk(X) is said to be condensing with respect
to a measure of noncompactness µ or µ-condensing if for every bounded set Ω ⊂ X,
the relation

µ(F(Ω)) ≥ µ(Ω)

implies the relative compactness of Ω.

The following fixed point principle can be found in [33].

Lemma 2.8. If U is a closed convex subset of a Banach space X and Φ : U →
Pc,k(X) is a closed µ-condensing multimap, where µ is a nonsingular measure of
noncompactness defined on the subsets of U . Then Φ has a fixed point.

Lemma 2.9 (Proposition 3.5.1, [33]). Let K be a closed subset of X, F : K →
Pc,k(X) a closed multimap, and λ a monotone measure of non-compactness de-
fined on X. Suppose that F is λ-condensing on every bounded subset of K. Then
Fix(F) := {x ∈ K : x ∈ F(x)} is compact, provided it is bounded.

Definition 2.10. Let X and Y be topological vector spaces. A multimap F : X ⊸ Y
is said to be upper semi-continuous if for any open subset U ⊂ Y, F−1(U) is an
open subset of X.

Definition 2.11. Let X and Y be metric space. A multi-valued map (multimap)
F : X → Pk(Y) is said to be closed if its graph

GF := {(v, w) : w ∈ F(v)} ⊂ X× Y

is a closed subset of X× Y.

The following result can be found in [33].

Lemma 2.12. Let X and Y be metric spaces and F : X ⊸ Y a closed quasi-compact
multimap with compact values. Then F is upper semi-continuous.

To establish the existence result for system (1.1), we first introduce the notion of
mild solution. The readers are referred to the works [14, 17, 38] for the formulation
of this definition.

Definition 2.13. We say that a function x ∈ E is a mild solution of the system
(1.1) if x0 = ϕ, xt ∈ B for every t ∈ [0, T ], ∆x(ti) = Ii(xti), i = 1, 2, . . . ,m, and
the impulsive integral inclusion

x(t) ∈ U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, xt)−
∫ t

0
U(t, s)A(s)g(s, xs)ds
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+

∫ t

0
U(t, s)[F (s, xs) +Bu(s)]ds+

m∑
i=1

U(t, ti)Ii(xti), t ∈ [0, T ].

is satisfied.

Let p ≥ 1 be given and q the conjugate of p (i.e., 1
p + 1

q = 1 and q = ∞ if

p = 1). In order to study the controllability of system (1.1), we impose the following
hypotheses.

(H1) The function g : [0, T ]× B → X satisfies
(i) ϕ ∈ B =⇒ g(t, ϕ) ∈ Y for all t ∈ [0, T ];
(ii) g : [0, T ]× B → Y is continuous;
(iii) g : [0, T ]× B → X is completely continuous;
(iv) there exists a function α ∈ Lp([0, T ],R+) such that

‖A(t)g(t, ϕ)‖ ≤ α(t)(1 + ‖ϕ‖B) for a.e. t ∈ [0, T ] and ϕ ∈ B.

(H2) The multimap F : [0, T ] × B ⊸ X satisfies the Carathéodory condition
(see [1], p.298), i.e., for each ϕ ∈ B, F (., ϕ) has a strongly measurable
selection, and for a.e. t ∈ [0, T ], F (t, .) : B → Pc,k(X) is upper semi-
continuous. Moreover, there exists a function β ∈ Lp([0, T ],R+) such that

‖F (t, ϕ)‖ ≤ β(t)(1 + ‖ϕ‖B) for a.e. t ∈ [0, T ].

where ‖F (t, ϕ)‖ := supf∈F (·,φ) ‖f(t)‖.
(H3) There exists a function γ : [0, T ] ∈ L1([0, T ],R+) such that for all bounded

set D ⊂ B

χ (F (t,D)) ≤ γ(t) sup
−∞<σ≤0

χ(D(σ)) for a.e t ∈ [0, t],

where D(σ) := {φ(σ);φ ∈ D} and χ is the Hausdorff measure of noncom-
pactness.

(H4) The function Ii : B → X is continuous and there are positive constants
Li, i = 1, 2, . . . ,m, such that

‖Ii(φ1)− Ii(φ2)‖ ≤ Li‖φ1 − φ2‖B,

for φ1, φ2 ∈ B and i = 1, 2, . . . ,m.

Now, for each u ∈ Lp([0, T ], U), we introduce the multioperator Γu,φ :
PC([0, T ], Y ) ⊸ PC([0, T ], Y ) by

(Γu,φx)(t) :=

{
U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, x̄t)

−
∫ t

0
U(t, s)A(s)g(s, x̄s)ds+

∫ t

0
U(t, s)[f(s) +Bu(s)]ds(2.3)

+
m∑
i=1

U(t, ti)Ii(x̄ti); f ∈ S1
F (·,x̄·)

, t ∈ [0, T ]

}
,
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where for every x ∈ PC([0, T ], X), x̄ denotes the extension of x given by

x̄(t) =

{
x(t), t ∈ [0, T ]

ϕ(t), t ≤ 0.

It is ready to see that if x ∈ Fix(Γu,φ) := {x ∈ PC([0, T ], Y ) : x ∈ Γu,φ(x)}, then
x̄ is a mild solution of the system (1.1) and we therefore call Fix(Γu,φ) the solution
set corresponding to the control u.

Theorem 2.14. Suppose that the hypotheses (H1)-(H4) are satisfied. Then the
solution set of problem (1.1) corresponding to the control u is nonempty and compact
provided

(2.4) M0K̃

m∑
i=1

Li < 1

where K̃ := sup0≤t≤T |K(t)|.

Proof. It suffices to show that the set Fix(Γu,φ) is nonempty, and the proof is divided
into several steps.

Step 1. It is already seen that Γu,φ has convex values, using the hypotheses
that the multimap F has convex values.

Step 2. To see that Γu,φ has closed graph, let {xn}∞n=1 be a sequence in
PC([0, T ], Y ) with xn → x ∈ PC([0, T ], Y ). Then by axiom (A)(iii),

‖(x̄n)t − x̄t‖B ≤ K(t) sup
s∈[0,T ]

‖xn(s)− x(s)‖+M(t)‖(x̄n)0 − x̄0‖B

= K(t) sup
s∈[0,T ]

‖xn(s)− x(s)‖(2.5)

→ 0, as n→ ∞.

Now, for each n ∈ N, choose yn ∈ Γu,φ(xn). Then by (2.3), for each n ∈ N, the
mapping t 7→ F (t, (x̄n)t) admits a selection fn such that

yn(t) := U(t, 0)[ϕ(0) + g(t, ϕ)]− g(t, (x̄n)t)−
∫ t

0
U(t, s)A(s)g(s, (x̄n)s)ds

+

∫ t

0
U(t, s)[fn(s) +Bu(s)]ds+

m∑
i=1

U(t, ti)Ii((x̄n)ti), t ∈ [0, T ].

Let

W (t) = co
⋃
n≥1

F (t, (x̄n)t)

Invoking Theorem 7.4.2 of [35] (p.90) and (H3), we have W (t) ∈ Pwkc(X). Again
by (H2), we have

‖W (t)‖ = sup
w∈W (t)

‖w‖ ≤ β(t)(1 + b)
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yielding W (·) is integrably bounded, where b = supn≥1,t∈[0,T ] ‖(x̄n)t‖B, and hence

by Lemma 2.2, we see that S1
W is weakly compact in L1([0, T ], X). We thus may

assume, by passing to a subsequence if necessary, that

(2.6) fn −→w f in L1([0, T ], X).

Moreover, it follows by Theorem 3.1 of [48] that
(2.7)
f(t) ∈ co

{
w − limn{fn(t)}

}
⊂ co

{
w − limnF (t, (x̄n)t)

}
⊂ F (t, x̄t) a.e. on [0, T ].

where the last inclusion is guaranteed by (H2). Now,

yn(t) = U(t, 0)[ϕ(0) + g(t, ϕ)]− g(t, (x̄n)t)−
∫ t

0
U(t, s)A(s)g(s, (x̄n)s)ds

+

∫ t

0
U(t, s)fn(s)ds+

m∑
i=1

U(t, ti)Ii((x̄n)ti), t ∈ [0, T ].

= U(t, 0)[ϕ(0) + g(t, ϕ)]− g(t, (x̄n)t)−
∫ t

0
U(t, s)A(s)g(s, (x̄n)s)ds

+(W(fn +Bu))(t) +

m∑
i=1

U(t, ti)Ii((x̄n)ti), t ∈ [0, T ].

→ U(t, 0)[ϕ(0) + g(t, ϕ)]− g(t, x̄t)−
∫ t

0
U(t, s)A(s)g(s, x̄s)ds

+(W(f +Bu))(t) +

m∑
i=1

U(t, ti)Ii(x̄ti), t ∈ [0, T ].

by (2.6), (2.7), (W2), (H1), (H2) and the dominated convergence theorem. Set

y := U(t, 0)[ϕ(0) + g(t, ϕ)]− g(t, x̄t)−
∫ t

0
U(t, s)A(s)g(s, x̄s)ds

+(W(f +Bu))(t) +

m∑
i=1

U(t, ti)Ii(x̄ti)

In view of (2.7), we see that

y ∈ Γu,φ(x),

and hence Γu,φ has closed graph. By a similar argument, we obtain that Γu,φ has
compact values.

Step 3. We now prove that Γu,φ is ν-condensing. For this, consider a bounded
set Ω ⊂ PC([0, T ], X) such that

(2.8) ν(Γu,φ(Ω)) ≥ ν(Ω).

We will show that Ω is relatively compact in PC([0, T ], X). In fact, there exists, by
the definition of ν, a sequence {zn}∞n=1 which achieves the maximum, i,e;

ν(Γu,φ(Ω)) = (η({zn}∞n=1),modC({zn}∞n=1)) .
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Choose {xn}∞n=1 ⊂ Ω so that for each n ∈ N, zn ∈ Γu,φ(xn). Then

zn(t) = U(t, 0)[ϕ(0) + g(t, ϕ)]− g(t, (x̄n)t)−
∫ t

0
U(t, s)A(s)g(s, (x̄n)s)ds

+

∫ t

0
U(t, s)[fn(s) +Bu(s)]ds+

m∑
i=1

U(t, ti)Ii((x̄n)ti), t ∈ [0, T ].

where fn ∈ S1
F (·,(x̄n)·)

. Since g : [0, T ] × B → X is completely continuous by (H1),

this implies that

η({zn}∞n=1) = η({Wfn}∞n=1),

Now, let t ∈ [0, T ] and it follows by (H3) that

χ({fn(s)}∞n=1)) ≤ γ(s) sup
σ≤0

χ({(x̄n)s(σ)}∞n=1)

≤ γ(s) sup
σ≤0

χ
(
{x̄n(s+ σ)}∞n=1

)
≤ γ(s) sup

τ≤s
χ
(
{x̄n(τ)}∞n=1

)
≤ γ(s)eLs sup

0≤τ≤T

[
e−Lτχ

(
{xn(τ)}∞n=1

)]
= γ(s)eLsη({xn}∞n=1),

for all s ∈ [0, t]. Now, we apply Lemma 2.6 and obtain

χ({Wgn(t)}∞n=1) ≤ 2C

(∫ t

0
γ(s)eLsds

)
η({xn}∞n=1)

which implies

e−Ltχ({Wgn(t)}∞n=1) ≤ 2C

(∫ t

0
γ(s)e−L(t−s)ds

)
η({xn}∞n=1),

whence, in view of (2.8),

(2.9) η({xn}∞n=1) ≤ η({zn}∞n=1) ≤ ζη({xn}∞n=1).

where

ζ := 2C sup
t∈[0,T ]

∫ t

0
e−L(t−s)γ(s)ds

Now, choose the constant L > 0 in the definition of η so that

(2.10) ζ := 2C sup
t∈[0,T ]

∫ t

0
e−L(t−s)γ(s)ds < 1,

and we therefore combine (2.9) and (2.10) to conclude

η({zn}∞n=1) = 0.

On the other hand, it is evident from (H2) that {fn} is a bounded sequence in
L1([0, T ], X). Then the property (W3) ensures that {Wfn} is equicontinuous in
PC([0, T ], X) and hence

modC({zn}∞n=1) = modC({Wfn}∞n=1) = 0.
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Consequently,

ν(Ω) = (0, 0)

and therefore, the regularity of ν guarantees the relative compactness of Ω. This
shows that the multioperator Γu,φ satisfies the conditions of Lemma 2.8, and there-
fore has a fixed point, which in turn proves that the system (1.1) has a nonempty
solution set.

Step 4. It remains to show that the solution set belongs to a priori bounded
set in PC([0, T ], X). Indeed, if x ∈ Fix(Γu,φ), then

x(t) = U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, x̄t)−
∫ t

0
U(t, s)A(s)g(s, x̄s)ds

+

∫ t

0
U(t, s)[f(s) +Bu(s)]ds+

m∑
i=1

U(t, ti)Ii(x̄ti),

for some f ∈ F (·, x̄·) and thus by assumptions (H1)-(H4) and axioms (A)(iii), (A1),
there follows the estimate:

‖x(t)‖ ≤M0

[
‖ϕ(0)‖+ ‖g(0, ϕ)‖

]
+ sup

0≤t≤T
‖g(t, x̄t)‖

+M0

(
1 + M̃‖ϕ‖B

)
‖α‖1 + M0K̃

∫ t

0
α(s) sup

0≤τ≤s
‖x(τ)‖ds

+ M0

(
1 + M̃‖ϕ‖B

)
‖β‖1 + M0K̃

∫ t

0
β(s) sup

0≤τ≤s
‖x(τ)‖dτ

+M0‖Bu(·)‖Lp([0,T ],X)

+M0

m∑
i=1

(
LiM̃‖ϕ‖B + ‖Ii(0)‖

)
+M0K̃ sup

0≤τ≤t
‖x(τ)‖

m∑
i=1

Li

for all t ∈ [0, T ], or

(2.11)

‖x(t)‖ ≤ C0 +

(
M0K̃

m∑
i=1

Li

)
sup0≤τ≤t ‖x(τ)‖

+M0K̃

∫ t

0
(α+ β)(s) sup

0≤τ≤s
‖x(τ)‖ds, t ∈ [0, T ],

where M̃ := sup0≤t≤T ‖M(t)‖, K̃ := sup0≤t≤T ‖K(t)‖, and

C0 =M0

[
‖ϕ(0)‖+ ‖g(0, ϕ)‖

]
+ sup

0≤t≤T
‖g(t, xt)‖

+M0

(
1 + M̃‖ϕ‖B

)
(‖α‖1 + ‖β‖1) +M0‖Bu(·)‖Lp([0,T ],X)

+M0

m∑
i=1

(
LiM̃‖ϕ‖B + ‖Ii(0)‖

)
.

Hence, if C̃ :=M0K̃
∑m

i=1 Li < 1, the inequality (2.11) becomes

sup
0≤τ≤t

‖x(τ)‖ ≤ C0(1− C̃)−1 +M0K̃(1− C̃)−1

∫ t

0
(α+ β)(s) sup

0≤τ≤s
‖x(τ)‖ds
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yielding by Gronwall-Bellman inequality
(2.12)

sup
0≤τ≤t

‖x(τ)‖ ≤ C0(1− C̃)−1 exp

(
M0K̃(1− C̃)−1

∫ t

0
(α+ β)(s)ds

)
, ∀t ∈ [0, T ].

The solution set is thus bounded and therefore, by Lemma 2.9, compact. This
completes the proof. □

We set

C1 =M0

[
‖ϕ(0)‖+ ‖g(0, ϕ)‖

]
+ sup

0≤t≤T
‖g(t, xt)‖

+M0

(
1 + M̃‖ϕ‖B

)(
‖α‖1 + ‖β‖1

)
+ M0

m∑
i=1

(
LiM̃‖ϕ‖B + ‖Ii(0)‖

)
and then C0 = C1 +M0‖Bu(·)‖Lp([0,T ],X), which in tern yields by (2.12)

(2.13)
‖x‖C([0,T ],X) ≤ C0(1− C̃)−1 exp

(
M0K̃(1− C̃)−1(‖α‖1 + ‖β‖1)

)
≤ C2

(
C1 +M0‖Bu(·)‖Lp([0,T ],X)

)
where C2 = (1− C̃)−1 exp

(
M0K̃(1− C̃)−1(‖α‖1 + ‖β‖1)

)
. This inequality will be

used in the proof of the main result in section 4.

3. The solution multi-map

We first introduce the solution multi-map

(3.1)
SF,φ : Lp([0, T ], U) ⊸ PC([0, T ], X),
SF,φ(u) := {x̄ : x ∈ Fix(Γu,φ)},

impose an additional assumption:

(H5) U(t, s) is compact for all t > s,

and prove that the solution multimap is completely continuous.

Lemma 3.1. Under assumptions (H1)-(H5), the solution multimap SF,φ defined
by (3.1) is completely continuous, i.e., it is upper-semicontinuous and sends each
bounded set to a relatively compact one, provided the inequality (2.4) holds.

Proof. For a bounded set Q ⊂ Lp([0, T ], U), we shall show that SF,φ(Q) is relatively
compact in C([0, T ], X). Let {un} be a sequence in Q and for each n ∈ N, let xn
be a selection of SF,φ(un). Then
(3.2)

xn(t) ∈ U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, (x̄n)t)−
∫ t

0
U(t, s)A(s)g (s, (x̄n)s) ds

+

∫ t

0
U(t, s)[F (s, (x̄n)s) +Bun(s)]ds+

m∑
i=1

U(t, ti)Ii((x̄n)ti),

Again, we use a similar argument as in the proof of theorem 2.14 to conclude
that SF,φ is closed and {xn}∞n=1 is a bounded sequence in C([0, T ], X) provided the
inequality (2.4) holds. Hence, the set {(x̄n)t}∞n=1 is bounded in B. It then follows by
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(H2) that the sequence {F (., (x̄n).)}∞n=1 is integrably bounded. On the other hand,
since g is completely continuous by (H1) and U(t, s) is compact for 0 ≤ s < t ≤ T
by (H5), it follows by (3.2) that the set {xn(t)}∞n=1 is relatively compact for each
t ∈ [0, T ]. It then follows by (H3) that

χ

( ∞⋃
n=1

F (t, (x̄n)t)

)
≤ γ(t) sup

σ≤0
χ({(x̄n)t(σ)}∞n=1) ≤ γ(t) sup

0≤τ≤T
χ({xn(τ)}∞n=1) = 0,

i.e., (∪∞
n=1F (t, (x̄n)t)) is relatively compact, yielding the function

W (t) = co
⋃
n≥1

F (t, (x̄n)t)

has compact and convex values, whence by Lemma 2.4, S1
W is weakly compact in

L1([0, T ], X). Thus if fn are selections in S1
F (·,(x̄n)·)

such that

xn(t) = U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, (x̄n)t) +

∫ t

0
U(t, s)A(s)g (s, (x̄n)s) ds

+

∫ t

0
U(t, s)[fn(s) +B(s)un(s)]ds+

m∑
i=1

U(t, ti)Ii((x̄n)ti),

then by passing to a subsequence if necessary, we see that {fn}∞n=1 is weakly con-
vergent to some function f in L1([0, T ], X) which in turn yields by (W2) that
Wfn → Wf in C([0, T ], X). This shows that {xn}∞n=1 is relatively compact and the
proof is hence completed. □

Next, we introduce the concept of σ-Ca-selectionable and mLL-selectionable
maps (see [25], section 9.4).

Definition 3.2. Let (X, dX) be an metric space and (Y, dY) a pseudo-metric
space.

(i) A single-valued map f : [0, T ] × Y → X is said to be measurable-locally
Lipschitz (mLL), if f(., y) is measurable for every y ∈ Y and for every
y ∈ Y, there exists a neighborhood Ny of y and an integrable function
Ly : [0, T ] → [0,∞) such that, for all t ∈ [0, T ] and y1, y2 ∈ Ny,

dX(f(t, y1), f(t, y2)) ≤ Ly(t)dY(y1, y2)

(ii) A multivalued mapping F : [0, T ] × Y ⊸ X is mLL-selectionable if it has
an mLL-selection.

Definition 3.3. Let (X, dX) be a metric space, (Y, dY) a pseudo-metric space and
F : [0, T ]× Y ⊸ X a multivalued mapping. Then

(i) F is Ca-selectionable if there exists a selection f of F which satisfies the
Carathéodory condition;

(ii) F is σ-Ca-selectionable if there is a sequence Fn : [0, T ]×Y ⊸ X, n = 1, 2, ...
such that:
(a) F(t, φ) ⊂ · · · ⊂ Fn+1(t, φ) ⊂ Fn(t, φ) ⊂ . . . ,
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(b) F(t, φ) =
⋂
n≥1

Fn(t, φ), and

(c) Fn is Ca-selectionable for all n ∈ N.

To prove the main result of this section, we shall show that the nonlinear term
F (., .) is σ-Ca-selectionable. For this, let us cover B by the open balls {B(ϕ, rn) :
ϕ ∈ B, rn = 3−n, n ∈ N}. Since B is a pseudometric space, then for each n ∈ N,
there exists by Stone theorem, a locally finite refinement {V n

j }j∈Jn of the cover

{B(ϕ, rn) : ϕ ∈ B, rn = 3−n, n ∈ N}. Now, we can associate a locally Lipschitz
partition of unity {pnj }j∈J subordinated to the open covering {V n

j }j∈Jn . For every

j ∈ Jn let ϕn
j be such that V n

j ⊂ B(ϕn
j , rn) and define

(3.3) Fn(t, ϕ) =
∑
j∈Jn

pnj (ϕ) · coF (t, B(ϕn
j , 2rn))

where

(3.4) F (t, B(ϕn
j , 2rn)) :=

⋃
φ∈B(φn

j ,2rn)

F (t, ϕ).

If ϕ ∈ B, then ϕ ∈ V n
j ⊂ B(ϕn

j , rn) ⊂ B(ϕn
j , 2rn) for all j ∈ Jn with pnj (ϕ) 6= 0, and

it follows immediately by (3.3) and (3.4) that F (t, ϕ) ⊂ Fn(t, ϕ), yielding

(3.5) F (t, ϕ) ⊂
⋂
n≥1

F (t, ϕ).

Conversely, let O be the collectopn of all open, convex set containing F (t, ϕ). If O ∈
O, then since F (t, .) is upper semi-continuous, there is a δ > 0 such that F (t, ψ) ⊂ O
for all ψ ∈ B with ‖ψ−ϕ‖B < δ. Thus, if 3rn < δ, then coF (t, B(ϕ, 3rn)) ⊂ O. Let
ν satisfy 3rν < δ and then⋂

n≥1

Fn(t, ϕ) ⊂ Fν(t, ϕ) ⊂ coF (t, B(ϕ, 3rn)) ⊂ O.

Since O ∈ O is arbitrary, this implies that

(3.6)
⋂
n≥1

Fn(t, ϕ) ⊂
⋂
O∈O

O = F (t, ϕ).

Observe further that for each ϕn
j , j ∈ Jn there is by (H2), a measurable selection hj

of F (., ϕn
j ). Define fn : [0, T ]× B → X by

(3.7) fn(t, ϕ) =
∑
j∈Jn

pnj (ϕ) · hj(t),

which shows that Fn is mLL-selectionable. Furthermore, each Fn(t, .) is upper
semicontinuous. In fact, if V ⊂ X is an open set containing Fn(t, ϕ), then by(3.3),

F (t, B(ϕn
j , 2rn)) ⊂ coF ((t, B(ϕn

j , 2rn)) ⊂ V

for all j ∈ Jn with pnj (ϕ) 6= 0. Let Jn := {j ∈ Jn : pnj (ϕ) 6= 0} and set

Z :=
⋂

j∈Jn

V n
j
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Since Jn is a finite set, we see that U is an open set containing ϕ, and

F (t, Z) ⊂ F (t, V n
j ) ⊂ F (t, B(ϕn

j , 2rn)) ⊂ coF ((t, B(ϕn
j , 2rn)) ⊂ V.

It follows again by(3.3) that

(3.8) Fn(t, ψ) =
∑
j∈Jn

pnj (ψ) · coF (t, B(ϕn
j , 2rn)) ⊂ V,

for all ψ ∈ Z. We summerize (3.3)-(3.8) in the following theorem:

Theorem 3.4. The nonlinear term F (., .) of inclusion (1.1) is σ-Ca-selectionable.
More precisely, there exists a sequence of multivalued maps {Fn}∞n=1, Fn : [0, T ] ×
B → Pcl,c(X) such that

(i) each multivalued map Fn(t, ·) : B → Pcl,c(X), n ≥ 1 is continuous for a.e.
t ∈ [0, T ],

(ii) F (t, φ) ⊂ · · · ⊂ Fn+1(t, φ) ⊂ Fn(t, φ) ⊂ coF (t, B(ϕ, 3rn)), n ≥ 1,

(iii) F (t, φ) =
⋂
n≥1

Fn(t, φ),

(iv) for t ∈ [0, T ] and n ≥ 1, Fn(t, .) is upper semicontinuous,
(v) for each n ≥ 1 there exists a selection fn : [0, T ]× B → X of Fn, such that

fn(., φ) is measurable and fn(t, .) is locally Lipschitz.

We shall need the following results.

Lemma 3.5 (Mazur’s Lemma, see [43] Theorem 21.4). Let E be a normed space
and {xn}∞n=1 ⊂ E be a sequence weakly converging to a limit x ∈ E. Then there
exists a sequence of convex combinations ym =

∑m
n=1 αmnxn with αmn > 0 for

n = 1, 2, ...,m and
∑m

n=1 αmn = 1 for every m ∈ N, which converges strongly to x.

Lemma 3.6 (see e.g. [2], Lemma 1.1.9). Let {Kn}∞n=1 ⊂ K ⊂ X be a sequence of
subsets where K is compact in the separable Banach space X. Then

co(lim sup
n→∞

Kn) =
⋂
n∈N

co

 ⋃
n≥N

Kn

 ,

where co(A) refers to the closure of the convex hull of A.

The following notions are essential for investigating the geometric structure of
the solution set SF,φ(u),

Definition 3.7. Let X be a Banach space and Y a metric space.

(i) A subset V of Y is said to be contractible in Y if the imbedding iV : V → Y
is null-homotopic, i.e., there exists y0 ∈ Y and a continuous map h : V ×
[0, 1] → Y such that h(y, 0) = y and h(y, 1) = y0 for every y ∈ V .

(ii) A subset V of a metric space Y is called an Rδ-set if B can be represented
as the intersection of decreasing sequence of compact contractible sets.

(iii) A multimap F : X → 2Y is said to be an Rδ-map if F is upper semicontinuous
and for each x ∈ X, F(x) is an Rδ-set in Y.

We are then able to examine the geometric structure of the solution set SF,φ(u)
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Theorem 3.8. Assume the hypotheses of Theorem 2.14 and the inequality (2.4)
holds. If in addition, X is separable and F : [0, T ] × B ⊸ X takes closed values
and is mLL-selectionable, then the solution set of problem (1.1) corresponding to
the control u is contractible.

Proof. Let f ⊂ F be a measurable, locally Lipschitz selection and consider the
single-valued problem

(3.9)


d

dt
[x(t) + g(t, xt)] = A(t)x(t) + f(t, xt) +Bu(t), t ∈ [0, T ], t 6= ti

∆x(ti) = Ii(xti) i = 1, 2, . . . ,m,

x0 = ϕ ∈ B,

Using a similar argument as in [13], we can prove that problem (3.9) has exactly
one solution for every ϕ ∈ B. Define the homotopy h : SF,φ(u)× [0, 1] → SF,φ(u) by

h(x, α)(t) =

{
x(t), t ≤ αT,

ξ(t), αT < t ≤ T,

where ξ is the unique solution of problem (3.9). In particular,

h(x, α) =

{
x, for α = 1,

ξ, for α = 0.

Let {(xn, αn)}∞n=1 ⊂ SF,φ(u) be such that (xn, αn) → (x, α), as n→ ∞. Then

h(xn, αn)(t) =

{
xn(t), t ≤ αnT,

ξ(t), αnT < t ≤ T,

We shall prove that h(xn, αn) → h(x, α). In fact, for the case α = 0 and limn→∞ αn =
0, since

h(x, 0)(t) =

{
ϕ(t), t ≤ 0,

ξ(t), 0 < t ≤ T,

and xn ≡ ϕ on (∞, 0], then

‖h(xn, αn)−h(x, α)‖E ≤ ‖xn−ϕ‖B+‖xn−ξ‖PC([0,T ],X) ≤ ‖xn−ξ‖PC([0,αnT ],X) → 0,

as n→ ∞. The case where α = 1 and limn→∞ αn = 1 is treated similarly.
The case 0 < limn→∞ αn = α < 1 is divided into two subcases: t ∈ (−∞, αT ]

and t ∈ (αT, T ].
If t ∈ (−∞, αT ], then since xn(t) = ϕ(t) for all t ∈ (−∞, 0], it follows immediately

by the definition of h that

h(xn, αn)(t) = h(ϕ, αn)(t), ∀t ≤ 0.

For each n ∈ N, let yn(.) be a selection of F (., (x̄n)·). Then for t ∈ [0, αnT ],

xn(t) = U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, xn(t)) +

∫ t

0
A(s)U(t, s)g (s, xn(s)) ds

+

∫ t

0
U(t, s)[yn(s) +B(s)u(s)]ds+

m∑
i=1

U(t, ti)Ii((x̄n)ti),
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Now, xn converges to x in SF,φ(u) ⊂ E implies

sup
n∈N

‖(x̄n)t‖B ≤ sup
n∈N

‖xn‖E ≤ R

for some R > 0. It follows that the sequence {yn}n∈N is integrably bounded. Fur-
thermore, since for each t ∈ [0, T ]

{yn(t)}n∈N ⊂ F (t, (x̄n)t)

and by (H3)

χ(F (t, (x̄n)t)) ≤ γ(t) sup
−∞<σ≤0

χ(xn(t+ σ)),

then {yn(t)}n∈N is relatively compact in X. We may thus assume, in view of Lemma
2.4, that yn converges weakly to y for some y ∈ L1([0, T ], X) by passing to a
subsequence if necessary. We shall show that y ∈ F (., x̄·) and
(3.10)

x(t) = U(t, 0)[ϕ(0) + g(0, ϕ)]− g(t, x̄(t)) +

∫ t

0
A(s)U(t, s)g (s, x̄(s)) ds

+

∫ t

0
U(t, s)[y(s) +Bu(s)]ds+

m∑
i=1

U(t, ti)Ii((x̄)ti), t ∈ [0, T ]

Thanks to lemma 3.5 and dominated convergence theorem, there exist αn
j for each

j = 1, 2, ..., k(n) such that
∑k(n)

j=1 α
n
j = 1 such that the sequence of convex combina-

tions

ηn(·) =
k(n)∑
j=1

αn
j yn(·)

converges strongly to y in L1([0, T ], X). Since F takes compact and convex values,
we have

y(t) ∈
⋂
n≥1

{ηk(t) : k ≥ n}

⊂
⋂
n≥1

co{yk(t) : k ≥ n}

⊂
⋂
n≥1

co

⋃
k≥n

F (t, (xk)t)


= co

(
lim sup
k→∞

F (t, (xk)t)

)
where the last equality is guaranteed by Lemma 3.6, yielding

y(t) ∈ co(F (t, xt)) = F (t, xt), a.e. t ∈ [0, T ],

since F is upper semi-continuous and takes closed and convex values. The validity
of (3.10) follows by (H4) and the Lebesgue dominated convergence theorem.

Finally, if t ∈ (αT, T ], then

h(xn, αn)(t) = h(x, α)(t) = ξ(t)
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for n large enough. Consequently,

‖h(xn, αn)− h(x, α)‖E −→ 0, as n −→ ∞.

Therefore, h is a continuous function, proving that SF,φ(u) is contractible to the
point ξ which is the unique solution of problem (3.9). □

Now, we are in the position to state and prove the main result of this section.

Theorem 3.9. Assume the hypotheses of Theorem 2.14. Then for each u ∈
Lp([0, T ], U), SF,φ(u) is an Rδ-set, provided the inequality (2.4) holds and X is
separable.

Proof. By theorem 3.4, we see that the nonlinear term F (., .) of inclusion (1.1)
is σ-Ca-selectionable, i.e., there exists a decreasing sequence of multivalued maps
{Fn}∞n=1, Fn : [0, T ] × B → Pcl,c(X) such that each Fn satisfies the Carathéodory
condition and is measurable-locally Lipschitz and

F (t, φ) =
⋂
n≥1

Fn(t, φ).

Then

SF,φ(u) =
∞⋂
n=1

SFn,φ(u)

Since the set SFn,φ(u) is contractible for each n ∈ N by theorem 3.8, then SF,φ(u)
is an Rδ set. □

The next result follows immediately from Lemma 3.1 and theorem 3.9.

Corollary 3.10. Under assumptions (H1)-(H5), the solution multimap SF,φ :
Lp([0, T ], U) ⊸ C([0, T ], X) is an Rδ-map, provided the inequality (2.4) holds and
X is separable.

4. Approximate controllability

For the proof of our main results, we shall use the fixed point theorem developed
in [24]. For this, we first recall some notions and known results of the so-called
AR-space:

Definition 4.1. Let Y be a metric space.

(i) Y is called an absolute retract (AR-space) if for any metric space X and any
closed A ⊂ X, every continuous function f : A → Y can be extended to a
continuous function f : X → Y.

(ii) Y is called an absolute neighborhood retract (ANR-space) if for any metric
space X, any closed V ⊂ X, and continuous function f : V → Y , there
exists a neighborhood N of V and a continuous extension f : N → Y of f .

The following result due to L. Gorniewicz and M. Lassonde [24], is crucial to the
main result of the present paper.
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Theorem 4.2. Let Y be an AR-space. Assume that φ : Y → 2Y can be factorized
as

φ = φn ◦ φn−1 ◦ . . . φ1
where

φi : Yi−1 → 2Yi , i = 1, 2, . . . , n

are Rδ-maps and Yi, i = 1, 2, ..., n−1 are ANR-spaces, Y0 = Yn = Y are AR-spaces.
If there is a compact set K such that φ(Y ) ⊂ K ⊂ Y then φ has a fixed point.

We define the control operators WT : Lp([0, T ], X) → X:

WTψ =

∫ T

0
U(T, s)ψ(s)ds,

and propose the following hypothesis which was introduced in [53].

(H6) for each ψ ∈ Lp([0, T ], X), there exists v ∈ Lp([0, T ], U) such that

WTBv = WTψ.

It is obvious that condition (H6) is fulfilled if B is surjective. Now, since g is
Y -valued, then ξ0 = U(T, 0)g(0, ϕ) + g(T, xT ) ∈ Y . Choose

θ(s) =
1

T
(ξ0 − sA(s)ξ0) for s ∈ [0, T ],

and then θ(·) ∈ C([0, T ], X) ⊂ Lp([0, T ], X) satisfying

1

T

∫ T

0
U(T, s)(ξ − sA(s)ξ0)ds

=
1

T

∫ T

0
U(T, s)ξds− 1

T

∫ T

0
sU(T, s)A(s)ξ0ds

=
1

T

∫ T

0
U(T, s)ξds+

1

T

∫ T

0
s
dU(T, s)

ds
ξ0ds

= ξ0,

yielding

(4.1) WT θ = ξ0.

The following lemma was stated in [53].

Lemma 4.3. Let condition (H6) hold. Then there exists a continuous map C :
Lp([0, T ], X) → Lp([0, T ], U) such that for any ψ ∈ Lp([0, T ], X),

WTBCψ +WTψ = 0,

‖Cψ‖Lp([0,T ],U) ≤ c‖ψ‖Lp([0,T ],X)

where c is a positive number.

Now, let us denote by Nθ+Ag+F the multivalued Nemytskii operator:

Nθ+Ag+F : PC([0, T ], X) ⊸ Lp([0, T ], X)

Nθ+Ag+F (x)(t) = {θ(t) +A(t)g(t, xt) + f(t) : f ∈ F (·, x̄·)}
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Obviously, Nθ+Ag+F is upper semicontinuous. Consider the multimap

Φ : Lp([0, T ], U) ⊸ Lp([0, T ], U)

Φ(u) = CNθ+Ag+FSF,φ(u0 + u)

where SF,φ is the solution multimap and C is the operator in Lemma 4.3, u0 ∈
Lp([0, T ], U) is given. The following result is the key point in this section.

Theorem 4.4. Under assumptions (H1)-(H6), there exists ρ > 0 such that Φ has
a fixed point in Lp([0, T ], U) provided ‖B‖ < ρ.

Proof. We first prove that there is a number r > 0 such that Φ(B(0, r)) ⊂ B(0, r),
where B(0, R) is the closed ball in Lp([0, T ], U) centered at origin with radius r.
Let v ∈ Lp([0, T ], U) and v ∈ Φ(u) = CNθ+Ag+FS(u0 + u). Then we have

‖v‖Lp([0,T ],U) ≤ c‖Nθ+Ag+F (x)‖Lp([0,T ],X)

for some x ∈ S(u0 + u), where c is the constant given in Lemma 4.3. Hence from
the definition of Nθ+Ag+F and assumptions (H1) and (H2), there is an f ∈ F (., x.)
such that

‖v‖Lp([0,T ],U)

≤ c(‖θ‖Lp([0,T ],X) + ‖A(·)g(·, x·)‖Lp([0,T ],X) + ‖f(·)‖Lp([0,T ],X))

≤ c
[
‖θ‖Lp([0,T ],X) + (‖α‖p + ‖β‖p)(1 + ‖xs‖B)

]
≤ c

[
‖θ‖Lp([0,T ],X) + (‖α‖p + ‖β‖p)(1 + K̃‖x‖C([0,T ],X) + M̃‖ϕ‖B)

]
≤ c1 + c2‖x‖C([0,T ],X)

≤ c1 + c2C2

(
C1 +M0‖B(u0 + u)‖Lp([0,T ],X)

)
where c1 = c‖θ‖Lp([0,T ],X) + c

[
(‖α‖p + ‖β‖p)(1 + M̃‖ϕ‖B)

]
, c2 = cK̃(‖α‖p + ‖β‖p),

and the last inequality follows by (2.13). Thus,

‖v‖Lp([0,T ],U) ≤ ρ0 + ρ1‖B‖
(
‖u0‖Lp([0,T ],U) + ‖u‖Lp([0,T ],U)

)
where ρ0 = c1 + c2C1C2 and ρ1 = c2C2M0. Therefore, if ‖B‖ ≤ ρ := 1

ρ1
, then there

is a number r > ρ0 + ρ1‖B‖‖u0‖Lp([0,T ],U) such that

‖v‖Lp([0,T ],U) ≤ r,

provided ‖u‖Lp([0,T ],U) ≤ r, yielding Φ(B(0, r)) ⊂ B(0, r).
Finally, by the compactness of S(u0 +B(0, r)), the existence of a fixed point for

Φ follows from Theorem 4.2 due to the fact that

K := Φ(B(0, r)) = CNθ+Ag+FS(u0 +B(0, r)) ⊂ B(0, r)

is a compact set. The proof is completed. □
The reachability set of controlled problem (1.1) is defined by

RF := {x(T ) |x ∈ SF,φ(u) for some u ∈ Lp([0, T ], U)}.
Similarly, R0 is the reachability set for the corresponding linear problem:

d

dt
x(t) = A(t)x(t) +Bu(t), t ∈ [0, T ], t 6= ti
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∆x(ti) = Ii(xti), i = 1, 2, . . . ,m,(4.2)

x(0) = ϕ(0).

In other words,

R0 =

{
x(T )

∣∣∣∣x(t) = U(t, 0)ϕ(0) +

∫ t

0
U(t, s)Bu(s)ds+

m∑
i=1

U(t, ti)I(xti)

for all t ∈ [0, T ] and some control u ∈ Lp([0, T ], U)

}
The readers are referred to [19] and [63] for the basic notions and facts of control
problems. Now, it is time to introduce the notion of apprximate controllability of
evolution system.

Definition 4.5. Problem (1.1) is said to be exactly controllable if RF = X. It
is called approximately controllable if RF = X. The approximate controllability of
(4.2) is defined likewise.

It is easy to see taht (4.2) is approximately controllable if and only if R(WT ) = X.
The follwing result can be shown using similar arguments as in [19,61,63].

Theorem 4.6. The linear impulsive system (4.2) is approximately controllable if
(WT )

∗x∗ = 0 for all x∗ ∈ X∗ =⇒ x∗ = 0, i.e., if (WT )
∗ is injective.

We are now in the position to prove the main result of the present article:

Theorem 4.7. Under the hypotheses of Throrem 4.6, Problem (1.1) is approxi-
mately controllable provided the correspoding linear problem (4.2) is approximately
controllable, i.e., provided the conditions of Theorem 4.6 hold.

Proof. Suppose that the corresponding linear problem (4.2) is approximately con-
trollable. It suffices to show that R0 ⊂ RF . In fact, for each ξ ∈ R0, there exists
u0 ∈ Lp([0, T ], U) such that

ξ = U(T, 0)ϕ(0) +WTBu0(·)

Take a fixed point û ∈ Φ(·) = CNθ+Ag+FS(u0 + ·) and set

u := u0 + û.

Choose x̂ ∈ S(u) and it is ready to see that

û = CNθ+Ag+FS(x̂)

whence by (4.1) and Lemma 4.3

x̂(T ) = U(T, 0)ϕ(0) + U(T, 0)g(0, ϕ) + g(T, xT )

+ WT

(
A(·)g(·, x̂·) + f(·, x̂·)

)
+WTBu(·)

= U(T, 0)ϕ(0) +WT θ +WT

(
A(·)g(·, x̂·) + f(·, x̂·)

)
+WTB

(
u0(·) + û(·)

)
=
(
U(T, 0)ϕ(0) +WTBu0(·)

)
+WTNθ+Ag+F (x̂) +WTBû(·)

= ξ +WTNθ+Ag+F (x̂) +WTBCNθ+Ag+FS(x̂)
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= ξ

for some integrable selection f ∈ F . Thus, R0 ⊂ RF and the proof is completed. □

5. An example

Let Ω be a bounded domain in R3. In this section, we consider the following
distributed control problem with a given profile in L2(Ω) which arises in the study
of heat flow in materials with memory:

∂

∂t

[
k0x(t, ω) +

∫ t

−∞
k1(t− s)x(s, ω)ds

]
+ k∞(t, ω)x(t, ω)

∈ c0∆x(t, ω) +

∫ t

−∞
k2(t− s)Q(t, x(s, ω))ds+ b(ω)u(t, ω), on [0, T ]× Ω,(5.1)

x(t, ω) = 0, on [0, T ]× ∂Ω,(5.2)

x(σ, ω) = ϕ(σ, ω) ∈ B, σ ≤ 0, ξ ∈ Ω,(5.3)

∆x(ti, ·) = x(t+i , ·)− x(t−i , ·) =
∫
Ω
pi(x(ti, ω), ·)dω,(5.4)

where x(t, ω) represents the temperature of the point ω at time t, k0 > 0 and c0 > 0
are respectively the heat capacity and thermal conductivity, k1 is nonnegative and
measurable on [0,∞), k2 ∈ L1(0,∞) and nonincreasing,

(5.5) k∞ ∈ Cα([0, T ], X),

Q : [0, T ] × R → Pc,k(R) is a multivalued function satisfying the Carathéodory
condition, b ∈ L2(Ω) is a given function and u : [0, T ] × Ω satisfies u(t, ·) ∈ L2(Ω)
for all t ∈ [0, T ].

Let X = L2(Ω), Y = W 2,2(Ω) ∩ W 1,p
0 (Ω) and consider the linear operator B

defined on X by

(Bξ)(ω) := b(ω)ξ(ω), ξ ∈ X.

For simplicity, we choose c0 = k0 = 1. Define A(t), t ∈ [0, T ] in L2(Ω) by

(A(t)ψ)(ω) = (∆ψ)(ω)− k∞(t, ω)ψ(ω), ω ∈ Ω,

on the common domain D(A(t)) := Y . By Lunardi [40] (Theorem 3.1.3(ii), p.73),
A(t) are sectorial operators in L2(Ω), and (5.5) implies that A(·) ∈ Cα([0, T ], L(Y,X)).
Therefore the following parabolic nonautonomous system{

x′(t) = A(t)x(t), t ≥ s,

x(s) = x0 ∈ X.

has an associated evolution family {U(t, s)}0≤s<t≤T on X such that U(t, s)X ⊂ Y
and ‖U(t, s)‖ ≤M0 for all 0 ≤ s < t ≤ T and some M0 > 0 (see [22,40]). Moreover,
by the Rellick-Kondrachov theorem, the embedding Y ↪→ X is compact and it thus
follows the compactness of U(t, s). We take the phase space

B = C∞ = {φ ∈ C((−∞, 0], X) : lim
σ→−∞

φ(σ) exists in X}
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endowed with the norm

‖φ‖B = ‖φ‖∞ = sup
−∞<σ≤0

‖φ(σ)‖, φ ∈ C∞.

It is known (see [32], p.14) that C∞ satisfies the axioms (A), (A1) and (B) with

(5.6) H = 1, K(t) =M(t) = 1 for t ≥ 0.

To apply our abstract results, we set B := {ϕ ∈ B : ϕ(σ) ∈ Y for all σ ≤ 0}, and
for all t ∈ [0, T ], define respectively that

(5.7) g(t, φ) :=

∫ ∞

0
k1(s)φ(−s, ·)ds, φ ∈ B,

(5.8) F (t, φ) :=

∫ ∞

0
k2(s)Q(t, φ(−s, ·))ds−A(t)g(t,1B(φ)), ϕ ∈ B,

where 1B is the characteristic function of B, and

(5.9) Ii(φ) =

∫
Ω
pi(φ(0, ω), ·)dω, φ ∈ B.

Then it is already to see that the system (5.1-(5.4) is transformed into

d

dt
[x(t) + g(t, xt)] ∈ A(t)x(t) + F (t, xt) +Bu(t), t ∈ [0, T ], t 6= ti

∆x(ti) = Ii(xti), i = 1, 2, . . . ,m,

x0 = ϕ ∈ B,

by letting [x(t)](ω) := x(t, ω) for t ∈ [0, T ] and [ϕ(σ)](ω) := ϕ(σ, ω) for σ ≤ 0, ω ∈ Ω.
It is clear from (5.7) that g(t, ϕ) ∈ Y whenever ϕ ∈ B. To show that our abstract
result can be applied to this system, we impose some assumptions:

(C1) k1, k2 ∈ L2(0,∞).
(C2) Q : [0, T ]×R → Pc,k(R) is a multimap satisfying the Carathéodory condition

and there exist a function m ∈ L1([0, T ]) and a constant κ such that

‖Q(t, τ)‖ ≤ κm(t)|τ |, 0 ≤ t ≤ T, τ ∈ R.

(C3) The functions pi : R × Ω → R, i = 1, 2, . . . ,m, are continuous, and there
are positive constants li such that

|pi(τ1, ω)− pi(τ2, ω)| ≤ li|τ1 − τ2|, ω ∈ Ω, τ1, τ2 ∈ R.

We shall prove that g and F satisfies assumptions (H1)-(H3). In fact

‖A(t)g(t, ϕ)‖ =

∥∥∥∥∫ ∞

0
k1(s)A(t)ϕ(−s)ds

∥∥∥∥ ≤ α(t)(1 + ‖ϕ‖B)

where α(t) := ‖k1‖2‖A(t)‖L(Y,X). Choose a selection q(·, ·) in Q(·, ·), and ϕ ∈ B and
then

‖F (t, ϕ)‖2 =
∫
Ω

(∫ 0

−∞
k2(−s)q(t, ϕ(s, ω))ds

)2

dω
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≤ κ

∫
Ω

(∫ 0

−∞
k2(−s)m(t)|ϕ(s, ω)|ds

)2

dω

≤ (κ‖k2‖2m(t)‖φ‖B)2 ,

yielding

‖F (t, ϕ)‖ ≤ β(t)(1 + ‖ϕ‖B),
where β(t) := κ‖k2‖2m(t). This shows that F satisfies (H3). Moreover, it follows
by (5.9), condition (C3) and axiom (A)(ii), we have

‖I1(φ)− Ii(ψ)‖ ≤
∫
Ω

∫
Ω
|pi(φ(0, ξ), ω)− pi(ψ(0, ξ), ω)|dξdω

≤ li

∫
Ω

∫
Ω
|φ(0, ξ)− ψ(0, ξ)|dξdω

≤ |Ω|l1‖φ(0)− ψ(0)‖
≤ |Ω|l1‖φ− ψ‖B,

where |Ω| is the volume of Ω.
Let

Bu :=

∫ T

0
U(T, s)Bu(s)ds

and B∗ be the adjoint operator of B. The next result is a consequence of Theorem
4.6 and 4.7.

Theorem 5.1. Suppose that the conditions (C1)-(C3) are satisfied, ‖b‖L2(Ω) is
sufficiently small, and

M0|Ω|
m∑
i=1

li < 1.

If the implication

B∗x∗ = 0 for x∗ ∈ X∗ =⇒ x∗ = 0

holds, then the system (5.1)-(5.4) is approximately controllable.
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[29] E. Hernández and H. Henŕıquez, Existence results for partial neutral functional differential

equations with unbounded delay, Journal of Mathematical Analysis and Applications 221

(1998), 452-475.



28 H. LIU, S.-M. GUU, AND C.-T. PANG
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