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In recent years, the method (EGM) has received great attention from many
authors, that is, there are many results that had been obtained by the extragradient
method and its modifications when A is monotone and L-Lipschitz continuous in
infinite-dimensional Hilbert spaces (see, for instance, [8, 28, 34, 39, 42, 43, 49]).

It is easy to observe that the extragradient method is the need to calculate two
projections onto the closed convex set C in each iteration. So, in case the set C
is not simple to calculate projection onto it, a minimum distance problem has to
be solved twice in one iteration, which is a fact that might affect the efficiency and
applicability of this method (EGM).

To reduce the projection onto the feasible set C, Censor et al. [4] introduced
the modified extragradient method which is called the subgradient extragradient
method, in this new method, they replaced the second projection onto C by a
projection onto a half-space:

(1.2) x0 ∈ H, yn = PC(xn − λAxn), xn+1 = PTn(xn − λAyn),

where Tn = {w ∈ H : ⟨xn − λAxn − yn, w − yn⟩ ≤ 0} and λ ∈
(
0,

1

L

)
.

In order to obtain the strong convergence of the method (1.2), Censor et al. [5]
also introduced the following hybrid subgradient extragradient method:

(1.3)

x0 ∈ H, yn = PC(xn − µAxn),

zn = αnxn + (1− αn)PTn(xn − λAyn),

xn+1 = PCn∩Qnx0,

where Tn = {x ∈ H : ⟨xn − λAxn − yn, x − yn⟩ ≤ 0}, Cn = {w ∈ H : ∥zn − w∥ ≤
∥xn −w∥}, Qn = {w ∈ H : ⟨xn −w, x0 − xn⟩ ≥ 0}. They proved under appropriate
conditions the the sequence {xn} generated by (1.3) converges strongly to a point
u∗ = PV I(C,A)x0.

The strong convergence of the sequence {xn} generated by (1.3) seems to be
difficult to use in practical problems because the computation of the next iterate
have to use a subproblem to find a point in the intersection of two additional half-
spaces.

To overcome this barrier, Kraikaew and Saejung [26] combined the subgradient
extragradient method and the Halpern method to propose an algorithm, which is
called the Halpern subgradient extragradient method for solving the problem (VI)
as follows:

(1.4) x0 ∈ H, yn = PC(xn − λAxn), xn+1 = αnx0 + (1− αn)PTn(xn − λAyn),

where Tn = {x ∈ H : ⟨xn − λAxn − yn, x − yn⟩ ≤ 0}, λ ∈ (0,
1

L
), {αn} ⊂ (0, 1),

limn→∞ αn = 0,
∑∞

n=1 αn = +∞. They presented that the sequence {xn} generated
by the method (1.4) converges strongly to a point u∗ = PV I(C,A)x0.
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In addition, in order to speed up the algorithm convergence rate, inertial algo-
rithms for variational inequality and optimization problems has recently received
considerable attention, see, for example [12, 13, 11, 41] and the references therein.

In [41], Thong et al. introduced an iterative algorithm for solving VI (1) when the
variational inequality mapping is a monotone and Lipschitz continuous mapping.
The obtained strong convergence result is based on the viscosity method and the
inertial Tseng extragradient method.

The main drawback of the algorithm in [41] is that the step size requires the
knowledge of the Lipschitz constant of the mapping, this can restrict the applications
of the method because when this algorithm with a great value of the Lipschitz
constant can lead to very small step size, which may lead to a slow convergent
algorithm.

In [40], using the inertial technique Thong and Hieu proposed the inertial sub-
gradient extragradient method as follows:
(1.5)
x0, x1 ∈ H, ϑn = xn+αn(xn−xn−1), yn = PC(ϑn−λAϑn), xn+1 = PTn(ϑn−λAyn),

where Tn = {x ∈ H|⟨ϑn−λAϑn− yn, x− yn⟩ ≤ 0}. Under some suitable conditions,
they showed that the above algorithm converges weakly to a solution of VI (1.1).
Since in infinite dimensional spaces norm convergence is often more desirable, a
natural question is raised:

Question: Can we give strong convergence results for the algorithm (1.5) with a
self adaptive step size without needing the information of the Lipschitz constant or
non Lipschitz continuous condition of the mapping A?

Motivated and inspired by the works of Attouch and Alvarez [2], Censor et al.
[5], Moudafi [32]. In this paper, we give a positive answer to this question. We
introduce two new improved subgradient extragradient type algorithms for finding
a solution of the VI (1.1) in the setting of infinite-dimensional real Hilbert spaces.
The advantage of the first algorithm has an additional inertial extrapolation term
in the algorithm formulation which can be regarded as the procedure of speeding up
the convergence properties of subgradient extragradient type iterative algorithms
for variational inequality problems (see, for example, [2, 27, 35]). Moreover, it need
only to compute one projection on the feasible set per iteration and the convergence
of the first algorithm is proved without any requirement of the prior knowledge of
the Lipschitz constant as well as the sequentially weak continuity of the variational
inequality mapping. The advantage of the second algorithm is that it does not
require the Lipschitz continuous condition of the associated mapping.

This paper is organized as follows: In Sect. 2, we recall some definitions and
preliminary results for further use. Sect. 3 deals with analyzing the convergence
of the proposed algorithms. Finally, in Sect. 4, we perform some numerical exper-
iments to illustrate the behaviors of the proposed algorithms in comparison with
other algorithms.
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2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.

• The weak convergence of {xn} to x is denoted by xn ⇀ x as n → ∞.
• The strong convergence of {xn} to x is written as xn → x as n → ∞.

For each x, y ∈ H, we have the following:

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

For all point x ∈ H, there exists the unique nearest point in C, denoted by PCx,
such that

∥x− PCx∥ ≤ ∥x− y∥ ∀y ∈ C.

PC is called the metric projection of H onto C. It is known that PC is nonex-
pansive.

Lemma 2.1 ([18]). Let C be a nonempty closed convex subset of a real Hilbert space
H. For any x ∈ H and z ∈ C, we have

z = PCx ⇐⇒ ⟨x− z, z − y⟩ ≥ 0 ∀y ∈ C.

Lemma 2.2 ([18]). Let C be a closed convex subset in a real Hilbert space H and
x ∈ H. Then

(1) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩ for all y ∈ H;
(2) ∥PCx− y∥2 ≤ ∥x− y∥2 − ∥x− PCx∥2 for all y ∈ C.

Lemma 2.3 ([10]). For x ∈ H and α ≥ β > 0 the following inequalities hold.

∥x− PC(x− αAx)∥
α

≤ ∥x− PC(x− βAx)∥
β

,

∥x− PC(x− βAx)∥ ≤ ∥x− PC(x− αAx)∥.

For some more properties of the metric projection, refer to Section 3 in [18].

Definition 2.4. Let T : H → H be a mapping. Then

(1) The mapping T is called L-Lipschitz continuous with L > 0 if

∥Tx− Ty∥ ≤ L∥x− y∥ ∀x, y ∈ H.

(2) T is called monotone if

⟨Tx− Ty, x− y⟩ ≥ 0 ∀x, y ∈ H.

(3) T is called pseudomonotone if

⟨Tx, y − x⟩ ≥ 0 =⇒ ⟨Ty, y − x⟩ ≥ 0 ∀x, y ∈ H.

(4) The mapping T is called sequentially weakly continuous if for each
sequence {xn} we have: xn converges weakly to x implies {Txn} converges
weakly to Tx.
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It is easy to see that every monotone operator is pseudomonotone but the converse
is not true.

Lemma 2.5 ([21]). Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2

is uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1.
Then, A(M) is bounded.

Lemma 2.6 ([9, Lemma 2.1]). Consider the problem V I(C,A) with C being a
nonempty, closed, convex subset of a real Hilbert space H and A : C → H being
pseudo-monotone and continuous. Then, x∗ is a solution of V I(C,A) if and only if

⟨Ax, x− x∗⟩ ≥ 0 ∀x ∈ C.

Lemma 2.7 ([36]). Let {an} be a sequence of nonnegative real numbers, {αn} be
a sequence of real numbers in (0, 1) with

∑∞
n=1 αn = ∞ and {bn} be a sequence of

real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn, ∀n ≥ 1,

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying
lim infk→∞(ank+1 − ank

) ≥ 0 then limn→∞ an = 0.

3. Main results

For the convergence of the methods, we assume the following conditions.

Condition 1. The feasible set C is nonempty, closed, and convex.

Condition 2. The mapping A : H → H is L-Lipschitz continuous, pseudomono-
tone on H.

Condition 3. The solution set VI(C,A) is nonempty.

Condition 4. Let g : H → H be a contraction mapping with contraction parameter
κ ∈ [0, 1). Moreover, we also assume {τn} and {βn} are two positive sequences such

that τn = ◦(βn), means limn→∞
τn
βn

= 0, where {βn} ⊂ (0, 1) satisfies the following

conditions:

lim
n→∞

βn = 0,

∞∑
n=1

βn = ∞.

We introduce the first algorithm:

Algorithm 1. Let λ1 > 0, α > 0, µ ∈ (0, 1) and x0, x1 ∈ H be arbitrary and {ηn}
be a nonnegative real numbers sequence such that

∑∞
n=1 ηn < +∞.

Choose

αn =

min

{
α, τn

∥xn−xn−1∥

}
if xn ̸= xn−1,

α if otherwise.
(3.1)
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Compute

ϑn = xn + αn(xn − xn−1),

yn = PC(ϑn − λnAϑn)

xn+1 = βng(xn) + (1− βn)PTn(ϑn − λnAyn),

where Tn := {z ∈ H : ⟨ϑn − λnAϑn − yn, z − yn⟩ ≤ 0}.
Update

λn+1 =

min{µ∥ϑn − yn∥2 + ∥zn − yn∥2

2⟨Aϑn −Ayn, zn − yn⟩
, λn + ηn} if ⟨Aϑn −Ayn, zn − yn⟩ > 0,

λn + ηn otherwise,

(3.2)

wherezn := PTn(ϑn − λnAyn).

Remark 3.1. As noted in [33] the sequence {λn} generated by (3.2) is allowed to
increase from iteration to iteration.

We start the analysis of the algorithm’s convergence by proving the following
lemmas

Lemma 3.2 ([33]). Let {λn} be a sequence generated by (3.2). Then

lim
n→∞

λn = λ with λ ∈
[
min

{
λ1,

µ

L

}
, λ1 + η

]
,

where η =
∑∞

n=1 ηn. Moreover, we also obtain

(3.3) 2⟨Aϑn −Ayn, zn − yn⟩ ≤
µ

λn+1
∥ϑn − yn∥2 +

µ

λn+1
∥zn − yn∥2 ∀n.

The following lemmas are quite helpful for analyzing the convergence of algo-
rithm.

Lemma 3.3. Assume that Conditions 1–3 hold. Let {zn} be a sequence generated
by Algorithm 1. Then

(3.4)

∥zn − u∗∥2 ≤ ∥ϑn − u∗∥2 −
(
1− µ

λn

λn+1

)
∥ϑn − yn∥2

−
(
1− µ

λn

λn+1

)
∥zn − yn∥2, ∀u∗ ∈ V I(C,A),

where zn := PTn(ϑn − λnAyn).

Proof. Using the inequality (3.3), Lemma 2.2 and u∗ ∈ V I(C,A) ⊂ C ⊂ Tn to prove
the inequality (3.38). Indeed, we have

∥zn − u∗∥2 =∥PTn(ϑn − λnAyn)− PTnu
∗∥2 ≤ ⟨zn − u∗, ϑn − λnAyn − u∗⟩

=
1

2
∥zn − u∗∥2 + 1

2
∥ϑn − λnAyn − u∗∥2 − 1

2
∥zn − ϑn + λnAyn∥2
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=
1

2
∥zn − u∗∥2 + 1

2
∥ϑn − u∗∥2 + 1

2
λ2
n∥Ayn∥2 − ⟨ϑn − u∗, λnAyn⟩

− 1

2
∥zn − ϑn∥2 −

1

2
λ2
n∥Ayn∥2 − ⟨zn − ϑn, λnAyn⟩

=
1

2
∥zn − u∗∥2 + 1

2
∥ϑn − u∗∥2 − 1

2
∥zn − ϑn∥2 − ⟨zn − u∗, λnAyn⟩.

This implies that

(3.5) ∥zn − u∗∥2 ≤ ∥ϑn − u∗∥2 − ∥zn − ϑn∥2 − 2⟨zn − u∗, λnAyn⟩.

Since u∗ is the solution of VI, we have ⟨Au∗, x − u∗⟩ ≥ 0 for all x ∈ C. By the
pseudomontonicity of A on C we have ⟨Ax, x − u∗⟩ ≥ 0 for all x ∈ C. Taking
x := yn ∈ C we get

⟨Ayn, u∗ − yn⟩ ≤ 0.

Thus,

⟨Ayn, u∗ − zn⟩ =⟨Ayn, u∗ − yn⟩+ ⟨Ayn, yn − zn⟩ ≤ ⟨Ayn, yn − zn⟩.(3.6)

From (3.5) and (3.6) we obtain

∥zn − u∗∥2 ≤∥ϑn − u∗∥2 − ∥zn − ϑn∥2 + 2λn⟨Ayn, yn − zn⟩
=∥ϑn − u∗∥2 − ∥zn − yn∥2 − ∥yn − ϑn∥2 − 2⟨zn − yn, yn − ϑn⟩
+ 2λn⟨Ayn, yn − zn⟩

=∥ϑn − u∗∥2 − ∥zn − yn∥2 − ∥yn − ϑn∥2 + 2⟨ϑn − λnAyn − yn, zn − yn⟩.(3.7)

Since yn = PTn(ϑn − λnAϑn) and zn ∈ Tn we have

2⟨ϑn − λnAyn − yn,zn − yn⟩
= 2⟨ϑn − λnAϑn − yn, zn − yn⟩+ 2λn⟨Aϑn −Ayn, zn − yn⟩
≤ 2λn⟨Aϑn −Ayn, zn − yn⟩,(3.8)

which, together with (3.3) implies that

2⟨ϑn − λnAyn − yn, zn − yn⟩ ≤ µ
λn

λn+1
∥ϑn − yn∥2 + µ

λn

λn+1
∥zn − yn∥2.

From (3.7) and (3.8) we get

∥zn − u∗∥2 ≤∥ϑn − u∗∥2 − (1− µ
λn

λn+1
)∥yn − ϑn∥2 − (1− µ

λn

λn+1
)∥zn − yn∥2.

□

Modifying the technique in [43], we develop the following auxiliary result.

Lemma 3.4. Assume that Conditions 1–3 hold and the mapping A : H → H
satisfies the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ∥Az∥ ≤ lim inf
n→∞

∥Axn∥.

If there exists a subsequence {ϑnk
} of {ϑn} convergent weakly to z ∈ H and

limk→∞ ∥ϑnk
− ynk

∥ = 0, then z ∈ VI(C,A).
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Proof. We have

⟨ϑnk
− λnk

Aϑnk
− ynk

, x− ynk
⟩ ≤ 0 ∀x ∈ C,

or equivalently

1

λnk

⟨ϑnk
− ynk

, x− ynk
⟩ ≤ ⟨Aϑnk

, x− ynk
⟩ ∀x ∈ C.

Consequently

(3.9)
1

λnk

⟨ϑnk
− ynk

, x− ynk
⟩+ ⟨Aϑnk

, ynk
− ϑnk

⟩ ≤ ⟨Aϑnk
, x− ϑnk

⟩ ∀x ∈ C.

Being weakly convergent, {ϑnk
} is bounded. Then, by the Lipschitz continuity of

A, {Aϑnk
} is bounded. As ∥ϑnk

− ynk
∥ → 0, {ynk

} is also bounded and λnk
≥

min{λ1,
µ

L
}. Passing (3.9) to limit as k → ∞, we get

(3.10) lim inf
k→∞

⟨Aϑnk
, x− ϑnk

⟩ ≥ 0 ∀x ∈ C.

Moreover, we have

(3.11) ⟨Aynk
, x−ynk

⟩ = ⟨Aynk
−Aϑnk

, x−ϑnk
⟩+⟨Aϑnk

, x−ϑnk
⟩+⟨Aynk

, ϑnk
−ynk

⟩.

Since limk→∞ ∥ϑnk
− ynk

∥ = 0 and A is L-Lipschitz continuous on H, we get

lim
k→∞

∥Aϑnk
−Aynk

∥ = 0

which, together with (3.10) and (3.11) implies that

lim inf
k→∞

⟨Aynk
, x− ynk

⟩ ≥ 0.

Next, we show that z ∈ VI(C,A). We choose a sequence {ϵk} of positive numbers
decreasing and tending to 0. For each k, we denote by Nk the smallest positive
integer such that

(3.12) ⟨Aynj , x− ynj ⟩+ ϵk ≥ 0 ∀j ≥ Nk.

Since {ϵk} is decreasing, it is easy to see that the sequence {Nk} is increasing.
Furthermore, for each k, since {yNk

} ⊂ C we have AyNk
̸= 0 and, setting

vNk
=

AyNk

∥AyNk
∥2

,

we have ⟨AyNk
, vNk

⟩ = 1 for each k. Now, we can deduce from (3.12) that for each
k

⟨AyNk
, x+ ϵkvNk

− yNk
⟩ ≥ 0.

From A is pseudomonotone on H, we get

⟨A(x+ ϵkvNk
), x+ ϵkvNk

− yNk
⟩ ≥ 0.

This implies that

(3.13) ⟨Ax, x− yNk
⟩ ≥ ⟨Ax−A(x+ ϵkvNk

), x+ ϵkvNk
− yNk

⟩ − ϵk⟨Ax, vNk
⟩.
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Now, we show that limk→∞ ϵkvNk
= 0. Indeed, since ϑnk

⇀ z and limk→∞ ∥ϑnk
−

ynk
∥ = 0, we obtain yNk

⇀ z as k → ∞. By {yn} ⊂ C, we obtain z ∈ C. Since the
mapping A satisfies Condition 3, we have

0 < ∥Az∥ ≤ lim inf
k→∞

∥Aynk
∥.

Note that, we can assume that ∥Az∥ > 0, if Az = 0 then stop and z is a solution of
V I(C,A). Since {yNk

} ⊂ {ynk
} and ϵk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

∥ϵkvNk
∥ = lim sup

k→∞

(
ϵk

∥Aynk
∥

)
≤ lim supk→∞ ϵk

lim infk→∞ ∥Aynk
∥
= 0,

which implies that limk→∞ ϵkvNk
= 0.

Now, letting k → ∞, then the right hand side of (3.13) tends to zero by A is
uniformly continuous, {ϑNk

}, {vNk
} are bounded and limk→∞ ϵkvNk

= 0. Thus, we
get

lim inf
k→∞

⟨Ax, x− yNk
⟩ ≥ 0.

Hence, for all x ∈ C we have

⟨Ax, x− z⟩ = lim
k→∞

⟨Ax, x− yNk
⟩ = lim inf

k→∞
⟨Ax, x− yNk

⟩ ≥ 0.

By Lemma 2.6, z ∈ VI(C,A) and the proof is complete. □

Theorem 3.5. Assume that Conditions 1–4 hold and the mapping A : H → H
satisfies the following condition

(3.14) whenever {xn} ⊂ C, xn ⇀ z, one has ∥Az∥ ≤ lim inf
n→∞

∥Axn∥.

Then the sequence {xn} generated by Algorithm 1 converges strongly to an element
u∗ ∈ V I(C,A), where u∗ = PV I(C,A) ◦ g(u∗).

Proof. Claim 1. The sequence {xn} is bounded. Indeed, for u∗ = PV I(C,A) ◦ g(u∗),
by Lemma 3.3 we have

(3.15) ∥zn−u∗∥2 ≤ ∥ϑn−u∗∥2− (1−µ
λn

λn+1
)∥ϑn− yn∥2− (1−µ

λn

λn+1
)∥zn− yn∥2.

Since limn→∞(1− µ
λn

λn+1
) = 1− µ > 0, thus there exists n0 ∈ N such that

(1− µ
λn

λn+1
) > 0 ∀n ≥ n0.

Therefore, we have

(3.16) ∥zn − u∗∥ ≤ ∥ϑn − u∗∥ ∀n ≥ n0.

From the definition of ϑn, we get

∥ϑn − u∗∥ = ∥xn + αn(xn − xn−1)− u∗∥
≤ ∥xn − u∗∥+ αn∥xn − xn−1∥

= ∥xn − u∗∥+ βn.
αn

βn
∥xn − xn−1∥.(3.17)
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Since (3.1), we have αn∥xn−xn−1∥ ≤ τn for all n, which together with limn→∞
τn
βn

=

0 implies that

lim
n→∞

αn

βn
∥xn − xn−1∥ ≤ lim

n→∞

τn
βn

= 0.

It follows that there exists a constant M1 > 0 such that

(3.18)
αn

βn
∥xn − xn−1∥ ≤ M1 ∀n ≥ 1.

Combining (3.16), (3.17) and (3.18), we obtain

(3.19) ∥zn − u∗∥ ≤ ∥ϑn − u∗∥ ≤ ∥xn − u∗∥+ βnM1 ∀n ≥ n0.

From the definition of {xn}, we get

∥xn+1 − u∗∥ = ∥βng(xn) + (1− βn)zn − u∗∥
= ∥βn(g(xn)− u∗) + (1− βn)(zn − u∗)∥
≤ βn∥g(xn)− u∗∥+ (1− βn)∥zn − u∗∥
≤ βn∥g(xn)− g(u∗)∥+ βn∥g(u∗)− u∗∥+ (1− βn)∥zn − u∗∥
≤ βnκ∥xn − u∗∥+ βn∥g(u∗)− u∗∥+ (1− βn)∥zn − u∗∥.(3.20)

Substituting (3.19) into (3.20), we obtain

∥xn+1 − u∗∥ ≤ (1− (1− κ)βn)∥xn − u∗∥+ βnM1 + βn∥g(u∗)− u∗∥ ∀n ≥ n0

= (1− (1− κ)βn)∥xn − u∗∥+ (1− κ)βn
M1 + ∥g(u∗)− u∗∥

1− κ
∀n ≥ n0

≤ max
{
∥xn − u∗∥, M1 + ∥g(u∗)− u∗∥

1− κ

}
∀n ≥ n0

≤ · · ·

≤ max
{
∥xn0 − u∗∥, M1 + ∥g(u∗)− u∗∥

1− κ

}
.

This implies {xn} is bounded. We also get {zn}, {g(xn)}, {ϑn} are bounded.

Claim 2.

(1− βn)
(
1− µ

λn

λn+1

)
∥ϑn − yn∥2 + (1− βn)

(
1− µ

λn

λn+1

)
∥zn − yn∥2

≤ ∥xn − u∗∥2 − ∥xn+1 − u∗∥2 + βnM4,

for some M4 > 0. Indeed, we get

∥xn+1 − u∗∥2 ≤ βn∥g(xn)− u∗∥2 + (1− βn)∥zn − u∗∥2

≤ βn(∥g(xn)− g(u∗)∥+ ∥g(u∗)− u∗∥)2 + (1− βn)∥zn − u∗∥2

≤ βn(κ∥xn − u∗∥+ ∥g(u∗)− u∗∥)2 + (1− βn)∥zn − u∗∥2

≤ βn(∥xn − u∗∥+ ∥g(u∗)− u∗∥)2 + (1− βn)∥zn − u∗∥2

= βn∥xn − u∗∥2 + βn(2∥xn − u∗∥ · ∥g(u∗)− u∗∥
+ ∥g(u∗)− u∗∥2) + (1− βn)∥zn − u∗∥2
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≤ βn∥xn − u∗∥2 + (1− βn)∥zn − u∗∥2 + βnM2(3.21)

for some M2 > 0. Substituting (3.15) into (3.21), we get

∥xn+1 − u∗∥2 ≤ βn∥xn − u∗∥2 + (1− βn)∥ϑn − u∗∥2

− (1− βn)
(
1− µ

λn

λn+1

)
∥ϑn

− yn∥2 − (1− βn)
(
1− µ

λn

λn+1

)
∥zn − yn∥2 + βnM2,

which implies from (3.19) that

∥ϑn − u∗∥2 ≤ (∥xn − u∗∥+ βnM1)
2

= ∥xn − u∗∥2 + βn(2M1∥xn − u∗∥+ βnM
2
1 )

≤ ∥xn − u∗∥2 + βnM3,(3.22)

for some M3 > 0. Combining (3.22) and (3.22), we obtain

∥xn+1 − u∗∥2 ≤ βn∥xn − u∗∥2 + (1− βn)∥xn − u∗∥2

+ βnM3 − (1− βn)
(
1− µ

λn

λn+1

)
∥ϑn − yn∥2

− (1− βn)
(
1− µ

λn

λn+1

)
∥zn − yn∥2 + βnM2

= ∥xn − u∗∥2 + βnM3 − (1− βn)
(
1− µ

λn

λn+1

)
∥ϑn − yn∥2

− (1− βn)
(
1− µ

λn

λn+1

)
∥zn − yn∥2 + βnM2.

This implies that

(1− βn)
(
1− µ

λn

λn+1

)
∥ϑn − yn∥2 + (1− βn)

(
1− µ

λn

λn+1

)
∥zn − yn∥2

≤ ∥xn − u∗∥2 − ∥xn+1 − u∗∥2 + βnM4,

where M4 := M2 +M3.

Claim 3.

∥xn+1 − u∗∥2 ≤ (1− (1− κ)βn)∥xn − u∗∥2

+ (1− κ)βn ·
[ 2

1− κ
⟨g(u∗)− u∗, xn+1 − u∗⟩+ 3M

1− κ
· αn

βn
· ∥xn − xn−1∥

]
for some M > 0. Indeed, we have

∥ϑn − u∗∥2 = ∥xn + αn(xn − xn−1)− u∗∥2

= ∥xn − u∗∥2 + 2αn⟨xn − u∗, xn − xn−1⟩+ α2
n∥xn − xn−1∥2

≤ ∥xn − u∗∥2 + 2αn∥xn − u∗∥∥xn − xn−1∥+ α2
n∥xn − xn−1∥2.(3.23)
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Using (2.1), we have

∥xn+1 − u∗∥2 = ∥βng(xn) + (1− βn)zn − u∗∥2

= ∥βn(g(xn)− g(u∗)) + (1− βn)(zn − u∗) + βn(g(u
∗)− u∗)∥2

≤ ∥βn(g(xn)− g(u∗)) + (1− βn)(zn − u∗)∥2

+ 2βn⟨g(u∗)− u∗, xn+1 − u∗⟩
≤ βn∥g(xn)− g(u∗)∥2 + (1− βn)∥zn − u∗∥2

+ 2βn⟨g(u∗)− u∗, xn+1 − u∗⟩
≤ βnκ

2∥xn − u∗∥2 + (1− βn)∥zn − u∗∥2

+ 2βn⟨g(u∗)− u∗, xn+1 − u∗⟩
≤ βnκ∥xn − u∗∥2 + (1− βn)∥zn − u∗∥2

+ 2βn⟨g(u∗)− u∗, xn+1 − u∗⟩
≤ βnκ∥xn − u∗∥2 + (1− βn)∥ϑn − u∗∥2

+ 2βn⟨g(u∗)− u∗, xn+1 − u∗⟩.(3.24)

Substituting (3.23) into (3.24), we have

∥xn+1 − u∗∥2 ≤ (1− (1− κ)βn)∥xn − u∗∥2 + 2αn∥xn − u∗∥∥xn − xn−1∥
+ α2

n∥xn − xn−1∥2 + 2βn⟨g(u∗)− u∗, xn+1 − u∗⟩
= (1− (1− κ)βn)∥xn − u∗∥2

+ (1− κ)βn · 2

1− κ
⟨g(u∗)− u∗, xn+1 − u∗⟩

+ αn∥xn − xn−1∥(2∥xn − u∗∥+ αn∥xn − xn−1∥)
≤ (1− (1− κ)βn)∥xn − u∗∥2

+ (1− κ)βn · 2

1− κ
⟨g(u∗)− u∗, xn+1 − u∗⟩

+ αn∥xn − xn−1∥(2∥xn − u∗∥+ α∥xn − xn−1∥)
≤ (1− (1− κ)βn)∥xn − u∗∥2

+ (1− κ)βn · 2

1− κ
⟨g(u∗)− u∗, xn+1 − u∗⟩+ 3Mαn∥xn − xn−1∥

≤ (1− (1− κ)βn)∥xn − u∗∥2

+ (1− κ)βn ·
[ 2

1− κ
⟨g(u∗)− u∗, xn+1 − u∗⟩

+
3M

1− κ
· αn

βn
· ∥xn − xn−1∥

]
,

where M := supn∈N{∥xn − u∗∥, α∥xn − xn−1∥} > 0.

Claim 4. {∥xn − u∗∥2} converges to zero. Indeed, by Lemma 2.7 it suffices to
show that lim supk→∞⟨g(u∗)−u∗, xnk+1−u∗⟩ ≤ 0 for every subsequence {∥xnk

−u∗∥}
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of {∥xn − u∗∥} satisfying

lim inf
k→∞

(∥xnk+1 − u∗∥ − ∥xnk
− u∗∥) ≥ 0.

For this, suppose that {∥xnk
− u∗∥} is a subsequence of {∥xn − u∗∥} such that

lim infk→∞(∥xnk+1 − u∗∥ − ∥xnk
− u∗∥) ≥ 0. Then

lim inf
k→∞

(∥xnk+1 − u∗∥2 − ∥xnk
− u∗∥2)

= lim inf
k→∞

[(∥xnk+1 − u∗∥ − ∥xnk
− u∗∥)(∥xnk+1 − u∗∥+ ∥xnk

− u∗∥)]

≥ 0.

By Claim 2 we obtain

lim sup
k→∞

[
(1− βnk

)
(
1− µ

λnk

λnk+1

)
∥ϑnk

− ynk
∥2 + (1− βnk

)
(
1− µ

λnk

λnk+1

)
∥znk

− ynk
∥2
]

≤ lim sup
k→∞

[∥xnk
− u∗∥2 − ∥xnk+1 − u∗∥2 + βnk

M4]

≤ lim sup
k→∞

[∥xnk
− u∗∥2 − ∥xnk+1 − u∗∥2] + lim sup

k→∞
βnk

M4

= − lim inf
k→∞

[∥xnk+1 − u∗∥2 − ∥xnk
− u∗∥2]

≤ 0.

This implies that

(3.25) lim
k→∞

∥ynk
− ϑnk

∥ = 0 and lim
k→∞

∥znk
− ynk

∥ = 0.

Thus

(3.26) lim
k→∞

∥znk
− ϑnk

∥ = 0.

Now, we show that

(3.27) ∥xnk+1 − xnk
∥ → 0 as n → ∞.

Indeed, we have

(3.28) ∥xnk+1 − znk
∥ = βnk

∥znk
− g(xnk

)∥ → 0,

and

(3.29) ∥xnk
− ϑnk

∥ = αnk
∥xnk

− xnk−1∥ = βnk
.
αnk

βnk

∥xnk
− xnk−1∥ → 0.

From (3.26), (3.28) and (3.29), we get

∥xnk+1 − xnk
∥ ≤ ∥xnk+1 − znk

∥+ ∥znk
− ϑnk

∥+ ∥ϑnk
− xnk

∥ → 0.

Since the sequence {xnk
} is bounded, it follows that there exists a subsequence

{xnkj
} of {xnk

}, which converges weakly to some z ∈ H, such that

(3.30)
lim sup
k→∞

⟨g(u∗)− u∗, xnk
− u∗⟩ = lim

j→∞
⟨g(u∗)− u∗, xnkj

− u∗⟩ = ⟨g(u∗)− u∗, z − u∗⟩.

Using (3.29), we get

ϑnk
⇀ z as k → ∞,
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which, together with (3.25) and Lemma 3.4, we have z ∈ V I(C,A). From (3.30)
and the definition of u∗ = PV I(C,A) ◦ g(u∗), we have

(3.31) lim sup
k→∞

⟨g(u∗)− u∗, xnk
− u∗⟩ = ⟨g(u∗)− u∗, z − u∗⟩ ≤ 0.

Combining (3.27) and (3.31), we have

lim sup
k→∞

⟨g(u∗)− u∗, xnk+1 − u∗⟩ ≤ lim sup
k→∞

⟨g(u∗)− u∗, xnk
− u∗⟩

= ⟨g(u∗)− u∗, z − u∗⟩
≤ 0.(3.32)

Hence, by (3.32), limn→∞
αn

βn
∥xn − xn−1∥ = 0, Claim 3 and Lemma 2.7, we have

limn→∞ ∥xn − u∗∥ = 0. That is the desired result. □

Remark 3.6. (1) When the mapping A is monotone, we don’t need to impose
Condition (3.14), (see, [10, 42]).

(2) It should be emphasized here that, in our proof we need only to impose
Condition (3.14) is weaker than the sequentially weakly continuity of A which used
in recent articles [37, 42, 43].

(3) Our result generalizes some related results in the literature [38, 41, 46, 48, 47]
and hence might be applied to a wider class of nonlinear mappings. For example,
in our Theorem 3.5, we replaced the monotonicity by the pseudomonotonicity of A.

Next, we introduce the second algorithm, where the Lipschitz continuous condi-
tion of the variational inequality mapping is removed. The algorithm is of the form:

Algorithm 2. Let γ > 0, µ ∈ (0, 1), l ∈ (0, 1), α > 0 and x0, x1 ∈ H be arbitrary.
Choose

αn =

min

{
α, τn

∥xn−xn−1∥

}
if xn ̸= xn−1,

α if otherwise.

Compute

ϑn = xn + αn(xn − xn−1)

yn = PC(ϑn − λnAϑn),

xn+1 = βng(xn) + (1− βn)PTn(ϑn − λnAyn),

where Tn := {z ∈ H : ⟨ϑn − λnAϑn − yn, z − yn⟩ ≤ 0} and λn is chosen to be the
largest λ ∈ {γ, γl, γl2, ..., γlm, ...} satisfying

(3.33) λ∥Aϑn −Ayn∥ ≤ µ∥ϑn − yn∥.
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In order to the convergence analysis of Algorithm 2, we use the following condi-
tion:

Condition 2′. The mapping A : H → H is pseudomonotone on H and uniformly
continuous on bounded subsets of H.

Lemma 3.7. Assume that Conditions 1, 2′ 3 hold. Then, the Armijo linesearch
rule (3.33) is well-defined and λn ≤ γ for all n.

Proof. If ϑn ∈ VI(C,A) then ϑn = PC(ϑn − γAϑn), therefore (3.33) holds with
m = 0. For ϑn /∈ VI(C,A), suppose to the contrary that, for all m, we have

(3.34) γlm∥Aϑn −APC(ϑn − γlmAϑn)∥ > µ∥ϑn − PC(ϑn − γlmAϑn)∥.

Then,

(3.35) ∥Aϑn −APC(ϑn − γlmAϑn)∥ > µ
∥ϑn − PC(ϑn − γlmAϑn)∥

γlm
.

If ϑn ∈ C, invoking that PC and A are continuous, one sees that limm→∞ ∥ϑn −
PC(ϑn − γlmAϑn)∥ = 0. From the uniform continuity of A on bounded subsets of
H, we have

lim
m→∞

∥Aϑn −APC(ϑn − γlmAϑn)∥ = 0.

Combining this and (3.35), we get

(3.36) lim
m→∞

∥ϑn − PC(ϑn − γlmAϑn)∥
γlm

= 0.

For tm := PC(ϑn − γlmAϑn), we have

⟨tm − ϑn + γlmAϑn, x− tm⟩ ≥ 0 ∀x ∈ C.

Hence, ⟨
tm − ϑn

γlm
, x− tm

⟩
+ ⟨Aϑn, x− tm⟩ ≥ 0 ∀x ∈ C.

Taking the limit m → ∞ in this inequality and using (3.36), we obtain ⟨Aϑn, x −
ϑn⟩ ≥ 0 ∀x ∈ C, which implies that ϑn ∈ VI(C,A). This is a contradiction.

For ϑn /∈ C, we have

(3.37)
lim

m→∞
∥ϑn − PC(ϑn − γlmAϑn)∥ = ∥ϑn − PCϑn∥ > 0,

lim
m→∞

γlm∥Aϑn −APC(ϑn − γlmAϑn)∥ = 0.

From this, which together with (3.34), (3.37), we get another contradiction.
□

Lemma 3.8. Assume that Conditions 1, 2′ and 3 hold. Let {zn} be a sequence
generated by Algorithm 2. Then
(3.38)
∥zn−u∗∥2 ≤ ∥ϑn−u∗∥2− (1−µ)∥ϑn− yn∥2− (1−µ)∥zn− yn∥2, ∀u∗ ∈ V I(C,A),

where zn = PTn(ϑn − λnAyn).

Proof. The proof is similar to that of Lemma 3.3, we leave for the reader. □
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Lemma 3.9. Assume that Conditions 1, 2′ and 3 hold and the mapping A : H → H
satisfies the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ∥Az∥ ≤ lim inf
n→∞

∥Axn∥.

If there exists a subsequence {ϑnk
} of {ϑn} convergent weakly to z ∈ H and

limk→∞ ∥ϑnk
− ynk

∥ = 0, then z ∈ VI(C,A).

Proof. Assume that, there exists a subsequence {xnk
} of {xn} such that {xnk

}
converges weakly to z ∈ H. From ynk

= PC(ϑnk
− λnk

Aϑnk
) we have

⟨ϑnk
− λnk

Aϑnk
− ynk

, x− ynk
⟩ ≤ 0 ∀x ∈ C.

or equivalently

1

λnk

⟨ϑnk
− ynk

, x− ynk
⟩ ≤ ⟨Aϑnk

, x− ynk
⟩ ∀x ∈ C.

Consequently,

(3.39)
1

λnk

⟨ϑnk
− ynk

, x− ynk
⟩+ ⟨Aϑnk

, ynk
− ϑnk

⟩ ≤ ⟨Aϑnk
, x− ϑnk

⟩ ∀x ∈ C.

Now, we claim that

(3.40) lim inf
k→∞

⟨Aϑnk
, x− ϑnk

⟩ ≥ 0.

Indeed, suppose first that lim infk→∞ λnk
> 0. By Lemma 2.5, {Aϑnk

} is bounded.
Taking k → ∞ in (3.39), since ∥ϑnk

− ynk
∥ → 0, we get (3.40). Next, we assume

that lim infk→∞ λnk
= 0. Setting tnk

:= PC(ϑnk
− λnk

l−1Aϑnk
), as λnk

l−1 > λnk
,

Lemma 2.3 yields

∥ϑnk
− tnk

∥ ≤ 1

l
∥ϑnk

− ynk
∥ → 0 as k → ∞.

Hence, tnk
weakly converges to z ∈ C. Because A is (uniformly) continuous on the

bounded set {ϑn} ∪ {tn}, we obtain

(3.41) ∥Aϑnk
−Atnk

∥ → 0 as k → ∞.

As λnk
l−1 = γlmnk l−1 = γlmnk

−1, by the Armijo linesearch rule (3.33), we have

λnk
l−1∥Aϑnk

−APC(ϑnk
− λnk

l−1Aϑnk
)∥ > µ∥ϑnk

− PC(ϑnk
− λnk

l−1Aϑnk
)∥,

which is
1

µ
∥Aϑnk

−Atnk
∥ >

∥ϑnk
− tnk

∥
λnk

l−1
.

Combining this and (3.41), we obtain

lim
k→∞

∥ϑnk
− tnk

∥
λnk

l−1
= 0.

Furthermore, we have from the definition of tnk
that

⟨ϑnk
− λnk

l−1Aϑnk
− tnk

, x− tnk
⟩ ≤ 0 ∀x ∈ C.
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Hence,

1

λnk
l−1

⟨ϑnk
− tnk

, x− tnk
⟩+ ⟨Aϑnk

, tnk
− ϑnk

⟩ ≤ ⟨Aϑnk
, x− ϑnk

⟩ ∀x ∈ C.

Taking the limit as k → ∞, we get

lim inf
k→∞

⟨Aϑnk
, x− ϑnk

⟩ ≥ 0.

Therefore, the claim (3.40) is proved.
Furthermore, we have

(3.42) ⟨Aynk
, x−ynk

⟩ = ⟨Aynk
−Aϑnk

, x−ϑnk
⟩+⟨Aϑnk

, x−ϑnk
⟩+⟨Aynk

, ϑnk
−ynk

⟩.

As limk→∞ ∥ϑnk
−ynk

∥ = 0, by the uniform continuity of A on bounded subsets, we
get limk→∞ ∥Aϑnk

−Aynk
∥ = 0, which together with (3.40) and (3.42) implies that

(3.43) lim inf
k→∞

⟨Aynk
, x− ynk

⟩ ≥ 0.

Finally, we show that z ∈ VI(C,A). Take a sequence {ϵk} of positive numbers,
decreasing and tending to 0. Choose an increasing sequence {Nk} such that

(3.44) ⟨Aynj , x− ynj ⟩+ ϵk ≥ 0 ∀j ≥ Nk,

where the existence of Nk follows from (3.43). Moreover, for each k setting vNk
=

AyNk
∥AyNk

∥−2, we have ⟨AyNk
, vNk

⟩ = 1. We deduce from (3.44) that, for each k,

⟨AyNk
, x+ ϵkvNk

− yNk
⟩ ≥ 0.

In view of the pseudomonotonicity of A on H, we get

⟨A(x+ ϵkvNk
), x+ ϵkvNk

− yNk
⟩ ≥ 0.

This implies that

(3.45) ⟨Ax, x− yNk
⟩ ≥ ⟨Ax−A(x+ ϵkvNk

), x+ ϵkvNk
− yNk

⟩ − ϵk⟨Ax, vNk
⟩.

We show that limk→∞ ϵkvNk
= 0. Indeed, since xnk

⇀ z, limk→∞ ∥xnk
− ϑnk

∥ = 0,
and limk→∞ ∥ϑnk

− ynk
∥ = 0, we obtain yNk

⇀ z. Since the mapping A satisfies
Condition 3, we have

0 < ∥Az∥ ≤ lim inf
k→∞

∥Aynk
∥.

Since {yNk
} ⊂ {ynk

} and ϵk → 0, we obtain

0 ≤ lim sup
k→∞

∥ϵkvNk
∥ = lim sup

k→∞

(
ϵk

∥Aynk
∥

)
≤ lim supk→∞ ϵk

lim infk→∞ ∥Aynk
∥
= 0,

which implies that limk→∞ ϵkvNk
= 0.

Letting k → ∞, the right-hand side of (3.45) tends to zero due to the uniform
continuity of A. Thus, lim infk→∞⟨Ax, x− yNk

⟩ ≥ 0. Hence, we have, for all x ∈ C,

⟨Ax, x− z⟩ = lim
k→∞

⟨Ax, x− yNk
⟩ ≥ 0.

By Lemma 2.6, z ∈ VI(C,A) and the proof is complete. □
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Theorem 3.10. Assume that Conditions 1, 2′, 3 and 4 hold and the mapping
A : H → H satisfies the following condition

whenever {xn} ⊂ C, xn ⇀ z, one has ∥Az∥ ≤ lim inf
n→∞

∥Axn∥.

Then the sequence {xn} generated by Algorithm 2 converges strongly to an element
u∗ ∈ V I(C,A), where u∗ = PV I(C,A) ◦ g(u∗).

Proof. The proof is similar to that of Theorem 3.5, and therefore is ommited. □

4. Numerical illustrations

In this section, we provide two numerical examples to show the practicability and
the advantage of our proposed algorithm by comparing it with other algorithms. In
this examples, we take g(x) = x

2 .

First, we consider three examples in finite-dimensional Hilbert space.

Since the exact solution of example 4.1 and example 4.2 are not known, so, we
use ∥xn+1 − xn∥ to measure the error of the n-th iteration, which also serves as the
role of checking whether or not the proposed algorithm converges to the solution.

In examples 4.1 and 4.2, the initial point x0 is randomly chosen in Rm. And take
µ = 0.3, βn = 1

n+1 , α = 0.1 and

αn =

min

{
β2
n

∥xn − xn−1∥
, α

}
if xn ̸= xn−1,

α otherwise.

We also choose αn = 1
n+1 , µ = 0.5 and ρ = 0.3 for Algorithm 3.1 in [38] and

αn = 1
n+1 , µ = 0.8 for Algorithm 3.1 in [46].

The feasible set C ⊂ Rm is a closed and convex subset defined by

C := {x ∈ Rm : Hx ≤ d},

where H is an l ×m matrix and d is a nonnegative vector.

Next, we give two choices of operator A.

Example 4.1 ([20]). Consider the following fractional programming problem:

min

{
h(x) =

xTQx+ aTx+ a0
bTx+ b0

}
,

subject to x ∈ X := {x ∈ R4 : bTx+ b0 > 0},

where

Q =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 , b =


2
1
1
0

 , a0 = −2, b0 = 4.
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It is easy to verify that Q is symmetric and positive definite in R4 and consequently
h is pseudo-convex on X = {x ∈ R4 : bTx+ b0 > 0}. Then

A(x) := ∇h(x) =
(bTx+ b0)(2Qx+ a)− b(xTQx+ aTx+ a0)

(bTx+ b0)2
.

It is known that A is pseudo-monotone (see, e.g. [3, 22, 37] for details).

0 50 100 150 200 250 300 350 400 450 500
n

10-5

10-4

10-3

10-2

10-1

100

‖x
n
+
1
−
x
n
‖

Alg.1
Alg.1 in [34]

Figure 1. Comparison of Algorithm 1 and Algorithm 1 in [38].

We compared Algorithm 1 and Algorithm 3.1 in [38]. The numerical result is de-
scribed in Figure 1, it is observed that Algorithm 3.1 behaves better than Algorithm
3.1 in [38].

Example 4.2. Next, let us define

A(x) =

(
(x21 + (x2 − 1)2)(1 + x2)

−x31 − x1(x2 − 1)2

)
It is easy to see that A is not a monotone map. However, using the Monte Carlo
approach (see [20]), it can be shown that A is pseudo-monotone.

For a given domain, the operator A is Lipschitz-continuous (see [37] for example).

We compared Algorithm 1 and Algorithm 1 in [46]. The numerical result is
described in Figure 2, it illustrates that the performance of Algorithm 1 is better
than that of Algorithm 1 in [46].

Example 4.3 ([13]). Take A : R2 → R2 as follows:

A(x, y) = (2x+ 2y + sin(x),−2x+ 2y + sin(y)), ∀x, y ∈ R.

The authors [13] showed that A is
√
26-Lipschitz continuous and strongly monotone.

Let C = {x ∈ R2 | − 10e1 ≤ x ≤ 10e1}, where e1 = (1, 1). Therefore the variational
inequality has a unique solution and (0, 0) is its solution.
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Figure 2. Comparison of Algorithm 1 and Algorithm 1 in [46].

We choose x0 = [2,−10] in this example. And take βn = 1
n , τn = 1

n2 , µ = 0.3,
α = 0.6 and αn = 0.7ᾱ in Algorithm 1, ρ = 0, 1 in Algorithm 3.1 [38], µ = 0.3 and
αn = 1

n in Algorithm 3.1 [38], Algorithm 1 in [46] and Algorithm 2 in [48].
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Figure 3. Comparison results of these algorithms in example 4.3.

From Figure 3, we know that the performance of Algorithm 1 is better than
Algorithm 3.1 in [38], Algorithm 1 in [46] and Algorithm 2 in [48].

Next, we present an example in an infinite dimensional Hilbert space.
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Example 4.4 ([37]). Suppose that H = L2([0, 1]) with norm ∥x∥ :=
( ∫ 1

0 |x(t)|2dt
) 1

2

and inner product ⟨x, y⟩ :=
∫ 1
0 x(t)y(t)dt, x, y ∈ H. Let C := {x ∈ H : ∥x∥ ≤ 1}

be the unit ball. Define an operator A : C → H by

A(x)(t) =

∫ 1

0
(x(t)− F (t, s)v(x(s)))ds+ h(t), x ∈ C, t ∈ [0, 1],

where

F (t, s) =
2tset+s

e
√
e2 − 1

, v(x) = cosx, h(t) =
2tet

e
√
e2 − 1

.

It is known that A is monotone and L-Lipschitz-continuous with L = 2 and {0} is
the solution of the corresponding variational inequality problem.

Let x0 = cos(3πt), x1 = sin(3πt). Take βn = 1
n , τn = 1

n2 , µ = 0.3, α = 0.6 and

αn = 0.7ᾱ in Algorithm 1. And take τ = 0.9
L and αn = 1

n in Algorithm (4) in [26],

αn = 1
n in Algorithm (3.6) in [28] and λ = 0.9

L , αn = 0.1 and βn = 1
n in Algorithm

3.1 in [41], µ = 0.3 and αn = 1
n in Algorithm 1 in [46].
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Figure 4. Comparison results of these algorithms in example 4.4.

From Figure 4, we get that although the value of ∥xn∥ of Algorithm 1, Algorithm
(3.6) in [28], Algorithm 3.1 in [41] and Algorithm 1 in [46] are almost equal after 45
steps, Algorithm 1 converges faster. The iteration of Algorithm (4) in [26] is very
slow.

Example 4.5. This example is taken from [19] and has been considered by many
authors for numerical experiments. The operator A is defined by A(x) := Mx+ q,
where M = BBT +S+D, with B,S,D ∈ Rm×m randomly generated matrices such
that S is skew-symmetric (hence the operator does not arise from an optimization
problem), D is a positive definite diagonal matrix (hence the variational inequality
has a unique solution) and q = 0. The feasible set C is described by linear inequality
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constraints Bx ≤ b for some random matrix B ∈ Rm×m and a random vector b ∈ Rk

with nonnegative entries. It is easy to see that A is η-strongly pseudo-monotone
with η = min(eig(MTM)) and Lipschitz continuous with L = ∥M∥. Hence the zero
vector is feasible and therefore the unique solution of the corresponding variational
inequality.

These projections are computed using the MATLAB solver fmincon. Hence,
for this class of problem, the evaluation of A is relatively inexpensive, whereas
projections are costly. We present the corresponding numerical results (number of
iterations and CPU times n seconds) using four different dimensions m and two
different numbers of inequality constraints k.

Table 1. Comparison of Algorithm 1 and Algorithm 3.1 of [29] and
Algorithm 1 of [30].

Problem Size Alg. 1 Alg. 3.1 of [29] Alg. 1 of [30]
k m Iter. Sec. Iter. Sec. Iter. Sec.

30 10 111 0.104183 750 0.214737 2208 0.292347
30 221 0.121658 6744 1.873812 6146 0.867736
50 554 0.348353 15290 4.191198 16040 2.202233
70 1002 0.58592 31033 8.651789 30828 4.319426

50 10 72 0.108587 778 0.474368 1388 0.307962
30 210 0.162806 6315 2.72109 6980 1.49006
50 522 0.441042 15684 6.8122369 17360 3.823579
70 798 0.593785 23164 10.126965 33062 7.512002

We randomly choose the starting points x0 = (1, 1, ..., 1) and the stopping crite-
rion as ∥xn∥ ≤ 0.0001. The size k = 30, 50 and m = 10, 30, 50, 70. The matrices
B,S,D and the vector b are generated randomly. Set µ = 0.3, βn = 1

n and τn = 1
n2

in Algorithm 1. Take λ = 0.9
√
2−1
L in Algorithm 3.1 of [29] and φ =

√
5+1
2 , ϕ = 0.9φ

and λ̄ = λ0 = 1 in Algorithm 1 of [30].

We can see from Table 1 and Figure 4.5 that Algorithm 1 performs better than
Algorithm 3.1 in [29] and Algorithm 1 in [30].

5. Conclusions

In this paper, we introduce two variants of subgradient extragradient methods for
solving pseudomonotone variational inequality in real Hilbert spaces. We present the
strong convergence of algorithms under the Lipschitz continuous condition or non
lipschitz continuous condition of the variational inequality mapping. The results
obtain in this paper extend some recent results in the literature, see [38, 40, 41,
46, 48, 47]. The efficiency of the proposed algorithms has also been illustrated by
several numerical experiments.
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Figure 5. Comparison of Algorithm 1 and Algorithm 3.1 in [29]
and Algorithm 1 in [30] in example 4.5 when k = 30,m = 10.
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