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Abstract. In this paper, we deal with nonsmooth multiobjective semi-infinte

programming problems with mixed constraints with uncertainty in the feasible

region and in the objective functions. We derive necessary and sufficient opti-

mality conditions for weak efficiency in terms of Clarke subdifferential using a

robust approach, We also use Wolfe and Mond-Weir type robust dual models to

establish duality results.

1. Introduction

In the real world problems, most of the time data is not to be evaluated exactly,
in which some variations or errors are occurred. These variations or errors are comes
out due to the measurement of equipments, suddenly demands or returns of any
product in the future, and missing of some data in the given series are evaluated by
some known numerical technique, etc. Such types of variations or errors are known
as uncertain set. For deal with such type of problems in optimization theory, robust
optimization is come. In 1973, one of the first researcher, who studied about it, is
Soyster [21]. In robust optimization problems uncertain sets are always belonged
in a bounded set and the set of feasible solution are comes under all realizations
of data from the uncertainty set. When the uncertainty is present in the objective
functions, then the robust optimization technique first find out the maximization
of functions over the uncertainty and after that optimize the problem.

Many authors have been doing lots of work in robust optimization. Recently
Lee and Son [17] gave the optimality conditions for nonsmooth robust multiobjec-
tive problems after that Lee and Lee [15] gave optimality conditions for the weakly
and properly robust efficient solution. Choung [1] gave the optimality and duality
results for robust multiobjective optimization problems in terms of limiting subdif-
ferentials. In this year, Fakhar et. al., [8] gave the sufficient optimality conditions
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with applications to portfolio optimization for nonsmooth robust multiobjective op-
timization problems and Lee and Lee, [16] gave the optimality and duality results
for continuously differentiable semi-infinite multiobjective optimization problems.

In this paper, we consider a nonsmooth robust multiobjective semi-infinite pro-
gramming problem with mixed constraints (RMOSIP). We establish KKT type nec-
essary optimality conditions for nonsmooth multiobjective semi-infinite program-
ming problem with mixed constraints in terms of Clarke subdifferantials under suit-
able constraint qualifications and with the help of it, we derive KKT type necessary
optimality conditions for RMOSIP. Also, establish sufficient type optimality condi-
tions for RMOSIP under convexity and generalized convexity assumptions. After
that, formulate Wolfe type and Mond-Weir type robust dual models and establish
weak and strong duality results for both the models under generalized convexity
assumptions.

The outline of this paper is as follows: in Section 2, we give some well known
definitions and theorems which will be used in the sequel. In Section 3, we de-
rive KKT type necessary optimality conditions for nonsmooth multiobjective semi-
infinite programming problem with mixed constraints and RMOSIP under suitable
constraint qualification. Also, derive sufficient optimality conditions for RMOSIP
under convexity and generalized convexity assumptions and lastly in this section
give an example in the support of KKT type necessary optimality conditions. In
Section 4, we give Wolfe and Mond-Weir type duality problems and derive weak
and strong duality results for both the dual models under convexity and general-
ized convexity assumptions. And lastly, in Section 5, we conclude the results of this
paper.

2. Preliminaries

Let X be a non empty subset of the Euclidean space Rn. The cardinality of X
(the number of elements in the set X, if X is finite), the closure of X, the convex
cone generated by X containing the origin of Rn, the convex hull of X, the interior
of X, and the linear hull of X (the smallest subspace containing X) are denoted by
cardX, clX, coneX, coX, intX, and spanX, respectively. The negative and strictly
negative polar cones of X are denoted by X≤ and X<, respectively, and are defined
by

X≤ := {d ∈ Rn : 〈x, d〉 ≤ 0, ∀ x ∈ X}
and

X< := {d ∈ Rn : 〈x, d〉 < 0, ∀ x ∈ X}.
We recall some basic results in the calculus of generalized gradient (for more

details, see [3]-[6], [14]).

Definition 2.1 (Locally Lipschitz functions). A function f : X → R is said to
be locally Lipschitz at x ∈ X, iff there exist an open neighbourhood N of x and a
constant L > 0 such that

|f(y)− f(z)| ≤ L||y − z||, ∀y, z ∈ N,
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where L is called the Lipschitz constant and the function f is said to be a locally
Lipschitz function on X, iff it is locally Lipschitz for all x ∈ X.

Definition 2.2 (One-sided directional derivative). The usual one-sided directional
derivative of f at x ∈ X for each fixed d ∈ Rn is denoted by f ′(x; d) and is defined
by

f ′(x; d) = lim
t↓0

f(x+ td)− f(x)

t
,

whenever this limit exists.

Definition 2.3 (Cone of feasible directions [12]). The cone of all the feasible direc-
tions of X at any point x ∈ X, denoted by Γ(X, x) and is defined by

Γ(X, x) := {d ∈ Rn : ∃ ϵ ↓ 0, such that x+ td ∈ X, ∀ t ∈]0, ϵ[}.

Definition 2.4 (Clarke’s subdifferentials [6]). The Clarke’s directional derivative
of f at x ∈ X in a direction d, denoted by f0(x; d) and is defined by

f0(x; d) := lim sup
h→0, t↓0

f(x+ h+ td)− f(x+ h)

t
,

and the Clarke’s subdifferential of f at x ∈ X, denoted by ∂0f(x) and is defined by

∂0f(x) := {x∗ ∈ Rn : f0(x; d) ≥ 〈x∗, d〉, ∀ d ∈ Rn}.

Some properties of the Clarke’s subdifferentials are given as follows:

Lemma 2.5. Let f1, f2, . . . , fm be m real valued locally Lipschitz functions at
x ∈ X which are defined on X. Then,

(1) ∂0fk(x) is nonempty, convex, weak∗ compact subset of Rn and ||x∗k|| ≤ Lk

for every x∗k ∈ ∂0fk(x) and k ∈M := {1, 2, . . . , m}, where Lk are Lipschitz
constants for fk at x.

(2) The function d 7→ f0k (x; d) is convex, positively homogeneous, finite and
subadditive and satisfies

|f0k (x; d)| ≤ Lk||d||
for every k ∈M.

(3) ∂0(λfk)(x) = λ∂0fk(x), ∀ λ ∈ R, k ∈M.
(4) f0k (x; d) = max{〈x∗k, d〉 : x∗k ∈ ∂0fk(x)}, ∀ d ∈ Rn, ∀ k ∈M.
(5) ∂0(f1 + f2 + · · ·+ fm)(x) ⊂ ∂0f1(x) + ∂0f2(x) + · · ·+ ∂0fm(x).

Let B be a sequentially compact topological space and let g : Rn × B →
R, (x, b) 7→ g(x, b), satisfies the following hypothesis from [17]:

Hypothesis

(H1) g(x, b) is upper semicontinuous in (x, b).
(H2) g is a locally Lipschitz in x, uniformly for b in B, that is, for each x in Rn,

there exist an open neighbourhood N of x and a constant Lg > 0 such that
for all y, z ∈ N, and b ∈ B,

|g(y, b)− g(z, b)| ≤ Lg||y − z||.
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(H3) g0x(x, b; ·) = g′x(x, b; ·), the derivatives being with respect to x.
(H4) The generalized gradient ∂0xg(x, b) with respect to x is weak∗ upper semi-

continuous in (x, b).

Remark 2.6. A function ψ : Rn → R with

ψ(x) := max{g(x, b) : b ∈ B},
and we observe that our hypothesis (H1) − (H4) holds, it implies that the functions
ψ exists and finite (with the maximum defining ψ attained) on Rn. Since each g(·, b)
is locally Lipschitz, then the function ψ is also locally Lipschitz on Rn. Let

B(x) := {b ∈ B : g(x, b) = ψ(x)},
then B(x) is nonempty and closed for each x ∈ Rn.

The connection between the functions ψ′(x; d) and g0x(x, b; d) is given by the
nonsmooth version of Danskin’s theorem [7] for max-functions, which is given by
the following lemma:

Lemma 2.7 ([7]). Under the hypothesis (H1) − (H4), the usual one sided direc-
tional derivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ0(x; d) = max{g0x(x, b; d) : b ∈ B(x)}
= max{〈x∗, d〉 : x∗ ∈ ∂0xg(x, b), b ∈ B(x)}.

Some important Lemma’s which will be useful for remaining parts of the paper.
This Lemma is given by Lee and Son [17]:

Lemma 2.8 ([17]). Suppose that B is convex, and that g(x, ·) is concave on B, for
each x ∈ Rn, and the hypothesis (H1) − (H4) hold. Then the following statements
are satisfied:

(1) The set B(x) is convex and sequentially compact.
(2) The set

∂0xg(x, B(x)) := {x∗ : ∃ b ∈ B(x) such that x∗ ∈ ∂0xg(x, b)}
is convex and weak∗ compact.

(3) ∂0ψ(x) := {x∗ : ∃ b ∈ B(x) such that x∗ ∈ ∂0xg(x, b)}.

This Lemma is another type of Carathéodory’s theorem given by Rockafellar [20]:

Lemma 2.9. Let {Ct : t ∈ T} be an arbitrary collection of nonempty convex
sets in Rn and let K := cone(∪t∈TCt). Then, every nonzero vectors of K can be
expressed as a non-negative linear combination of n or fewer linear independent
vectors, each belonging to different Ct.

The following lemma is given by Hiriart-Urruty and Lemaréchal [11]:

Lemma 2.10. If X is a nonempty compact subset of Rn, then the co(X) is a
compact set.

The generalized Motzkin’s alternative theorem given by Goberna and López [10]
for the semi-infinite programming problems is as follows:
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Lemma 2.11. Let P, S and T be arbitrary (possibly infinite) index sets, ap :=
a(P ) := (a1(P ), . . . , ak(P )) maps P onto Rn, and so does as and at. Suppose that
the set co{ap : p ∈ P} + cone{as : s ∈ S} + span{at : t ∈ T} is closed. Then,
the system

(i)


〈ap, x〉 < 0, p ∈ P, P 6= ϕ

〈as, x〉 ≤ 0, s ∈ S

〈at, x〉 = 0, t ∈ T

is consistent

or
(ii) 0 ∈ co{ap : p ∈ P}+ cone{as : s ∈ S}+ span{at : t ∈ T}

but never both.

3. Optimality conditions

We consider the following multiobjective semi-infinite programming problem with
mixed constraints:

(MOSIP) Minimize f(x) := (f1(x), f2(x), . . . , fm(x))

Subject to gi(x) ≤ 0, i ∈ I,(3.1)

hj(x) = 0, j ∈ J,

where I and J are arbitrary sets not necessarily finite and fk, gi and hj are real
valued functions defined on Rn, for all k ∈ M, i ∈ I and j ∈ J, respectively. The
above multiobjective semi-infinite programming problem with mixed constraints in
the face of data uncertainty to the objective functions and the inequality constraints
can be written by

(UMOSIP) Minimize (f1(x, a1), f2(x, a2), . . . , fm(x, am))

Subject to gi(x, bi) ≤ 0, i ∈ I,(3.2)

hj(x) = 0, j ∈ J,

where ak and bi are uncertain parameters, Ak and Bi are sequentially compact
topological spaces with ak ∈ Ak and bi ∈ Bi for k ∈M and i ∈ I, respectively. The
functions are defined by fk : Rn × Ak → R, gi : Rn × Bi → R and hj : Rn → R,
for all k ∈M, i ∈ I and j ∈ J.

Goberna et al. [9] studied linear multiobjective semi-infinite programming prob-
lems after it Lee and Lee [16] studied multiobjective semi-infinite programming
problems with data uncertainty in constraints only. The corresponding robust mul-
tiobjective semi-infinite programming problem with mixed constraints (RMOSIP)
for the above (MOSIP) is:

(RMOSIP) Minimize
(
max
a1∈A1

f1(x, a1), max
a2∈A2

f2(x, a2), . . . , max
am∈Am

fm(x, am)
)

Subject to gi(x, bi) ≤ 0, ∀bi ∈ Bi, i ∈ I,(3.3)

hj(x) = 0, j ∈ J,
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where the uncertain objective and the constraint functions are embedded with
the every possible value of the parameters within their prescribed uncertainty sets
Ak, k ∈M and Bi, i ∈ I.

3.1. Necessary optimality conditions. Consider the MOSIP (3.1) and let

X := {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i ∈ I, j ∈ J}

be the set of all feasible points for the MOSIP. A vector x̄ ∈ X is said to be a weakly
efficient solutions for MOSIP, iff

f(x)− f(x̄) /∈ −intRm
+ , ∀ x ∈ X.

Let I(x̄) := {i ∈ I : gi(x̄) = 0} for any x̄ ∈ X and F (x̄) :=
m⋃
k=1

∂0fk(x̄). Also,

suppose that

Λ(x̄) :=
( ⋃

i∈I(x̄)

∂0gi(x̄)
)
∪
( ⋃

j∈J
∂0hj(x̄)

)
∪
(
−
⋃
j∈J

∂0hj(x̄)
)
.

The negative polar cone of Λ(x̄) is given by(
Λ(x̄)

)≤
= {d ∈ Rn : g0i (x̄; d) ≤ 0 for i ∈ I(x̄) and h0j (x̄; d) = 0 for j ∈ J},

and the convex cone of Λ(x̄) is given by

cone
(
Λ(x̄)

)
= cone

( ⋃
i∈I(x̄)

∂0gi(x̄)
)
+ span

( ⋃
j∈J

∂0hj(x̄)
)
.

Zangwill Constraint qualifications (ZCQ) was introduced by Zangwill [22] for in-
equality type optimization problems, which was extended by Kanzi and Nobakhtian
[13] for mixed type semi-infinite optimization problems, which is as follows:

Definition 3.1. (Zangwill Constraint Qualifications) The Zangwill Constraint Qual-
ifications (ZCQ) holds at x̄ ∈ X for MOSIP, iff(

Λ(x̄)
)≤ ⊆ clΓ(X, x̄).

The following necessary condition for the MOSIP under ZCQ can be obtained.

Theorem 3.2. Let x̄ ∈ X be a weak efficient solution of MOSIP. Let fk (k ∈
M), gi (i ∈ I(x̄)) and hj (j ∈ J) are locally Lipschitz at x̄ ∈ X. Also, let ZCQ
be satisfied at x̄ and let the cone(Λ(x̄)) be a closed cone in Rn. Then, there exists
λ̄k ≥ 0, k ∈ M with

∑
k∈M λ̄k = 1 and µ̄i ≥ 0, i ∈ I, γ̄j ∈ R, j ∈ J, with finitely

many of them being nonzero, such that

0 ∈
∑
k∈M

λ̄k∂
0fk(x̄) +

∑
i∈I

µ̄i∂
0gi(x̄) +

∑
j∈J

γ̄j∂
0hj(x̄),(3.4)

and µ̄igi(x̄) = 0, ∀ i ∈ I.(3.5)

Proof. Let x̄ ∈ X be a weak efficient solution of MOSIP. First of all, we are interested
to show that

(3.6) F (x̄)< ∩ Γ(X, x̄) = {}.
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Suppose that the above equality (3.6) is not satisfied, then there exists d ∈ Rn such
that

d ∈ F (x̄)< ∩ Γ(X, x̄),

i.e., d ∈ F (x̄)< and d ∈ Γ(X, x̄). Hence,

〈F (x̄), d〉 < 0,

i.e.,

〈x̄∗k, d〉 < 0, ∀ x̄∗k ∈ ∂0fk(x̄), ∀ k = 1, 2, . . . , m,

which gives,

(3.7) f0k (x̄; d) = max
x̄∗
k∈∂0fk(x̄)

〈x̄∗k, d〉 < 0, ∀ k = 1, 2, . . . , m.

Now, for any k ∈M, one has

lim sup
tk↓0

fk(x̄+ tkd)− fk(x̄)

tk
= inf

αk>0,
sup

0<tk<αk

fk(x̄+ tkd)− fk(x̄)

tk

≦ inf
βk>0,
αk>0,

sup
||hk||<βk
0<tk<αk

fk(x̄+ hk + tkd)− fk(x̄+ hk)

tk

= lim sup
hk→0,
tk↓0

fk(x̄+ hk + tkd)− fk(x̄+ hk)

tk

= lim sup
y=x̄+hk→x̄

tk↓0

fk(y + tkd)− fk(y)

tk

= f0k (x̄; d) < 0,

which gives

lim sup
tk↓0

fk(x̄+ tkd)− fk(x̄)

tk
= inf

αk>0,
sup

0<tk<αk

fk(x̄+ tkd)− fk(x̄)

tk

< 0, ∀ k = 1, 2, . . . , m.

Hence, there exists αk > 0, such that for all tk ∈]0, αk[, one has

fk(x̄+ tkd) < fk(x̄), ∀ k = 1, 2, . . . , m.

Let α = min{α1, α2, . . . , αk}, then for all t ∈]0, α[

(3.8) f(x̄+ td)− f(x̄) ∈ −intRm
+ .

Also, d ∈ Γ(X, x̄) gives the existence of β > 0 such that

(3.9) x̄+ td ∈ X, ∀ t ∈]0, β[.

Taking ϵ = min{α, β}, then (3.8) − (3.9) contradict that x̄ is a weakly efficient
solution for MOSIP. Hence our supposition is wrong and the equality (3.6) is satisfy.
Then, the equality (3.6) gives

int(F (x̄))< ∩ clΓ(X, x̄) = {}.
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Since (F (x̄))< = {d ∈ Rn : 〈x̄∗k, d〉 < 0, ∀ x̄∗k ∈ ∂0fk(x̄), ∀ k = 1, 2, . . . , m} and
〈x̄∗k, ·〉 is continuous, we get that (F (x̄))< is open, so

(F (x̄))< ∩ clΓ(X, x̄) = {}.

Then, by the assumptions of the theorem, we get

(F (x̄))< ∩
(
Λ(x̄)

)≤
= {},

which indicates that there does not exist any d ∈ Rn, for which the system
〈x̄∗k, d〉 < 0, ∀ x̄∗k ∈ ∂0fk(x̄), ∀ k ∈M,

〈x̄∗i , d〉 ≤ 0, ∀ x̄∗i ∈ ∂0gi(x̄), ∀ i ∈ I(x̄),

〈x̄∗j , d〉 = 0, ∀ x̄∗j ∈ ∂0hj(x̄), ∀ j ∈ J

is consistent, that is, the system
〈F (x̄), d〉 < 0,

〈∂0gi(x̄), d〉 ≤ 0, ∀ i ∈ I(x̄),

〈∂0hj(x̄), d〉 = 0, ∀ j ∈ J

is inconsistent.
Since a finite union of compact sets is compact in a finite dimensional space,

which gives F (x̄) is a compact set. By Lemma 2.10, co(F (x̄)) is also a compact
set. By assumptions of the theorem cone

(
Λ(x̄)

)
is a closed set, then co

(
F (x̄)

)
+

cone
(⋃

i∈I(x̄) ∂
0gi(x̄)

)
+span

(⋃
j∈J ∂

0hj(x̄)
)
is a closed set. Then, by Lemma 2.11,

we get

(3.10) 0 ∈ co
(
F (x̄)

)
+ cone

( ⋃
i∈I(x̄)

∂0gi(x̄)
)
+ span

( ⋃
j∈J

∂0hj(x̄)
)
,

using the properties of the Clarke subdifferential and convex hull, there exists λ̄k ≥
0, for all k ∈M with

∑
k∈M λ̄k = 1, we get

(3.11) 0 ∈
∑
k∈M

λ̄k∂
0fk(x̄) + cone

(
Λ(x̄)

)
.

By using Lemma 2.9, there exists µ̄i ≥ 0, i ∈ I(x̄) and γ̄j ∈ R, j ∈ J with finitely
many of them being nonzero, we get

(3.12) 0 ∈
∑
k∈M

λ̄k∂
0fk(x̄) +

∑
i∈I(x̄)

µ̄i∂
0gi(x̄) +

∑
j∈J

γ̄j∂
0hj(x̄).

Taking µ̄i = 0 for i ∈ I \ I(x̄), we get

(3.13) 0 ∈
∑
k∈M

λ̄k∂
0fk(x̄) +

∑
i∈I

µ̄i∂
0gi(x̄) +

∑
j∈J

γ̄j∂
0hj(x̄).

Since gi(x̄) = 0 for all i ∈ I(x̄) and by our choice µ̄i = 0 for all i ∈ I \ I(x̄). Thus
the proof is complete. □
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3.2. Robust necessary optimality conditions. Consider the above RMOSIP
(3.3), where fk : Rn × Ak → R, gi : Rn × Bi → R are functions satisfying
the above hypothesis (H1)− (H4) with respect to sequentially compact topological
spaces Ak, Bi for all k ∈ M, i ∈ I, respectively and hj : Rn → R are locally
Lipschitz functions for all j ∈ J. The robust feasible set of RMOSIP is

X1 := {x ∈ Rn : max
bi∈Bi

gi(x, bi) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J}.

Let ϕk, ψi : Rn → R for each k ∈M, i ∈ I and defined by

ϕk(x̄) := max
ak∈Ak

{fk(x̄, ak)} and ψi(x̄) := max
bi∈Bi

{gi(x̄, bi)}.

Let Ak(x̄) := {ak ∈ Ak : fk(x̄, ak) = ϕk(x̄)} and Bi(x̄) := {bi ∈ Bi : gi(x̄, bi) =
ψi(x̄)} for all k ∈M and i ∈ I1(x̄), where I1(x̄) := {i ∈ I : ψi(x̄) = 0}.

Definition 3.3. (Weakly robust efficient solutions) Let x̄ ∈ X1 be a weakly robust
efficient solution of RMOSIP, if there does not exist any x ∈ X1 of RMOSIP, such
that

max
ak∈Ak

fk(x, ak) < max
ak∈Ak

fk(x̄, ak), ∀ k ∈M.

Suppose that Ak, Bi are convex, and that the functions fk(x̄, ·), gi(x̄, ·) are
concave on Ak, Bi, respectively, for each x̄ ∈ X and for each k ∈ M, i ∈ I1(x̄).
Now, we define some sets with the help of Lemma 2.8,

Λ1(x̄) :=
( ⋃

i∈I1(x̄)

(
∪b̄i∈Bi(x̄)

∂0xgi(x̄, b̄i)
))

∪
( ⋃

j∈J
∂0hj(x̄)

)
∪
(
−
⋃
j∈J

∂0hj(x̄)
)
,

where ∂0xgi(x̄, b̄i) is the Clarke subdifferential of gi with respect to x. The negative
polar cone of Λ1(x̄) is given by(

Λ1(x̄)
)≤

= {d ∈ Rn : max
b̄i∈Bi(x̄)

g0ix(x̄, b̄i; d) ≤ 0 , ∀ i ∈ I1(x̄) and h
0
j (x̄; d) = 0 for j ∈ J},

where g0ix(x̄, b̄i; d) is the Clarke directional derivative of gi with respect to x and
the convex cone of Λ1(x̄) is given by

cone
(
Λ1(x̄)

)
= cone

( ⋃
i∈I1(x̄)

(
∪b̄i∈Bi(x̄)

∂0xgi(x̄, b̄i)
))

+ span
( ⋃

j∈J
∂0hj(x̄)

)
.

Now, we extend the ZCQ in robust form and introduce robust Zangwill Constraint
Qualifications.

Definition 3.4. (Robust Zangwill Constraint Qualifications) The Robust Zangwill
Constraint Qualifications (RZCQ) holds at x̄ ∈ X1 for RMOSIP, iff(

Λ1(x̄)
)≤ ⊆ clΓ(X1, x̄).

Theorem 3.5. Under the hypothesis (H1)− (H4), suppose that Ak, Bi are convex,
and that the functions fk(x̄, ·) (k ∈ M), gi(x̄, ·) (i ∈ I1(x̄)) are concave on
Ak (k ∈ M), Bi (i ∈ I1(x̄)), respectively, for each x̄ ∈ X1. Let x̄ ∈ X1 be a weakly
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robust efficient solution of RMOSIP. Let hj (j ∈ J) be locally Lipschitz at x̄ ∈ X1.
Also, let RZCQ be satisfied at x̄ and cone(Λ1(x̄)) be a closed cone in Rn. Then,

there exists āk ∈ Ak(x̄) (k ∈ M), b̄i ∈ Bi(x̄) (i ∈ I1(x̄)) and λ̃k ≥ 0 (k ∈ M) with∑
k∈M λ̃k = 1 and µ̃i ≥ 0 (i ∈ I), γ̃j ∈ R (j ∈ J), with finitely many of them being

nonzero, such that

0 ∈
∑
k∈M

λ̃k∂
0
xfk(x̄, āk) +

∑
i∈I

µ̃i∂
0
xgi(x̄, b̄i) +

∑
j∈J

γ̃j∂
0hj(x̄),(3.14)

and µ̃igi(x̄, b̄i) = 0, ∀ i ∈ I.(3.15)

Proof. Above defining ϕk (k ∈ M) and ψi (i ∈ I), the RMOSIP may be rewritten
as:

(MOSIP1) Minimize (ϕ1(x), ϕ2(x), . . . , ϕm(x))

Subject to ψi(x) ≤ 0, i ∈ I,

hj(x) = 0, j ∈ J.

Since x̄ is a robust weakly efficient solution of the RMOSIP. Therefore, x̄ is a
weakly efficient solution of the MOSIP1. Also, since RZCQ is satisfied at x̄ and
cone(λ1(x̄)) is closed in Rn. Then, by Theorem 3.2, there exists āk ∈ Ak(x̄) (k ∈
M), b̄i ∈ Bi(x̄) (i ∈ I1(x̄)) and λ̃k ≥ 0 (k ∈ M) with

∑
k∈M λ̃k = 1 and µ̃i ≥ 0 (i ∈

I), γ̃j ∈ R (j ∈ J), with finitely many of them being nonzero, such that

0 ∈
∑
k∈M

λ̃k∂
0ϕk(x̄) +

∑
i∈I1(x̄)

µ̃i∂
0ψi(x̄) +

∑
j∈J

γ̃j∂
0hj(x̄),

and µ̃iψi(x̄) = 0, ∀ i ∈ I1(x̄).

Under assumption of the theorem, it follows from Lemma 2.8 that

∂0ϕk(x̄) = {x̄∗k : ∃ āk ∈ Ak(x̄) such that x̄∗k ∈ ∂0xfk(x̄, āk)}, k = 1, 2, . . . , m,

and ∂0ψi(x̄) = {x̄∗i : ∃ b̄i ∈ Bi(x̄) such that x̄∗i ∈ ∂0xgi(x̄, b̄i)}, i ∈ I1(x̄).

Then, there exists āk ∈ Ak(x̄) (k ∈ M) and b̄i ∈ Bi(x̄) (i ∈ I1(x̄)) satisfying the
following conditions

0 ∈
∑
k∈M

λ̃k∂
0
xfk(x̄, āk) +

∑
i∈I1(x̄)

µ̃i∂
0
xgi(x̄, b̄i) +

∑
j∈J

γ̃j∂
0hj(x̄),

and µ̃igi(x̄, b̄i) = 0, ∀ i ∈ I1(x̄).

Hence, by setting µ̃i = 0 for i ∈ I \ I1(x̄), we get the required result. □

3.3. Robust sufficient optimality conditions. In this subsection, we derive suf-
ficient optimality condition for RMOSIP, in which involved functions are either
convex or generalized convex type.

Definition 3.6 (Convex function [2]). Let fk : Rn × Ak → R be a real valued
function for k ∈ M, then fk (k ∈ M) is said to be convex at x̄ ∈ X1, iff for every
x ∈ X1, x̄

∗
k ∈ ∂0xfk(x̄, ak) and ak ∈ Ak(x̄), one has

fk(x, ak)− fk(x̄, ak) ≥ 〈x̄∗k, x− x̄〉, ∀ k ∈M.
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Definition 3.7. (Pseudo convex functions) Let fk : Rn×Ak → R be a real valued
function for k ∈ M, then fk is said to be pseudo convex at x̄ ∈ X1, iff for every
x ∈ X1, x̄

∗
k ∈ ∂0xfk(x̄, ak) and ak ∈ Ak(x̄), one has

fk(x, ak) < fk(x̄, ak) =⇒ 〈x̄∗k, x− x̄〉 < 0, ∀ k ∈M.

Definition 3.8. (Quasi convex functions) Let fk : Rn × Ak → R be a real valued
function for k ∈ M, then fk is said to be quasi convex at x̄ ∈ X1, iff for every
x ∈ X1, x̄

∗
k ∈ ∂0xfk(x̄, ak) and ak ∈ Ak(x̄), one has

fk(x, ak) ≤ fk(x̄, ak) =⇒ 〈x̄∗k, x− x̄〉 ≤ 0, ∀ k ∈M.

The following index sets will be used in the sequel:

I+ := {i ∈ I : µ̃i > 0}, J+ := {j ∈ J : γ̃j > 0} and J− := {j ∈ J : γ̃j < 0}.

Now, we are ready the prove a sufficient optimality condition.

Theorem 3.9. Let x̄ ∈ X1. Suppose that there exists āk ∈ Ak(x̄), λ̃k ≥ 0 (k ∈
M), with

∑
k∈M λ̃k = 1, and b̄i ∈ Bi(x̄), µ̃i ≥ 0 (i ∈ I), γ̃j ∈ R (j ∈ J), with

finitely many of them being non zero (i.e. (card(I+) + card(J+ ∪ J−)) is finite),
such that (3.14) − (3.15) are satisfied at x̄. If fk(·, āk) for each āk ∈ Ak (k ∈ M)
are pseudo convex and gi(·, b̄i) for each b̄i ∈ Bi (i ∈ I+), hj(·) (j ∈ J+) and
−hj(·) (j ∈ J−) are quasi convex at x̄ over X1. Then, x̄ is a weakly robust efficient
solution for RMOSIP.

Proof. Let x̄ ∈ X1 and suppose that there exists āk ∈ Ak(x̄), λ̃k ≥ 0 (k ∈
M), with

∑
k∈M λ̃k = 1, and b̄i ∈ Bi(x̄), µ̃i ≥ 0 (i ∈ I), γ̃j ∈ R (j ∈ J), with

finitely many of them being non zero (i.e. (card(I+) + card(J+ ∪ J−)) is finite),
such that

0 ∈
∑
k∈M

λ̃k∂
0
xfk(x̄, āk) +

∑
i∈I+

µ̃i∂
0
xgi(x̄, b̄i) +

∑
j∈J+∪J−

γ̃j∂
0hj(x̄),

0 = µ̃igi(x̄, b̄i), i ∈ I.

Then, there exist x̄∗k ∈ ∂0xfk(x̄, āk), k ∈ M, x̄∗i ∈ ∂0xgi(x̄, b̄i), i ∈ I+, x̄∗j ∈
∂0hj(x̄), j ∈ J+ ∪ J−, such that

(3.16) 0 =
∑
k∈M

λ̃kx̄
∗
k +

∑
i∈I+

µ̃ix̄
∗
i +

∑
j∈J+∪J−

γ̃j x̄
∗
j .

Suppose to the contrary that x̄ is not a weakly robust efficient solution of RMOSIP.
Then, there exist x̂ ∈ X1, such that

max
ak∈Ak

fk(x̂, ak) < max
ak∈Ak

fk(x̄, ak), ∀ k ∈M,

which implies that for some âk ∈ Ak(x̂) and āk ∈ Ak(x̄), one has

fk(x̂, âk) < fk(x̄, āk), âk ∈ Ak(x̂), āk ∈ Ak(x̄), k ∈M.

We have the following two cases:
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(1) if āk ∈ Ak(x̂), then

fk(x̂, āk) = fk(x̂, âk) < fk(x̄, āk), for some k = 1, . . . , m,

and
(2) if āk /∈ Ak(x̂), then

fk(x̂, āk) < fk(x̂, âk) < fk(x̄, āk), for some k = 1, . . . , m.

Under both the cases, we get

fk(x̂, āk) ≤ fk(x̂, âk) < fk(x̄, āk), ∀ k = 1, . . . , m,

i.e.,

(3.17) fk(x̂, āk) < fk(x̄, āk), āk ∈ Ak(x̄), ∀ k = 1, . . . , m.

Since, maxbi∈Bi
gi(x̄, bi) = 0 for any i ∈ I+, there exists b̄i ∈ Bi(x̄) such that

gi(x̄, b̄i) = 0 for any i ∈ I+ and x̂ ∈ X1, one has

gi(x̂, b̄i) ≤0 = gi(x̄, b̄i), ∀ i ∈ I+,(3.18)

hj(x̂) =0 = hj(x̄), ∀ j ∈ J+ ∪ J−.(3.19)

By the pseudo convexity of fk (k ∈M) and the quasi convexity of gi (i ∈ I+), hj (j ∈
J+), −hj (j ∈ J−) at x̄ over X1, we get

〈x̄∗k, x̂− x̄〉 < 0, ∀ k ∈M,

〈x̄∗i , x̂− x̄〉 ≤ 0, ∀ i ∈ I+,

〈x̄∗j , x̂− x̄〉 ≤ 0, ∀ j ∈ J+,

〈x̄∗j , x̂− x̄〉 ≥ 0, ∀ j ∈ J−,

for all x̄∗k ∈ ∂0xfk(x̄, āk), āk ∈ Ak(x̄) (k ∈ M), x̄∗i ∈ ∂0xgi(x̄, b̄i), b̄i ∈ Bi(x̄) (i ∈
I+), x̄∗j ∈ ∂0hj(x̄) (j ∈ J+ ∪ J−), and x̂ ∈ X1.

Therefore, for every x̄∗k ∈ ∂0xfk(x̄, āk), āk ∈ Ak(x̄) (k ∈M), x̄∗i ∈ ∂0xgi(x̄, b̄i), b̄i ∈
Bi(x̄) (i ∈ I+), x̄∗j ∈ ∂0hj(x̄) (j ∈ J+ ∪ J−), we get〈∑

k∈M
λ̃kx̄

∗
k +

∑
i∈I+

µ̃ix̄
∗
i +

∑
j∈J+∪J−

γ̃j x̄
∗
j , x̂− x̄

〉
< 0,

which is a contradiction to equation (3.16) and hence, x̄ is a weakly robust efficient
solution of RMOSIP. □

Remark 3.10. Let x̄ ∈ X1. Suppose that there exists āk ∈ Ak(x̄), λ̃k ≥ 0 (k ∈
M), with

∑
k∈M λ̃k = 1, and b̄i ∈ Bi(x̄), µ̃i ≥ 0 (i ∈ I), γ̃j ∈ R (j ∈ J), with

finitely many of them being non zero (i.e. (card(I+)+card(J+∪J−)) is finite), such
that (3.14)−(3.15) are satisfied at x̄. If fk(·, āk) for each āk ∈ Ak (k ∈M), gi(·, b̄i)
for each b̄i ∈ Bi (i ∈ I+), hj(·) (j ∈ J+) and −hj(·) (j ∈ J−) are convex at x̄ over
X1. Then x̄ is a weakly robust efficient solution for RMOSIP.
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The following example illustrate the above results in which we have taken only
inequality constraints.

Example 3.11. Let x := (x1, x2) ∈ R2, consider a nonsmooth multiobjective
semi-infinite programming problem with the data uncertainty:

(UMOSIP) min (f1(x1, x2, a1), f2(x1, x2, a2)) := (x21a1, x
2
2a2 − 1),

subject to gi(x1, x2, bi) :=
1

i
− bi − x1, ∀ bi ∈ Bi, ∀ i ∈ N,

g
′
i(x1, x2, b

′
i) :=

1

i
− b

′
i −

x2
2
, ∀ b′i ∈ B

′
i, ∀ i ∈ N,

and A1 × A2 := [0, 1]2, bi ∈ Bi := [0, 1], b
′
i ∈ B′

i := [1/2, 1], ∀i ∈ N. Let
X1 := {x ∈ R2 : gi(x, bi) ≤ 0, g

′
i(x, b

′
i) ≤ 0, ∀ bi ∈ Bi, ∀ b

′
i ∈ B′

i, ∀ i ∈ N}, then

X1 := {x ∈ R2 : x1 ≥ 1, x2 ≥ 1}.

and its robust counterpart is:

(RMOSIP1) min

(
max

(a1, a2)∈A1×A2

f1(x1, x2, a1), max
(a1, a2)∈A1×A2

f2(x1, x2, a2)

)
subject to gi(x1, x2, bi) ≤ 0, ∀ bi ∈ Bi, ∀ i ∈ N,

g
′
i(x1, x2, b

′
i) ≤ 0, ∀ b′i ∈ B

′
i, ∀ i ∈ N.

Then, the set of all feasible solutions of the problem is given by {(x1, x2) ∈ R2 :
x1 ≥ 1 and x2 ≥ 1}. So, it is clear that (x̄1, x̄2) = (1, 1) ∈ X1 is a weakly robust
efficient solution of RMOSIP1. We have A1(x̄1, x̄2) × A2(x̄1, x̄2) = {(1, 1)} and
N(x̄1, x̄2) = {1} are active indices for both g and g′ functions and

∏
i∈N

Bi(x̄1, x̄2) =

{0, 0, . . . } and
∏
i∈N

B′
i(x̄1, x̄2) = {1/2, 1/2, . . . }. Then, we can easily check that

RZCQ holds at (x̄1, x̄2) and if we choose λ̃1 = 1/2, λ̃2 = 1/4, µ̃1 = 1, µ̃
′
1 =

1, (ā1, ā2) = (1, 1) and (b̄1, b̄
′
1) = (0, 1/2), then we set

λ̃1∂
0
xf1(x̄1, x̄2, ā1) + λ̃2∂

0
xf2(x̄1, x̄2, ā2)

+ µ̃1∂
0
xg1(x̄1, x̄2, b̄1) + µ̃

′
1∂

0
xg

′
1(x̄1, x̄2, b̄

′
1) = 0,

µ̃1g1(x̄1, x̄2, b̄1) = 0, µ̃
′
1g

′
1(x̄1, x̄2, b̄

′
1) = 0.

Thus, Theorem 3.5 holds.

4. Robust duality

In this section, we formulate two types of dual problems for RMOSIP and derive
weak and strong robust duality theorems under convexity and generalized convexity
assumptions.
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4.1. Wolfe type robust dual. Now, we formulate a Wolfe type robust dual prob-
lem for the RMOSIP denoted by RMOSIP-WD.

(RMOSIP-WD) max
(y, a, b, λ, µ, γ)

(
f1(y, a1) +

∑
i∈I

µigi(y, bi) +
∑
j∈J

γjhj(y), . . . ,

fm(y, am) +
∑
i∈I

µigi(y, bi) +
∑
j∈J

γjhj(y)
)

subject to 0 ∈
m∑
k=1

λk∂
0
xfk(y, ak) +

∑
i∈I

µi∂
0
xgi(y, bi) +

∑
j∈J

γj∂
0hj(y),

λk ≥ 0, ak ∈ Ak, k = 1, . . . , m,
m∑
k=1

λk = 1,

µi ≥ 0, bi ∈ Bi, i ∈ I, γj ∈ R, j ∈ J,

with card(I+) + card(J+ ∪ J−), is finite and I+ := {i ∈ I : µi > 0}, J+ := {j ∈
J : γj > 0}, J− := {j ∈ J : γj < 0}. Let A = A1 × · · · × Am, B =

∏
i∈I Bi and

a ∈ A, b ∈ B.
The feasible set of RMOSIP-WD is defined by

W = {(y, a, b, λ, µ, γ) : 0 ∈
m∑
k=1

λk∂
0
xfk(y, ak) +

∑
i∈I

µi∂
0
xgi(y, bi) +

∑
j∈J

γj∂
0hj(y),

λk ≥ 0, ak ∈ Ak, k ∈M, a ∈
m∏
k=1

Ak = A,
m∑
k=1

λk = 1,

µi ≥ 0, bi ∈ Bi, i ∈ I, b ∈
∏
i∈I

Bi = B, γj ∈ R, j ∈ J},

and its projection on Rn, denoted by XW , is defined by

XW := {y ∈ Rn : (y, a, b, λ, µ, γ) ∈W}.

Let (y, a, b, λ, µ, γ) ∈ W. It is said to be weakly robust efficient solution of
RMOSIP-WD, if there does not exist any (y0, a0, b0, λ0, µ0, γ0) ∈W, such that

fk(y0, a0k) +
∑
i∈I

λ0igi(y0, b0i) +
∑
j∈J

γ0jhj(y0)

> fk(y, ak) +
∑
i∈I

λigi(y, bi) +
∑
j∈J

γjhj(y), k = 1, . . . , m.

Now, we derive weak and strong duality theorem between RMOSIP-WD and
RMOSIP.

Theorem 4.1 (Weak Duality Theorem). Let x ∈ X1 and (y, a, b, λ, µ, γ) ∈
W. Let fk(·, ak), for each ak ∈ Ak (k ∈ M), gi(·, bi), for each bi ∈ Bi (i ∈
I+), hj(·) (j ∈ J+) and −hj(·) (j ∈ J−) are convex at y over X1 ∪XW , then the
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following inequalities cannot hold simultaneously:

max
ak∈Ak(x)

fk(x, ak) < fk(y, ak) +
∑
i∈I

µigi(y, bi) +
∑
j∈J

γjhj(y), k = 1, . . . , m.

Proof. Let x ∈ X1 and (y, a, b, λ, µ, γ) ∈W, then

(4.1) gi(x, bi) ≤ 0, ∀ bi ∈ Bi, ∀ i ∈ I, hj(x) = 0, ∀ j ∈ J,

and

0 ∈
m∑
k=1

λk∂
0
xfk(y, ak) +

∑
i∈I

µi∂
0
xgi(y, bi) +

∑
j∈J

γj∂
0hj(y)

i.e., there exist y∗k ∈ ∂0xfk(y, ak) (k ∈ M), y∗i ∈ ∂0xgi(y, bi) (i ∈ I+), µi = 0, i ∈
I \ I+, and y∗j ∈ ∂0hj(y) (j ∈ J+ ∪ J−), γj = 0, j ∈ J \ (J+ ∪ J−), then

(4.2) 0 =

m∑
k=1

λky
∗
k +

∑
i∈I+

µiy
∗
i +

∑
j∈J+∪J−

γjy
∗
j .

Suppose to the contrary that

max
ak∈Ak(x)

fk(x, ak) < fk(y, ak) +
∑
i∈I

µigi(y, bi) +
∑
j∈J

γjhj(y), ∀ k = 1, . . . , m.

Using µi = 0, i ∈ I \ I+, and γj = 0, j ∈ J \ (J+ ∪ J−), we get

(4.3) max
ak∈Ak(x)

fk(x, ak) < fk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y),

∀ k = 1, . . . , m.

Hence,

fk(x, akx) < fk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y), akx ∈ Ak(x),

for all k = 1, . . . , m.

We have the following two cases, first is ak ∈ Ak(x) and other is ak /∈ Ak(x), so,
under the first condition:

fk(x, ak) = fk(x, akx) < fk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y),

for k = 1, . . . , m,

and under the second condition:

fk(x, ak) < fk(x, akx) < fk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y),

for k = 1, . . . , m.
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Hence, we have

(4.4) fk(x, ak) < fk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y), ak ∈ Ak,

∀ k = 1, . . . , m.

Multiplying (4.4) by λk ≥ 0 for k = 1, . . . , m with
m∑
k=1

λk = 1 and adding all of

them, we get

(4.5)
m∑
k=1

λkfk(x, ak) <
m∑
k=1

λkfk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y).

By (4.1), µi = 0, i ∈ I \ I+, µi > 0, i ∈ I+, γj = 0, j ∈ J \ (J+ ∪ J−) and
γj 6= 0, j ∈ J+ ∪ J−, we get

(4.6)
∑
i∈I+

µigi(x, bi) +
∑

j∈J+∪J−

γjhj(x) ≤ 0, bi ∈ Bi.

By adding (4.5) and (4.6), we get

m∑
k=1

λkfk(x, ak) +
∑
i∈I+

µigi(x, bi) +
∑

j∈J+∪J−

γjhj(x)

<

m∑
k=1

λkfk(y, ak) +
∑
i∈I+

µigi(y, bi) +
∑

j∈J+∪J−

γjhj(y), for ak ∈ Ak, bi ∈ Bi .

(4.7)

Since fk(·, ak), for each ak ∈ Ak (k ∈ M), gi(·, bi), for each bi ∈ Bi (i ∈
I+), hj(·) (j ∈ J+) and −hj(·) (j ∈ J−) are convex at y over X1 ∪ XW , there-
fore

fk(x, ak)− fk(y, ak) ≥ 〈y∗k, x− y〉, ∀ y∗k ∈ ∂0xfk(y, ak), ∀ k ∈M,(4.8)

gi(x, bi)− gi(y, bi) ≥ 〈y∗i , x− y〉, ∀ y∗i ∈ ∂0xgi(y, bi), ∀ i ∈ I+,(4.9)

hj(x)− hj(y) ≥ 〈y∗j , x− y〉, ∀ y∗j ∈ ∂0hj(y), ∀ j ∈ J+,(4.10)

hj(x)− hj(y) ≤ 〈y∗j , x− y〉, ∀ y∗j ∈ ∂0hj(y), ∀ j ∈ J−.(4.11)

Since λk ≥ 0 (k ∈ M), µi > 0 (i ∈ I+), γj > 0 (j ∈ J+) and γj < 0 (j ∈ J−), then
multiplying simultaneously in (4.8) − (4.11), respectively and adding all of them,
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we get

m∑
k=1

λkfk(x, ak) +
∑
i∈I+

µigi(x, bi) +
∑

j∈J+∪J−

γjhj(x)

−
m∑
k=1

λkfk(y, ak)−
∑
i∈I+

µigi(y, bi)−
∑

j∈J+∪J−

γjhj(y)

≥
〈 m∑

k=1

λky
∗
k +

∑
i∈I+

µiy
∗
i +

∑
j∈J+∪J−

γjy
∗
j , x− y

〉
,

∀ y∗k ∈ ∂0xfk(y, ak), y
∗
i ∈ ∂0xgi(y, bi) and y

∗
j ∈ ∂0hj(y).

Using (4.7), we get

0 >
〈 m∑

k=1

λky
∗
k +

∑
i∈I+

µiy
∗
i +

∑
j∈J+∪J−

γjy
∗
j , x− y

〉
,

∀ y∗k ∈ ∂0xfk(y, ak), y
∗
i ∈ ∂0xgi(y, bi) and y

∗
j ∈ ∂0hj(y)

= 0 (by (4.2)) for some y∗k ∈ ∂0xfk(y, ak), y
∗
i ∈ ∂0xgi(y, bi) and y

∗
j ∈ ∂0hj(y).

Which is a contradiction. Hence, our supposition is wrong and we get the required
result. □

Theorem 4.2 (Strong Duality Theorem). Let x̄ ∈ X1 be a weakly robust efficient
solution of RMOSIP such that the conditions of Theorem 3.5 are satisfied at x̄.
Then, there exists āk ∈ Ak(x̄), λ̃k ≥ 0 (k ∈ M), with

∑
k∈M λ̃k = 1, and b̄i ∈

Bi(x̄), µ̃i ≥ 0 (i ∈ I), γ̃j ∈ R (j ∈ J), with finitely many of them being non zero

(i.e. (card(I+) + card(J+ ∪ J−)) is finite), such that (x̄, ā, b̄, λ̃, µ̃, γ̃) ∈W.
If fk(·, āk), for each āk ∈ Ak(x̄) (k ∈ M), gi(·, b̄i), for each b̄i ∈ Bi(x̄) (i ∈

I+), hj(·) (j ∈ J+) and −hj(·) (j ∈ J−) are convex at x̄ over X1 ∪ XW , then

(x̄, ā, b̄, λ̃, µ̃, γ̃) is a weakly robust efficient solution of RMOSIP-WD.

Proof. Since the conditions of Theorem 3.5 are satisfied at x̄. Then, there exists āk ∈
Ak(x̄), λ̃k ≥ 0 (k ∈ M), with

∑
k∈M λ̃k = 1, and b̄i ∈ Bi(x̄), µ̃i ≥ 0 (i ∈ I), γ̃j ∈

R (j ∈ J), with finitely many of them being non zero (i.e. (card(I+) + card(J+ ∪
J−)) is finite), such that (3.14)−(3.15) are satisfied, which gives (x̄, ā, b̄, λ̃, µ̃, γ̃) ∈
W.

Now, we assume that (x̄, ā, b̄, λ̃, µ̃, γ̃) is not a weakly robust efficient solution

of RMOSIP-WD. Then, there exists a robust feasible point (ȳ, â, b̂, λ̂, µ̂, γ̂) of
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RMOSIP-WD such that

fk(ȳ, âk) +
∑
i∈I

µ̂igi(ȳ, b̂i) +
∑
j∈J

γ̂jhj(ȳ)(4.12)

> fk(x̄, āk) +
∑
i∈I

µ̃igi(x̄, b̄i) +
∑
j∈J

γ̃jhj(ȳ), k = 1, 2, . . . , m,

By (3.15) and the feasibility of x̄, we get∑
i∈I

µ̃igi(x̄, b̄i) +
∑
j∈J

γ̃jhj(x̄) = 0,

then (4.12) gives

fk(ȳ, âk) +
∑
i∈I

µ̂igi(ȳ, b̂i) +
∑
j∈J

γ̂jhj(ȳ) > fk(x̄, āk), k = 1, 2, . . . , m,

i.e.,

fk(ȳ, âk) +
∑
i∈I

µ̂igi(ȳ, b̂i) +
∑
j∈J

γ̂jhj(ȳ) > max
āk∈Ak(x̄)

fk(x̄, āk), k = 1, 2, . . . , m,

Which contradicts weak duality. Thus, (x̄, ā, b̄, λ̃, µ̃, γ̃) is a weakly robust efficient
solution of RMOSIP-WD. □

4.2. Mond-Weir type robust dual. Now, we formulate a Mond-Weir type robust
dual problem for the RMOSIP denoted by RMOSIP-MWD.

(RMOSIP-MWD) max
(y, a, b, λ, µ, γ)

(
f1(y, a1), . . . , fm(y, am)

)

subject to 0 ∈
m∑
k=1

λk∂
0
xfk(y, ak) +

∑
i∈I

µi∂
0
xgi(y, bi) +

∑
j∈J

γj∂
0hj(y),

λk ≥ 0, ak ∈ Ak, k = 1, . . . , m,
m∑
k=1

λk = 1,

µi ≥ 0, µigi(y, bi) ≥ 0, bi ∈ Bi, i ∈ I,

γj ∈ R, γjhj(y) = 0, j ∈ J,

with card(I+) + card(J+ ∪ J−), is finite and I+ := {i ∈ I : µi > 0}, J+ := {j ∈
J : γj > 0}, J− := {j ∈ J : γj < 0}. Let A = A1 × · · · × Am, B =

∏
i∈I Bi and

a ∈ A, b ∈ B.
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The feasible set of RMOSIP-MWD is defined by

MW ={(y, a, b, λ, µ, γ) : 0∈
m∑
k=1

λk∂
0
xfk(y, ak)+

∑
i∈I

µi∂
0
xgi(y, bi)+

∑
j∈J

γj∂
0hj(y),

λk ≥ 0, ak ∈ Ak, k ∈M, a ∈
m∏
k=1

Ak = A,
m∑
k=1

λk = 1,

µi ≥ 0, µigi(y, bi) ≥ 0, bi ∈ Bi, i ∈ I, b ∈
∏
i∈I

Bi = B,

γj ∈ R, γjhj(y) = 0, j ∈ J},

and its projection on Rn, denoted by XMW , is defined by

XMW := {y ∈ Rn : (y, a, b, λ, µ, γ) ∈MW}.

Let (y, a, b, λ, µ, γ) ∈ MW. It is said to be weakly robust efficient solution of
RMOSIP-MWD, if there does not exist any (y0, a0, b0, λ0, µ0, γ0) ∈ MW, such
that

fk(y0, a0k) > fk(y, ak), k = 1, . . . , m.

Now, we derive weak and strong duality theorem between RMOSIP-MWD and
RMOSIP.

Theorem 4.3 (Weak Duality Theorem). Let x ∈ X1 and (y, a, b, λ, µ, γ) ∈MW.
Let fk(·, ak), for each ak ∈ Ak (k ∈ M) is pseudo convex and µigi(·, bi), for each
bi ∈ Bi (i ∈ I+), γjhj(·) (j ∈ J+ ∪ J−) are quasi convex at y over X1 ∪XMW , then
the following inequalities cannot hold simultaneously:

max
ak∈Ak(x)

fk(x, ak) < fk(y, ak), k = 1, 2, . . . , m.(4.13)

Proof. Let x ∈ X1, then

(4.14) gi(x, bi) ≤ 0, ∀ bi ∈ Bi, i ∈ I and hj(x) = 0, ∀ j ∈ J.

Let (y, a, b, λ, µ, γ) ∈ MW, then, there exists y∗k ∈ ∂0xf(y, ak) (k ∈ M), y∗i ∈
∂0xgi(y, bi) (i ∈ I+), y∗j ∈ ∂0hj(y) (j ∈ J+ ∪ J−), µi = 0, i ∈ I \ I+ and γj = 0, j ∈
J \ (J+ ∪ J−), one has

0 =
m∑
k=1

λky
∗
k +

∑
i∈I+

µiy
∗
i +

∑
j∈J+∪J−

γjy
∗
j ,(4.15)

µigi(y, bi) ≥ 0, bi ∈ Bi, i ∈ I,(4.16)

γjhj(y) = 0, j ∈ J.(4.17)

Suppose to the contrary that (4.13) is not satisfied, then

max
ak∈Ak(x)

fk(x, ak) < fk(y, ak), ∀ k = 1, 2, . . . , m.

Hence,

(4.18) fk(x, akx) < fk(y, ak), akx ∈ Ak(x), ∀ k = 1, 2, . . . , m.
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We have the following two cases: first is ak ∈ Ak(x) and other is ak /∈ Ak(x), so,
under the first condition:

fk(x, ak) = fk(x, akx) < fk(y, ak), for k = 1, . . . , m,

and under the second condition:

fk(x, ak) < fk(x, akx) < fk(y, ak), for k = 1, . . . , m.

Hence, we have

(4.19) fk(x, ak) < fk(y, ak), ak ∈ Ak, ∀ k = 1, . . . , m.

Let fk(·, ak), for each ak ∈ Ak (k ∈ M) is pseudo convex and µigi(·, bi), for each
bi ∈ Bi (i ∈ I+), γjhj(·) (j ∈ J+ ∪ J−) are quasi convex at y over X1 ∪XMW , then
(4.19), (4.14), (4.16) and (4.17) gives

〈y∗k, x− y〉 < 0, ∀ y∗k ∈ ∂0xfk(y, ak), k ∈M,(4.20) 〈 ∑
i∈I+

µiy
∗
i , x− y

〉
≤ 0, ∀ y∗i ∈ ∂0xgi(y, bi),(4.21) 〈 ∑

j∈J+∪J−

γjy
∗
j , x− y

〉
≤ 0, ∀ y∗j ∈ ∂0hj(y).(4.22)

Since λk ≥ 0, k ∈M with
∑

k∈M λk = 1, we get

0 >
〈 ∑

k∈M
λky

∗
k +

∑
i∈I+

µiy
∗
i +

∑
j∈J+∪J−

γjy
∗
j , x− y

〉
= 0 (by (4.15)),

which is not possible, Hence, our supposition is wrong and we get the required
result. □

Theorem 4.4 (Strong Duality Theorem). Let x̄ ∈ X1 be a weakly robust efficient
solution of RMOSIP such that the conditions of Theorem 3.5 are satisfied at x̄.
Then, there exists āk ∈ Ak(x̄), λ̃k ≥ 0 (k ∈ M), with

∑
k∈M λ̃k = 1 and b̄i ∈

Bi(x̄), µ̃i ≥ 0 (i ∈ I), γ̃j ∈ R (j ∈ J), with finitely many of them being non zero

(i.e. (card(I+) + card(J+ ∪ J−)) is finite), such that (x̄, ā, b̄, λ̃, µ̃, γ̃) ∈MW.
If fk(·, ak), for each ak ∈ Ak (k ∈ M) is pseudo convex and µ̃igi(·, bi), for each

bi ∈ Bi (i ∈ I+), γ̃jhj(·) (j ∈ J+ ∪ J−) are quasi convex at x̄ over X1 ∪XMW , then

(x̄, ā, b̄, λ̃, µ̃, γ̃) is a weakly robust efficient solution of RMOSIP-MWD.

Proof. Proof of this theorem is similar to the strong duality theorem for Wolfe type
Robust duality. □

5. Conclusions

In this paper, we have taken nonsmooth robust multiobjective semi-infinite pro-
gramming problem with mixed constraints. We have formulated necessary optimal-
ity conditions in terms of data uncertainty depends on the feasible region and in the
objective functions. After that, we have established sufficient optimality conditions
under convexity and generalized convexity assumptions and then gave an example
for the support of KKT optimality conditions. Lastly, we derived two types of
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dual model for the above taken problem Wolfe and Mond-Weir and developed weak
and strong duality results under convexity and generalized convexity assumptions
between these dual and primal models.
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