
Linear and Nonlinear Analysis

Volume 7, Number 3, 2021, 355–364

AN ITERATIVE METHOD FOR SOLVING THE FIXED POINT

PROBLEM FOR A SET-VALUED MAPPING

ALEXANDER J. ZASLAVSKI

Abstract. In 1989 N. Mizoguchi and W. Takahash established the existence of

a fixed point for a set-valued mapping satisfying certain assumptions. In this

paper we study this mapping an analyze an iterative scheme which allows us, for

any initial state, to construct a sequence of iterates which converge to a fixed

point of the mapping.

1. Introduction

During more than fifty-five years now, there has been a lot of activity regarding
the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for
example, [3, 5, 11, 13, 14, 17, 18, 19, 21, 24, 25, 26, 27, 28, 29, 34, 35] and the
references cited therein. This activity stems from Banach’s classical theorem [1]
concerning the existence of a unique fixed point for a strict contraction. It also
covers the convergence of (inexact) iterates of a nonexpansive mapping to one of
its fixed points. Since that seminal result, many developments have taken place
in this field including, in particular, studies of feasibility and common fixed point
problems, which find important applications in engineering and medical sciences
[2, 4, 6, 7, 8, 9, 10, 12, 15, 16, 22, 31, 32, 34, 35].

In [20] N. Mizoguchi and W. Takahash answered a question posed by S. Reich
in [23] and established the existence of a fixed point for a set-valued nonexpansive
mapping satisfying certain assumptions. In this paper we study this mapping an
analyze an iterative scheme which allows us, for any initial state, to construct a
sequence of iterates which converge to a fixed point of the mapping. Note that
in [30] it was given an example showing that the Mizoguchi-Takahashi fixed point
theorem does not reduce to the Nadler theorem.

Our paper contains two results which are obtained in Section 2.

2. Main results

Let (X, ρ) be a complete metric space. For each x ∈ X and each r > 0 set

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

For each x ∈ X and each nonempty set D ⊂ X set

ρ(x,D) = inf{ρ(x, y) : y ∈ D}.

Denote by S(X) the collection of all nonempty closed bounded subsets of X.
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For each A,B ∈ S(X) set

H(A,B) = max{sup{ρ(x,B) : x ∈ A}, sup{ρ(x,A) : x ∈ B}}.

Clearly, (S(X),H) is a metric space.
Assume that a function ϕ : (0,∞) → [0, 1) satisfies for each t ∈ [0,∞),

(2.1) lim sup
r→t+

ϕ(r) < 1.

Let a mapping A : X → S(X) satisfy

(2.2) H(A(x), A(y)) ≤ ϕ(ρ(x, y))ρ(x, y)

for all x, y ∈ X such that x ̸= y. This mapping was studied in [20] where it was
shown that the mapping A has a fixed point. Put

ϕ(0) = 0.

Then (2.2) holds for all x, y ∈ X and the domain of ϕ is [0,∞).
In this paper we study this mapping A an analyze an iterative scheme which

allows us, for any initial state, to construct a sequence of iterates which converge
to a fixed point of the mapping.

We consider the following algorithm.

Initialization: select an arbitrary

x0 ∈ X.

Iterative step: given a current iteration vector xt ∈ X calculate xt+1 ∈ A(xt) as
an approximate solution of the minimization problem

ρ(xt, x) → min, x ∈ A(xt).

Note that the existence of an exact solution of the minimization problem above
is not guaranteed if A(xt) is not a compact. Moreover, even if it exists, this exact
solution usually cannot be calculated because of computational errors produced by
our computer system.

In this paper we prove the following result.

Theorem 2.1. Let x0 ∈ X, a sequence {∆i}∞i=0 ⊂ (0,∞) satisfy

(2.3) lim
i→∞

∆i = 0

and let a sequence {xi}∞i=0 ⊂ X satisfy for each integer i ≥ 0,

(2.4) xi+1 ∈ A(xi),

(2.5) if xi ∈ A(xi), then xi+1 = xi,

(2.6) ρ(xi, xi+1) ≤ ρ(xi, A(xi)) + ∆i

and have the following property:
(P1) if i ≥ 1 and

ρ(xi, A(xi)) < ρ(xi−1, xi),
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then

ρ(xi, xi+1) < ρ(xi−1, xi).

Then limi→∞ ρ(xi, xi+1) = 0. Moreover, if

∞∑
i=0

∆i < ∞,

then the sequence {xi}∞i=0 converges to a fixed point of A.

Note that for every x0 ∈ X and every sequence {∆i}∞i=0 ⊂ (0, 1) satisfying (2.3)
there exists a sequence {xi}∞i=0 ⊂ X which satisfies (2.4)-(2.6) and has property
(P1) for all integers i ≥ 0. The iterative scheme used in Theorem 2.1 is related to
allowable ranges in the sense of [33] .

Proof of Theorem 2.1. We may assume without loss of generality that for all inte-
gers i ≥ 0,

(2.7) xi ̸∈ A(xi).

This implies that for all integers i ≥ 0,

(2.8) xi ̸= xi+1.

In view of (2.6),

(2.9) ρ(x0, x1) ≤ ρ(x0, A(x0)) + ∆0.

By (2.2), (2.4) and (2.6), for each integer i ≥ 1,

(2.10)

ρ(xi, xi+1) ≤ ρ(xi, A(xi)) + ∆i

≤ H(A(xi−1), A(xi)) + ∆i

≤ ϕ(ρ(xi−1, xi))ρ(xi−1, xi) + ∆i.

By (2.2), (2.4), (2.8), for each integer i ≥ 1,

(2.11)
ρ(xi, A(xi)) ≤ H(A(xi−1), A(xi))

≤ ϕ(ρ(xi−1, xi))ρ(xi−1, xi) < ρ(xi−1, xi).

It follows from (2.11) and property (P1) that for each integer i ≥ 1,

(2.12) ρ(xi, xi+1) < ρ(xi−1, xi).

In view of (2.12) there exists

(2.13)
τ = lim

i→∞
ρ(xi, xi+1)

= inf{ρ(xi, xi+1) : i ≥ 0 is an integer}.

Set

(2.14) λ = lim sup
r→τ+

ϕ(r).

In view of (2.1) and (2.14),

(2.15) 0 ≤ λ < 1.
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By (2.12), (2.13) and (2.14), there exists a natural number p0 such that for each
integer i ≥ p0,

(2.16) ϕ(ρ(xi, xi+1)) ≤ 2−1(1 + λ).

It follows from (2.10) and (2.16) that for each integer i ≥ p0 + 1,

(2.17)
ρ(xi, xi+1) ≤ ϕ(ρ(xi−1, xi))ρ(xi−1, xi) + ∆i

≤ 2−1(1 + λ)ρ(xi−1, xi) + ∆i.

Equations (2.3), (2.13) and (2.17) imply that

τ ≤ 2−1(1 + λ)τ.

Together with (2.15) this implies that

τ = lim
i→∞

ρ(xi, xi+1) = 0.

Assume now that

∞∑
i=0

∆i < ∞.

We show that the sequence {xi}∞i=0 converges to a fixed point of A.
Relation (2.17) implies that

(2.18) ρ(xp0+1, xp0+2) ≤ 2−1(1 + λ)ρ(xp0 , xp0+1) + ∆p0+1.

In view of (2.17) and (2.18),

(2.19)

ρ(xp0+2, xp0+3) ≤ 2−1(1 + λ)ρ(xp0+1, xp0+2) + ∆p0+2

≤ (2−1(1 + λ))2ρ(xp0 , xp0+1)

+ 2−1(1 + λ)∆p0+1 +∆p0+2.

We show by induction that for each integer n ≥ 1,

(2.20)

ρ(xp0+n, xp0+n+1) ≤ (2−1(1 + λ))nρ(xp0 , xp0+1)

+

n−1∑
i=0

(2−1(1 + λ))i∆p0+n−i.

In view of (2.18) and (2.19), inequality (2.20) holds for n = 1, 2.
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Assume that k ≥ 1 is an integer and that (2.20) holds for n = k. Together with
(2.17) this implies that

ρ(xp0+k+1, xp0+k+2) ≤ 2−1(1 + λ)ρ(xp0+k, xp0+k+1) + ∆p0+k+1

≤ (2−1(1 + λ))k+1ρ(xp0 , xp0+1)

+
k−1∑
i=0

(2−1(1 + λ))i+1∆p0+k−i +∆p0+k+1

= (2−1(1 + λ))k+1ρ(xp0 , xp0+1)

+

k∑
i=0

(2−1(1 + λ))i∆p0+k+1−i.

Thus (2.20) holds for n = k + 1. Therefore we have shown that (2.20) holds for all
integers n ≥ 1.

Since
∑∞

i=0∆i < ∞ equations (2.15) and (2.20) imply that

∞∑
n=1

ρ(xp0+n, xp0+n+1) ≤
∞∑
n=1

((2−1(1 + λ))nρ(xp0 , xp0+1)

+

n∑
i=1

(2−1(1 + λ))n−i∆p0+i)

≤ ρ(xp0 , xp0+1)

∞∑
n=1

(2−1(1 + λ))n

+
∞∑
i=1

 ∞∑
j=0

(2−1(1 + λ))j

∆p0+i

≤

( ∞∑
n=0

(2−1(1 + λ))n

)[
ρ(xp0 , xp0+1) +

∞∑
i=1

∆p0+i

]
< ∞.

Thus {xn}∞n=0 is a Cauchy sequence and there exists

(2.21) x∗ = lim
n→∞

xn.

We show that x∗ ∈ A(x∗). Let ϵ > 0. In view of (2.21), there exists an integer
n0 ≥ 1 such that for each integer n ≥ n0,

(2.22) ρ(xn, x∗) ≤ ϵ/4.

Let n ≥ n0 be an integer. By (2.2) and (2.22),

(2.23) H(A(xn), A(x∗)) ≤ ρ(xn, x∗) ≤ ϵ/4.

Relation (2.4) implies that

(2.24) xn+1 ∈ A(xn).
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It follows from (2.23) and (2.24) that

ρ(xn+1, A(x∗)) ≤ ϵ/4.

Thus there exists

(2.25) y ∈ A(x∗)

such that

(2.26) ρ(xn+1, y) < ϵ/4 + ϵ/8.

By (2.22), (2.25) and (2.26),

ρ(x∗, A(x∗)) ≤ ρ(x∗, y) ≤ ρ(x∗, xn+1) + ρ(xn+1, y) ≤ ϵ/4 + ϵ/4 + ϵ/8.

Since ϵ is an arbitrary positive number, we conclude that

x∗ ∈ A(x∗).

Theorem 2.1 is proved. □

The next theorem is our second main result. It shows that our fixed point problem
is well-posed.

Theorem 2.2. Let ϵ > 0. Then there exists δ > 0 such that for each x ∈ X
satisfying ρ(x,A(x)) < δ there exists x̄ ∈ X such that x̄ ∈ A(x̄) and ρ(x, x̄) < ϵ.

Proof. By (2.1), there exist δ0 > 0 and λ0 ∈ (0, 1) such that

(2.27) ϕ(t) < λ0 for all t ∈ (0, δ0].

Fix

(2.28) λ1 ∈ (λ0, 1).

Choose a positive number δ such that

(2.29) δ < δ0 and δ(1− λ1)
−1 < ϵ.

Let x ∈ X satisfy

(2.30) ρ(x,A(x)) < δ.

Set

(2.31) x0 = x.

By (2.30) and (2.31), there exists x1 ∈ X such that

(2.32) x1 ∈ A(x0), ρ(x0, x1) < δ,

(2.33) if x0 ∈ A(x0), then x1 = x0.

By induction we define a sequence {xn}∞n=0 ⊂ X such that for each integer n ≥ 1
the following properties hold:

(P2) if xn ∈ A(xn), then xn+1 = xn;
(P3) if xn ̸∈ A(xn), then xn+1 ∈ A(xn) and

(2.34) ρ(xn, xn+1) < ρ(xn, A(xn))λ1λ
−1
0 ;
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(P4) if

ρ(xn, A(xn)) < ρ(xn−1, xn),

then

ρ(xn, xn+1) < ρ(xn−1, xn).

If x1 ∈ A(x1), then in view of (2.29), (2.31) and (2.32), the assertion of the theorem
holds. Thus we may assume without loss of generality that

(2.35) x1 ̸∈ A(x1).

By (P3),

(2.36) x2 ̸= x1.

It follows from (2.32), (2.36) and (P2) that

(2.37). x1 ̸= x0.

Assume that an integer k ≥ 2 and

(2.38) xk ̸= xk−1.

(Note that in view of (2.36), (2.38) is true for k = 2.) By (2.33), (2.35)-(2.38) and
properties (P2) and (P3),

(2.39) xi ̸= xi−1, xi−1 ̸∈ A(xi−1)

for all integers i satisfying 1 ≤ i ≤ k.
Let an integer i satisfy 1 ≤ i ≤ k. By (2.2), (2.39), (P2) and (P3),

(2.40) ρ(xi, A(xi)) ≤ H(A(xi−1), A(xi)) ≤ ϕ(ρ(xi−1, xi))ρ(xi−1, xi).

In view of (2.39) and (2.40),

(2.41) ρ(xi, A(xi)) < ρ(xi−1, xi).

It follows from (5.41) and (P4) that

ρ(xi, xi+1) < ρ(xi−1, xi).

Since the inequality above holds for all integers i satisfying 1 ≤ i ≤ k we conclude
using (2.30) that

ρ(xk, xk+1) ≤ ρ(xk−1, xk) ≤ · · · ≤ ρ(x1, x2) ≤ ρ(x0, x1) < δ.

By the relation above, (2.27), (2.29), (2.34), (2.39), (2.40) and property (P3), for
each integer i satisfying 1 ≤ i < k,

ρ(xi, xi+1) < ρ(xi, A(xi))λ1λ
−1
0

≤ λ1λ
−1
0 ϕ(ρ(xi−1, xi))ρ(xi−1, xi)

≤ λ1λ
−1
0 λ0ρ(xi−1, xi) = λ1ρ(xi−1, xi).

Together with (2.32) this implies that for each integer i satisfying 1 ≤ i < k,

(2.42) ρ(xi, xi+1) ≤ λi
1ρ(x0, x1) ≤ λi

1δ.

Thus we have shown that the following property holds:
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(P5) if an integer k ≥ 2 satisfies xk ̸= xk−1, then for each integer i satisfying
1 ≤ i < k the inequality

ρ(xi, xi+1) ≤ λi
1δ

holds.
There are two cases:
(a) there is an integer k ≥ 2 such that

xk ̸= xk−1, xk+1 = xk;

(b) xk ̸= xk−1 for all integers k ≥ 2.
Assume that the case (a) holds and let an integer k ≥ 2 be as guaranteed in the

case (a). Then by property (P5),

(2.43) ρ(xi, xi+1) ≤ λi
1δ, i = 1, . . . , k − 1.

In view of (P2) and (P3),

(2.44) xi = xk for all integers i ≥ k, xk ∈ A(xk).

It follows from (2.29), (2.32) and (2.43) that

ρ(x0, xk) ≤
k−1∑
i=0

ρ(xi, xi+1) ≤
∞∑
i=0

λi
1δ = δ(1− λ1)

−1 < ϵ.

Thus

xk ∈ A(xk), ρ(x, xk) < ϵ

and in the case (a) Theorem 2.2 is proved.
Assume that the case (b) holds. By property (P5), for all integers i ≥ 1,

(2.45) ρ(xi, xi+1) ≤ λi
1δ.

In view of (2.45),
∞∑
i=0

ρ(xi, xi+1) < ∞.

Thus {xi}∞i=0 is a Cauchy sequence. Let

(2.46) x̄ = lim
i→∞

xi.

Arguing as in the proof of Theorem 2.1 we can show that

x̄ ∈ A(x̄).

By (2.29), (2.31), (2.45) and (2.46),

ρ(x, x̄) = ρ(x0, x̄) = lim
n→∞

ρ(x0, xn)

≤
∞∑
i=0

ρ(xi, xi+1) ≤
∞∑
i=0

λi
1δ

= δ(1− λ1)
−1 < ϵ.

This completes the proof of Theorem 2.2. □
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