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be the sequence generated by a deep learning optimizer. Then, the regret is the
difference between the sum of the values of fi at xi and the optimal value f⋆ of
Problem (1.1), i.e.,

R(n) :=
∑
i∈[n]

fi(xi)− f⋆.(1.3)

Kingma and Ba [7] showed that Adam satisfies R(n)/n ≤ O(1/
√
n). However,

Reddi, Kale, and Kumar [9] showed a counterexample such that Adam does not
always satisfy R(n)/n ≤ O(1/

√
n) (While Adam as proposed in [7] uses Hk =

diag(v̄
1/2
k,i ), Adam in Table 1 uses Hk = diag(v̂

1/2
k,i ) to guarantee its convergence [6]).

They presented AMSGrad [9], which guarantees the convergence of Adam (see Table
3 for the definition of AMSGrad) and showed that it satisfies

R(n)

n
≤ O

(√
1 + log n

n

)
.(1.4)

Table 1. Adam algorithm us-
ing element-wise squared values
of the stochastic gradient [7, 6]
(v−1 = v̂−1 = 0, γ, δ ∈ [0, 1))

mk := βkmk−1 + (1− βk)G(xk, ξk)

m̂k :=
mk

(1− γ)k+1

vk := δvk−1 + (1− δ)(G(xk, ξk)
2
i )

d
i=1

v̄k :=
vk

1− δk+1

v̂k = (v̂k,i) := (max{v̂k−1,i, v̄k,i})

Hk = diag
(
v̂
1/2
k,i

)
xk+1 := xk − αkH

−1
k m̂k

Table 2. Adam-type algorithm
using the element-wise pth power
of the stochastic gradient (v−1 =
v̂−1 = 0, γ, δ ∈ [0, 1))

mk := βkmk−1 + (1− βk)G(xk, ξk)

m̂k :=
mk

(1− γ)k+1

vk := δvk−1 + (1− δ)(G(xk, ξk)
p
i )

d
i=1

v̄k :=
vk

1− δk+1

v̂k = (v̂k,i) := (max{v̂k−1,i, v̄k,i})

Hk = diag
(
v̂
1/p
k,i

)
xk+1 := xk − αkH

−1
k m̂k

Problem (1.1) when each of fi is nonconvex is an important consideration in deep
neural networks because the loss functions are not always convex [13, 12, 1]. In this
case, we aim to find a stationary point of Problem (1.1), as follows:

find a point x⋆ ∈ Rd such that ∇f(x⋆) = 0,(1.5)

where ∇f : Rd → Rd denotes the gradient of f . The performance measure [6, 3, 15]
of the deep-learning optimizer for Problem (1.5) is such that, for all K = 1, 2, . . .,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
,(1.6)
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where E[X] denotes the expectation of a random variable X. Chen, Liu, Sun, and
Hong [3] showed that AMSGrad (see Table 3) can be applied to Problem (1.5) and
that it satisfies

min
k∈[K]

E
[
∥∇f(xk)∥2

]
= O

(
logK√

K

)
.(1.7)

Zhuang, Tang, Ding, Tatikonda, Dvornek, Papademetris, and Duncan [15] pre-
sented AdaBelief, which stands for adapting stepsizes by the belief in observed
gradients, which can be obtained by replacing G(xk, ξk) in Adam (see Table 1) with
G(xk, ξk)−mk and showed that AdaBelief satisfies (1.7). Recently, Iiduka [6] pro-
posed an algorithm that unifies these useful adaptive methods, i.e., Adam (Table
1), AMSGrad (Table 3), and AdaBelief, and showed that the algorithm satisfies

min
k∈[K]

E
[
∥∇f(xk)∥2

]
= O

(
1√
K

)
,(1.8)

which improves on the previous results [3, 15].

Table 3. AMSGrad algorithm
using element-wise squared val-
ues of the stochastic gradient [9]
(v−1 = v̂−1 = 0, δ ∈ [0, 1))

mk := βkmk−1 + (1− βk)G(xk, ξk)

vk := δvk−1 + (1− δ)(G(xk, ξk)
2
i )

d
i=1

v̂k = (v̂k,i) := (max{v̂k−1,i, vk,i})

Hk = diag
(
v̂
1/2
k,i

)
xk+1 := xk − αkH

−1
k mk

Table 4. AMSGrad algorithm
using the element-wise pth power
of the stochastic gradient (v−1 =
v̂−1 = 0, δ ∈ [0, 1))

mk := βkmk−1 + (1− βk)G(xk, ξk)

vk := δvk−1 + (1− δ)(G(xk, ξk)
p
i )

d
i=1

v̂k = (v̂k,i) := (max{v̂k−1,i, vk,i})

Hk = diag
(
v̂
1/p
k,i

)
xk+1 := xk − αkH

−1
k mk

1.1. Motivation. The above discussion shows that adaptive methods are useful for
both convex and nonconvex optimization in deep neural networks. Here, we have
two motivations related to the previous studies [7, 9, 6, 3] on adaptive methods.
The existing adaptive methods use element-wise squared values (G(xk, ξk)

2
i )

d
i=1 of

the stochastic gradient G(xk, ξk) (see the boxed parts in Tables 1 and 3). Here, we
are interested in the performance of adaptive methods using the element-wise pth
power (G(xk, ξk)

p
i )

d
i=1 of the stochastic gradient, e.g., Adam and AMSGrad using

the element-wise pth power as shown in Tables 2 and 4. See [2] for adaptive methods
using the element-wise squared values (G(xk, ξk)

2
i )

d
i=1 of the stochastic gradient and

Hk = diag(v̂qk,i), where q ∈ (0, 1/2]. The proposed algorithms with p = 2 in Tables

2 and 4 coincide with Adam and AMSGrad in Tables 1 and 3. Therefore, the first
motivation is to clarify that the proposed algorithm can in theory be applied to
nonconvex optimization in the same manner as the previous methods [6, 3]. The
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second motivation is to clarify whether the proposed algorithm outperforms the
existing adaptive methods in practice.

1.2. Contribution. This article proposes an adaptive method using the element-
wise pth power of the stochastic gradient (Algorithm 1 with Hk in Tables 2 and
4). The theoretical contribution is to prove that Algorithm 1 can be applied to
nonconvex stochastic optimization in deep neural networks (Theorems 2.3 and 2.4).
The practical contribution is to show numerical results for image classification such
that Algorithm 1 with Hk and p = 3, 4 in Tables 2 and 4, i.e., the adaptive method
using element-wise third or fourth power values of the stochastic gradient, performs
better than the existing adaptive methods (Section 3).

The remainder of the article is as follows. Section 2 presents the proposed al-
gorithm (Algorithm 1) and its convergence analyses. Section 3 provides numerical
comparisons of the proposed algorithm with the existing algorithms. Section 4
concludes the paper with a brief summary.

2. Proposed Algorithm and Its Convergence Analysis

Algorithm 1 is a listing of the proposed method that simplifies to Adam and
AMSGrad with p = 2.

Algorithm 1 Adaptive method [6] for Problem (1.5)

Require: (αk)k∈N ⊂ (0, 1), (βk)k∈N ⊂ [0, 1), γ ∈ [0, 1)
k ← 0,x0,m−1 ∈ Rd,H0 ∈ Sd++ ∩ Dd

loop
mk := βkmk−1 + (1− βk)G(xk, ξk)

m̂k :=
mk

1− γk+1

Hk ∈ Sd++ ∩ Dd (see Tables 1, 2, 3, and 4 for examples of Hk)

Find dk ∈ Rd that solves Hkd = −m̂k

xk+1 := xk + αkdk
k ← k + 1

end loop

To analyze Algorithm 1, we assume the following:

Assumption 2.1. The sequence (Hk)k∈N ⊂ Sd++ ∩ Dd, where Hk := diag(hk,i),
satisfies the following conditions:

(A1) hk+1,i ≥ hk,i for all k ∈ N and all i ∈ [d];
(A2) For all i ∈ [d], a positive number Bi exists such that sup{E[hk,i] : k ∈ N} ≤

Bi.

The generated sequence (xk)k∈N in Algorithm 1, where xk = (xk,i)
d
i=1, satisfies the

following conditions:

(A3) D := maxi∈[d] sup{(xk,i − xi)
2 : k ∈ N} < +∞ for x = (xi) ∈ Rd;

(A4) A positive number M exists such that, for all k ∈ N, E[∥G(xk, ξk)∥2] ≤M2.
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Assumptions (A3) and (A4) are needed to analyze adaptive methods (see, e.g.,
[7, 9, 6]). Next, we prove a proposition.

Proposition 2.2. Under (A3), Hk defined as in Tables 1, 2, 3, and 4 satisfies (A1)
and (A2).

Proof: From Hk = diag(v̂
1/p
k,i ) (p > 0) and v̂k,i ≥ v̂k−1,i, we have that, for all k ∈ N

and all i ∈ [d],

hk+1,i = v̂
1
p

k+1,i ≥ v̂
1
p

k,i =: hk,i,

which implies that (A1) holds. Let us consider the case where Hk is in Table 2. The
continuity of G(·, ξk) and (A3) ensure that (G(xk, ξk))k∈N is almost surely bounded,
i.e.,

M1 := sup
{∥∥∥(G(xk, ξk)

p
i )

d
i=1

∥∥∥ : k ∈ N
}
< +∞.

Moreover, the definition of vk and the triangle inequality guarantee that, for all
k ∈ N,

∥vk∥ ≤ δ∥vk−1∥+ (1− δ)M1.

Induction, together with v−1 = 0, thus shows that, for all k ∈ N,

∥vk∥ =

(
d∑

i=1

|vk,i|2
)1/2

≤M1

almost surely, which, together with the definition of v̄k, implies that

∥v̄k∥ =

(
d∑

i=1

|v̄k,i|2
)1/2

≤ M1

1− δ
.

Hence, for all k ∈ N and all i ∈ [d], we have

|vk,i|2, |v̄k,i|2 ≤
M2

1

(1− δ)2
.

The definitions of v̂k and v̂−1 = 0 ensure that, for all k ∈ N and all i ∈ [d],

E[hk,i] := E
[
v̂

1
p

k,i

]
≤
(

M1

1− δ

) 1
p

,

which implies that (A2) holds. Accordingly, Hk as defined in Table 1 (p = 2) also
satisfies (A2).

Let us consider the case where Hk is as in Table 4. A discussion similar to the
one showing that Hk defined as in Table 2 satisfies (A2) ensures that Hk defined as
in Table 4 also satisfies (A2); i.e., for all k ∈ N and all i ∈ [d],

E[hk,i] := E
[
v̂

1
p

k,i

]
≤M

1
p

1 .

Accordingly, Hk defined as in Table 3 (p = 2) also satisfies (A2). □
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The following is a convergence analysis of Algorithm 1 with constant learning
rates αk = α and βk = β for Problem (1.5). The proof of Theorem 2.3 is given in
Theorem 1 of [6].

Theorem 2.3. Suppose that Algorithm 1 satisfies Assumption 2.1 and let αk := α
and βk := β (k ∈ N). Then, the following holds for all x ∈ Rd:

lim inf
k→+∞

E [⟨xk − x,∇f(xk)⟩] ≤
B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β,(2.1)

where B̃ := sup{maxi∈[d] h
−1/2
k,i : k ∈ N} < +∞, M̃2 := max{∥m−1∥2,M2} and

γ̃ := 1− γ, b̃ := 1− β. Furthermore, the following holds for all K ≥ 1:

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤

D
∑d

i=1Bi

2b̃αK
+

B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃
β.(2.2)

Recall that the performance measure of Algorithm 1 for Problem (1.5) is defined
by (1.6), i.e.,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
.

Inequality (2.1) in Theorem 2.3 ensures that a subsequence (xki)i∈N of (xk)k∈N
exists such that (xki)i∈N converges almost surely to a point x∗ ∈ Rd and

E [⟨x∗ − x,∇f(x∗)⟩] ≤ B̃2M̃2

2b̃γ̃2
α+

M̃
√
Dd

b̃γ̃
β

for all x ∈ Rd. Accordingly, positive constants C1 and C2 exist such that

E
[
∥∇f(x∗)∥2

]
≤ C1α+ C2β,

which implies that Algorithm 1 with constant learning rates α and β will find
an approximate stationary point of Problem (1.5). Inequality (2.2) in Theorem
2.3 indicates that Algorithm 1 with constant learning rates α and β ensures that
positive constants C1 and C2 exist such that, for all K ≥ 1,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤ O

(
1

K

)
+ C1α+ C2β,

which implies that Algorithm 1 with constant learning rates α and β has approxi-
mately an O(1/K) convergence rate. For Problem (1.1) when fi is convex, Theorem
2.3 leads to the finding that

R(n)

n
≤ O

(
1

n

)
+ C1α+ C2β

(see Proposition 1 in [6] for details).
The following is a convergence analysis of Algorithm 1 with diminishing learning

rates αk and βk for Problem (1.5). The proof of Theorem 2.4 is given in Theorem
2 in [6].
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Theorem 2.4. Suppose that Algorithm 1 satisfies Assumption 2.1 and let αk and
βk (k ∈ N) be such that

∑+∞
k=0 αk = +∞,

∑+∞
k=0 α

2
k < +∞, and

∑+∞
k=0 αkβk < +∞.

Then, the following holds for all x ∈ Rd:

lim inf
k→+∞

E [⟨xk − x,∇f(xk)⟩] ≤ 0.(2.3)

Moreover, Algorithm 1 with αk := 1/kη (η ∈ [1/2, 1)) and βk := λk (λ ∈ (0, 1)) has
the following convergence rate for all K ≥ 1:

min
k∈[K]

E
[
∥∇f(xk)∥2

]
≤

D
∑d

i=1Bi

2b̃K1−η
+

B̃2M̃2

2b̃γ̃2(1− η)K1−η
+

M̃λ
√
Dd

b̃(1− λ)K
,(2.4)

where D, b̃, M̃ , B̃, and γ̃ are the same as in Theorem 2.3.

Inequality (2.3) in Theorem 2.4 ensures that there exists a subsequence (xkj )j∈N
of (xk)k∈N such that (xkj )j∈N converges almost surely to a point x∗ ∈ Rd satisfying

E
[
∥∇f(x∗)∥2

]
= 0,

which implies that Algorithm 1 with diminishing learning rates αk and βk can solve
Problem (1.5). Inequality (2.4) in Theorem 2.4 indicates that Algorithm 1 with

diminishing learning rates αk = 1/
√
k and βk = λk satisfies that, for all K ≥ 1,

min
k∈[K]

E
[
∥∇f(xk)∥2

]
= O

(
1√
K

)
.

For Problem (1.1) when fi is convex, Theorem 2.4 leads to the finding that

R(n)

n
≤ O

(
1√
n

)
(see Proposition 2 in [6] for details).

3. Numerical Experiments

This section presents the results of experiments comparing our algorithm with
the previous work. We examined the behavior of the algorithms with different
learning rates in image classification tasks. The algorithms with δ = 0.999 used in
the experiments reported in [7, 9] are as follows, where the ADAM-type algorithms
use γ = 0.9, and the AMSG-type algorithms use γ = 0.
Algorithm 1 with constant learning rates:

• ADAM-C1: Algorithm 1 with the parameters in Table 2, p = 2, αk = 10−3,
and βk = 0.9
• ADAM-C2: Algorithm 1 with the parameters in Table 2, p = 2, αk = 10−3,
and βk = 10−3

• AMSG-C1: Algorithm 1 with the parameters in Table 4, p = 2, αk = 10−3,
and βk = 0.9
• AMSG-C2: Algorithm 1 with the parameters in Table 4, p = 2, αk = 10−3,
and βk = 10−3

• PADAM1-C1: Algorithm 1 with the parameters in Table 2, p = 3, αk =
10−3, and βk = 0.9
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• PADAM1-C2: Algorithm 1 with the parameters in Table 2, p = 3, αk =
10−3, and βk = 10−3

• PAMSG1-C1: Algorithm 1 with the parameters in Table 4, p = 3, αk =
10−3, and βk = 0.9
• PAMSG1-C2: Algorithm 1 with the parameters in Table 4, p = 3, αk =
10−3, and βk = 10−3

• PADAM2-C1: Algorithm 1 with the parameters in Table 2, p = 4, αk =
10−3, and βk = 0.9
• PADAM2-C2: Algorithm 1 with the parameters in Table 2, p = 4, αk =
10−3, and βk = 10−3

• PAMSG2-C1: Algorithm 1 with the parameters in Table 4, p = 4, αk =
10−3, and βk = 0.9
• PAMSG2-C2: Algorithm 1 with the parameters in Table 4, p = 4, αk =
10−3, and βk = 10−3

Algorithm 1 with diminishing learning rates:

• ADAM-D1: Algorithm 1 with the parameters in Table 2, p = 2, αk = 1/
√
k,

and βk = 1/2k

• ADAM-D2: Algorithm 1 with the parameters in Table 2, p = 2, αk = 1/k,
and βk = 1/2k

• AMSG-D1: Algorithm 1 with the parameters in Table 4, p = 2, αk = 1/
√
k,

and βk = 1/2k

• AMSG-D2: Algorithm 1 with the parameters in Table 4, p = 2, αk = 1/k,
and βk = 1/2k

• PADAM1-D1: Algorithm 1 with the parameters in Table 2, p = 3, αk =
1/
√
k, and βk = 1/2k

• PADAM1-D2: Algorithm 1 with the parameters in Table 2, p = 3, αk =
1/k, and βk = 1/2k

• PAMSG1-D1: Algorithm 1 with the parameters in Table 4, p = 3, αk =
1/
√
k, and βk = 1/2k

• PAMSG1-D2: Algorithm 1 with the parameters in Table 4, p = 3, αk =
1/k, and βk = 1/2k

• PADAM2-D1: Algorithm 1 with the parameters in Table 2, p = 4, αk =
1/
√
k, and βk = 1/2k

• PADAM2-D2: Algorithm 1 with the parameters in Table 2, p = 4, αk =
1/k, and βk = 1/2k

• PAMSG2-D1: Algorithm 1 with the parameters in Table 4, p = 4, αk =
1/
√
k, and βk = 1/2k

• PAMSG2-D2: Algorithm 1 with the parameters in Table 4, p = 4, αk =
1/k, and βk = 1/2k

The compared adaptive methods are variants of Algorithm 1 with p = 2. In partic-
ular, ADAM-C1 and AMSG-C1 are the same as Adam and AMSGrad [7, 9]. The
proposed method was Algorithm 1 with p = 3, 4.
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Our experiments were conducted on a fast scalar computation server at Meiji
University. The environment has two Intel (R) Xeon (R) Gold 6148 (2.4 GHz, 20
cores) CPUs, an NVIDIA Tesla V100 (16GB, 900Gbps) GPU and a Red Hat En-
terprise Linux 7.6 operating system. The experimental code was written in Python
3.8.2, and we used the NumPy 1.18.1 package and PyTorch 1.3.0 package.

3.1. MNIST. For the image classification, we chose to use a residual network
(ResNet) (https://deepage.net/deep_learning/2016/11/30/resnet.html), which
is a representative model of a convolutional neural network (CNN) (https://jp.
mathworks.com/discovery/convolutional-neural-network.html). We used a
34-layer ResNet and cross entropy as a loss function. We used the MNIST dataset
(http://yann.lecun.com/exdb/mnist/), which consists of handwritten digits from
0 to 9. The dataset contains 60,000 training data and 10,000 test data.

Figure 1. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classi-
fication accuracy score for algorithms with constant learning rates
versus number of epochs on the MNIST dataset

Figure 1 (resp. Figure 2) shows the results for (a) the training loss function
value, (b) training classification accuracy score, (c) test loss function value, and (d)
test classification accuracy score for algorithms with constant (resp. diminishing)
learning rates versus the number of epochs on the MNIST dataset. Figure 3 (resp.
Figure 4) shows box-plot comparisons of the results in Figure 1 (resp. Figure 2),
where the boxes represent the upper and lower quartiles and the interior horizontal
lines are the medians.

Figures 1(a), 2(a), 3(a), and 4(a) show that the proposed method, except for
PADAM1-C1 and PADAM2-C1, minimized the training loss function faster than the
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Figure 2. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classifi-
cation accuracy score for algorithms with diminishing learning rates
versus number of epochs on the MNIST dataset

previous algorithms did. Figures 2(a) and 4(a) also show that the previous adaptive
methods using p = 2 (e.g., ADAM-D1 and AMSG-D1) with diminishing learning
rates did not work so well, as also shown in [6]. Meanwhile, the adaptive methods
using p = 3, 4 (e.g., PADAM1-D1, PADAM2-D1, PAMSG1-D1, and PAMSG2-
D1) with diminishing learning rates outperformed the existing adaptive methods
using p = 2 (e.g., ADAM-D1 and AMSG-D1). Figures 1(c), 2(c), 3(c), and 4(c)
show that the proposed method, except for PADAM1-C1, minimized the test loss
function faster than the previous ones. Figures 1(b), 1(d), 3(b), and 3(d) show that
the proposed method, except for PADAM1-C1, had high accuracy. Figures 2(b),
2(d), 4(b), and 4(d) show that the proposed algorithm was more accurate than the
previous ones.

3.2. CIFAR-10. We conducted an experiment on the CIFAR-10 (https://www.
cs.toronto.edu/~kriz/cifar.html). The dataset is a benchmark for image clas-
sification and has ten classes. It has 50,000 training data and 10,000 test data,
which are labeled images (32 × 32). Moreover, it has 64 training and test batches.

Figures 5–10 show numerical results on CIFAR-10. Figure 5 compares ADAM-C
and AMSG-C (p = 2) with PADAM1-C and PAMSG1-C (p = 3), while Figure
6 compares ADAM-D and AMSG-D (p = 2) with PADAM1-D and PAMSG1-D
(p = 3). Figures 5(a) and 6(a) show that the proposed method minimized the
training loss function more than the existing algorithms did. Figures 5(b) and
6(b) show that the proposed algorithm had almost the same training accuracy as
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Figure 3. Box-plot comparisons of (a) training loss function value,
(b) training classification accuracy score, (c) test loss function value,
and (d) test classification accuracy score for algorithms with constant
learning rates on the MNIST dataset

Figure 4. Box-plot comparisons of (a) training loss function value,
(b) training classification accuracy score, (c) test loss function value,
and (d) test classification accuracy score for algorithms with dimin-
ishing learning rates on the MNIST dataset



328 K. SHIMOYAMA AND H. IIDUKA

Figure 5. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classi-
fication accuracy score for algorithms with constant learning rates
(p = 2, 3) versus number of epochs on the CIFAR-10 dataset

Figure 6. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classifi-
cation accuracy score for algorithms with diminishing learning rates
(p = 2, 3) versus number of epochs on the CIFAR-10 dataset
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Figure 7. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classi-
fication accuracy score for algorithms with constant learning rates
(p = 2, 4) versus number of epochs on the CIFAR-10 dataset

Figure 8. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classifi-
cation accuracy score for algorithms with diminishing learning rates
(p = 2, 4) versus number of epochs on the CIFAR-10 dataset
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the existing algorithms. Figures 5(c), 6(c), 5(d), and 6(d) show that the proposed
algorithm performed almost as well as the existing algorithms. Figure 7 compares
ADAM-C and AMSG-C (p = 2) with PADAM2-C and PAMSG2-C (p = 4), while
Figure 8 compares ADAM-D and AMSG-D (p = 2) with PADAM2-D and PAMSG2-
D (p = 4). The results are similar to those in Figures 5 and 6; i.e., the proposed
algorithm performed well.

Figure 9. Box-plot comparisons of (a) training loss function value,
(b) training classification accuracy score, (c) test loss function value,
and (d) test classification accuracy score for algorithms with constant
learning rates on the CIFAR-10 dataset

3.3. CIFAR-100. Next, we conducted an experiment that used CIFAR-100 (https:
//www.cs.toronto.edu/~kriz/cifar.html). CIFAR-100 has the same structure
as CIFAR-10, but its datasets have super classes, which divide 100 labels into five
groups with 20 labels. In our experiment, we used the fine classes as the correct
labels instead of the superclasses.

Figures 11–16 show the numerical results on CIFAR-100 (the comparisons in the
figures are the same as those in Section 3.2). Figures 11(a) and 12(a) show that
PAMSG1 outperformed the existing algorithms. Figures 11(b), 11(c), 11(d), 12(b),
12(c), and 12(d) show that the proposed method performed as well as the existing
ones. Figure 13(a) shows that it minimized the training loss function faster than
the existing ones did. Figure 13(b) shows that PAMSG2 was more accurate than
AMSG. Figures 13(c) and 13(d) show that PADAM2 and PAMSG2 were unstable.
Figures 14(a) and 14(b) show that the proposed algorithm outperformed the existing
algorithms. However, Figures 14(c) and 14(d) indicate that PADAM2 and PAMSG2
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Figure 10. Box-plot comparisons of (a) training loss function value,
(b) training classification accuracy score, (c) test loss function value,
and (d) test classification accuracy score for algorithms with dimin-
ishing learning rates on the CIFAR-10 dataset

Figure 11. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classi-
fication accuracy score for algorithms with constant learning rates
(p = 2, 3) versus number of epochs on the CIFAR-100 dataset
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Figure 12. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classifi-
cation accuracy score for algorithms with diminishing learning rates
(p = 2, 3) versus number of epochs on the CIFAR-100 dataset

Figure 13. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classi-
fication accuracy score for algorithms with constant learning rates
(p = 2, 4) versus number of epochs on the CIFAR-100 dataset
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Figure 14. (a) Training loss function value, (b) training classifica-
tion accuracy score, (c) test loss function value, and (d) test classifi-
cation accuracy score for algorithms with diminishing learning rates
(p = 2, 4) versus number of epochs on the CIFAR-100 dataset

were unstable. As shown in Figures 15 and 16, the algorithms with p = 3 were better
than the algorithms with p = 4.

On the complicated datasets, the algorithm with p = 3 (PADAM1 and PAMSG1)
outperformed the algorithms with p = 4 (PADAM2 and PAMSG2) in the terms of
the training loss and accuracy. Moreover, the proposed algorithm was better than
the existing algorithms in the sense of minimization of the loss functions (see panel
(a) in the figures). Therefore, the proposed algorithm with p = 3, 4 is superior for
loss minimization in deep neural networks.

4. Conclusion and Future Work

This article proposed an adaptive method using the element-wise pth power of
the stochastic gradient for solving nonconvex optimization problems in deep neu-
ral networks; this method is different from the previous adaptive methods using
element-wise squared values of the stochastic gradient. We presented two conver-
gence analyses of the proposed method. The first convergence analysis indicated
that the proposed method with constant learning rates will find an approximate
stationary point of the nonconvex optimization problem. The second convergence
analysis indicated that the proposed method with diminishing learning rates has
an O(1/

√
K) convergence rate for the stationary point problem. We also provide

numerical comparisons using the benchmark datasets for image classification of the
proposed adaptive methods with the previous adaptive method. The numerical
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Figure 15. Box-plot comparisons of (a) training loss function value,
(b) training classification accuracy score, (c) test loss function value,
and (d) test classification accuracy score for algorithms with constant
learning rates on the CIFAR-100 dataset

Figure 16. Box-plot comparisons of (a) training loss function value,
(b) training classification accuracy score, (c) test loss function value,
and (d) test classification accuracy score for algorithms with dimin-
ishing learning rates on the CIFAR-100 dataset
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comparisons showed that the proposed adaptive method using the element-wise
third or fourth power of the stochastic gradient performed better than the previous
adaptive methods. In particular, it minimized the training loss functions faster and
had higher training accuracies compared with the previous methods.

In this study, we applied the proposed and existing adaptive methods to image
classification. In the future, we will compare their performances in other classifica-
tion tasks.
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