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In this paper, we aim to extend the above results in the framework of the nonlinear
multi-objective programming problem. Let f : Rn → Rm and g : Rn → Rl be vector-
valued maps. We formulate the nonlinear multi-objective programming problem as
follows (see also [9]):

(P)

{
Minimize f(x)

subject to g(x) ≤Rl
+
0 (g(x) ∈ −Rl

+)

where Rl
+ := {x ∈ Rl | x1 ≥ 0, x2 ≥ 0, ..., xl ≥ 0} is a nonnegative orthant of Rl.

The paper is organized as follows. First we introduce some mathematical pre-
liminaries. Next, we introduce the concept of underestimators for vector-valued
map and give Karush-Kuhn-Tucker sufficiency for nonlinear multi-objective pro-
gramming problems by using the generalized underestimators. We also give new
definitions of bi-conjugate of vector-valued maps and investigate its properties. Fi-
nally, we present Wolfe type weak and strong duality theorems for nonlinear multi-
objective programming problems.

2. Mathematical preliminaries

2.1. Preliminaries of vector optimization. Let Y be a normed vector space and
0Y the origin of Y . For a set A ⊂ Y , intA and clA denote the topological interior
and the topological closure of A, respectively. We denote the family of nonempty
subsets of Y by V. The sum of two sets V1, V2 ∈ V and the product of α ∈ R and
V ∈ V are defined by

V1 + V2 := {v1 + v2 | v1 ∈ V1, v2 ∈ V2}; αV := {αv | v ∈ V }.

We assume that C ⊂ Y is a closed convex cone, that is, clC = C, C + C ⊂ C and
tC ⊂ C for all t ∈ [0,∞). A cone C is called pointed if C ∩ (−C) = {0Y } and solid
if intC ̸= ∅.

Definition 2.1. For a, b ∈ Y and a solid convex cone C ⊂ Y , we define

a ≤C b by b− a ∈ C.

Proposition 2.2. For x ∈ Y and y ∈ Y , the following statements hold:

(i) x ≤C y implies that x+ z ≤C y + z for all z ∈ Y ,
(ii) x ≤C y implies that αx ≤C αy for all α ≥ 0,
(iii) ≤C is reflexive and transitive. Moreover, if C is pointed, ≤C is antisym-

metric and hence a partial order.

We say that a point a ∈ A ⊂ Y is a minimal [resp. weak minimal] point of A if
there is no â ∈ A \ {a} such that â ≤C a [resp. â ≤intC a]. The above definition is
equivalent to

A ∩ (a− C) = {a} [resp. A ∩ (a− intC) = ∅].
We denote the set of minimal [resp. weak minimal] points of A with respect to C
[resp. intC] by Min(A;C)[resp. wMin(A; intC)], respectively
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Similarly, we say that a point a ∈ A ⊂ Y is a maximal [resp. weak maximal]
point of A if there is no â ∈ A \ {a} such that a ≤C â [resp. a ≤intC â]. The above
definition is equivalent to

A ∩ (a+ C) = {a} [resp. A ∩ (a+ intC) = ∅].

We denote the set of maximal [resp. weak maximal] points of A with respect to
C [resp. intC] by Max(A;C)[resp. wMax(A; intC)], respectively. We can easily see
that

Min(A;C) ⊂ wMin(A; intC) ⊂ A and Max(A;C) ⊂ wMax(A; intC) ⊂ A.

Proposition 2.3. Let C ⊂ Y be a closed pointed convex cone. If Max(A;C) ̸= ∅
for all A ∈ V then the following statements hold:

(i) Max(A+B;C) ⊂ Max(A;C) +Max(B;C) for all A,B ∈ V.
(ii) Max(αA;C) = αMax(A;C) for all A ∈ V and α ≥ 0.

Proof. (i) Let x ∈ Max(A + B;C). Then by the definition of maximal point, we
have

(A+B) ∩ (x+ C) = {x},
that is,

(a) x ∈ A+B and x ∈ x+ C,
(b) for all y ̸= x satisfies y ∈ A+B and y ̸∈ x+ C.

By property (a), there exist a ∈ A and b ∈ B such that x = a + b. Therefore, we
have a+ b ∈ A+B and a+ b ∈ a+ b+ C and hence

a ∈ A ∩ (a+ C) and b ∈ B ∩ (b+ C).

We suppose contrary that

â ∈ A ∩ (a+ C) or b̂ ∈ B ∩ (b+ C)

for some â ∈ Max(A;C)(â ̸= a) and b̂ ∈ Max(B;C)(b̂ ̸= b). Then we have

â+ b̂ ∈ {A ∩ (a+ C)}+ {B ∩ (b+ C)} ⊂ (A+B) ∩ (a+ b+ C),

that is, â+ b̂ ∈ x+ C, which contradicts the maximality of x.

(ii) If α = 0, then we have Max(αA;C) = αMax(A;C) = {0Y }. Therefore, we
consider the case α > 0. Let x ∈ Max(αA;C). Then by the definition of maximal
point, we have

(αA) ∩ (x+ C) = {x},
that is,

(a’) x ∈ αA and x ∈ x+ C,
(b’) for all y ̸= x satisfies y ∈ αA and y ̸∈ x+ C.

We put x̂ =
x

α
. Then by property (a’), we have x̂ ∈ A and

x̂ ∈ 1

α
(x+ C) =

x

α
+

C

α
= x̂+ C.
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Hence x̂ ∈ A ∩ (x̂+ C). We suppose contrary that

ŷ ∈ A ∩ (x̂+ C)

for some ŷ ∈ Max(A;C)(ŷ ̸= x̂). Then we have αŷ ∈ αA and αŷ ∈ αx̂+ C. Hence

αŷ ∈ x+ C,

which contradicts the maximality of x. The converse inclusion is similar as the
above. □

Example 1. We see that the inverse inclusion Max(A + B;C) ⊃ Max(A;C) +
Max(B;C) does not hold for all A,B ∈ V . Let

Y = R2, C = R2
+ = {(x1, x2) ∈ R2 | x1 ≥ 0, x2 ≥ 0},

A = B = {(x1, x2) ∈ R2 | x21 + x22 ≤ 1, x1 ≥ 0, x2 ≥ 0}.
We can confirm that

Max(A;C) = Max(B;C) = {(x1, x2) ∈ R2 | x21 + x22 = 1, x1 ≥ 0, x2 ≥ 0},

A+B = {(x1, x2) ∈ R2 | x21 + x22 ≤ 4, x1 ≥ 0, x2 ≥ 0} and

Max(A+B;C) = {(x1, x2) ∈ R2 | x21+x22 = 4, x1 ≥ 0, x2 ≥ 0} ⊂ Max(A;C)+Max(B;C).

2.2. Preliminaries of set optimization. We consider several types of binary
relationships on V by using a solid convex cone C ⊂ Y .

Definition 2.4 ([1, 8]). For A, B ∈ V and a solid convex cone C ⊂ Y , we define

(weak type) A ≤w
C B by B −A ⊂ C,

(lower type) A ≤l
C B by B ⊂ A+ C,

(upper type) A ≤u
C B by A ⊂ B − C,

(strong type) A ≤s
C B by 0Y ∈ B −A− C.

Proposition 2.5 ([1]). For A, B ∈ V, the following statements hold:

(i) A ≤w
C B implies A ≤l

C B and A ≤l
C B implies A ≤s

C B.
(ii) A ≤w

C B implies A ≤u
C B and A ≤u

C B implies A ≤s
C B.

(iii) A ≤l
C B and A ≤u

C B are not comparable.

Proposition 2.6 ([1]). For A, B, D ∈ V and α ≥ 0, the following statements hold:

(i) A ≤l
C B implies (A + D) ≤l

C (B + D) and A ≤u
C B implies (A + D) ≤u

C

(B +D).
(ii) A ≤l

C B implies αA ≤l
C αB and A ≤u

C B implies αA ≤u
C αB.

(iii) ≤l
C and ≤u

C are reflexive and transitive.

Introducing the equivalence relations

A ∼l B ⇐⇒ A ≤l
C B and B ≤l

C A,

A ∼u B ⇐⇒ A ≤u
C B and B ≤u

C A,
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we can generate a partial ordering on the set of equivalence classes which are denoted
by [·]l and [·]u, respectively. We can easily see that

A ∈ [B]l ⇐⇒ A+ C = B + C,

A ∈ [B]u ⇐⇒ A− C = B − C.

Definition 2.7. (l[u]-minimal and l[u]-maximal element [1]) Let S ⊂ V . We say
that Ā ∈ S is a l[u]-minimal element if for any A ∈ S,

A ≤l[u]
C Ā implies Ā ≤l[u]

C A.

Moreover, we say that Ā ∈ S is a l[u]-maximal element if for any A ∈ S,

Ā ≤l[u]
C A implies A ≤l[u]

C Ā.

We denote the family of l[u]-minimal elements of S by l[u]-Min(S, C) and the family
of l[u]-maximal elements of S by l[u]-Max(S, C).

2.3. Preliminaries of multi-objective optimization. We denote n-dimensional
Euclidean space by Rn. We clearly see that Rm

+ is closed pointed convex cone. We

denote the set of m× l matrix by Rm×l, that is,

Rm×l :=

{
A

∣∣∣∣ A =

a11 · · · a1l
...

. . .
...

am1 · · · aml

 , aij ∈ R, i ∈ {1, ...,m}, j ∈ {1, ..., l}
}
,

Rm×l
+ :=

{
A ∈ Rm×l

∣∣∣∣A =

a11 · · · a1l
...

. . .
...

am1 · · · aml

 , aij ≥ 0, i ∈ {1, ...,m}, j ∈ {1, ..., l}
}
.

For a matrix A ∈ Rm×l, we denote a transpose of A by AT . We denote the inner
product of the two vectors x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T by

⟨x,y⟩ = xTy =

n∑
i=1

xiyi,

and the norm of the vector x = (x1, x2, · · · , xn)T by ∥x∥ =
√

⟨x,x⟩. We denote
the ε-neighborhood of x̄ by

N (x̄, ε) = {x ∈ Rn | ∥x− x̄∥ < ε}.

Definition 2.8 (global minimizer, global maximizer). We say that x̄ ∈ Rn is a
global minimizer of (P) if there does not exist x ∈ Rn such that f(x) ≤Rm

+ \{0} f(x̄).

Similarly, we say that x̄ ∈ Rn is a global maximizer of (P) if there does not exist
x ∈ Rn such that f(x̄) ≤Rm

+ \{0} f(x).

Definition 2.9 (local minimizer, local maximizer). We say that x̄ is a local min-
imizer of (P) if for some N (x̄, ε) there does not exist x ∈ N (x̄, ε) such that
f(x) ≤Rm

+ \{0} f(x̄). Similarly, we say that x̄ ∈ Rn is a local maximizer of (P)

if for some N (x̄, ε) there does not exist x ∈ N (x̄, ε) such that f(x̄) ≤Rm
+ \{0} f(x).
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Definition 2.10 (differentiability of vector-valued function). We say that a vector-
valued function f = (f1, f2, · · · , fm)T : Rn → Rm is differentiable if for each i (1 ≤
i ≤ m) fi : Rn → R is differentiable. Then we have the following equality:

∇f(x) =

∇f1(x)
T

...
∇fm(x)T

 =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fm
∂x1

(x) · · · ∂fm
∂xn

(x)

 ,

where ∇fi(x)
T =

(
∂fi
∂x1

(x), · · · , ∂fi
∂xn

(x)

)
(1 ≤ i ≤ m).

Definition 2.11 (Rm
+ -convex function). We say that a vector-valued function f :

Rn → Rm is Rm
+ -convex function if for each i (1 ≤ i ≤ m) fi : Rn → R is convex

function, that is,

f(λx+ (1− λ)y) ≤Rm
+
λf(x) + (1− λ)f(y)

for any x, y ∈ Rn and λ ∈ [0, 1].

Proposition 2.12. Let ϕ : Rn → Rm be a vector-valued function. If ϕ is a Rm
+ -

convex function, then every stationary point of ϕ is a global minimizer of ϕ.

Proof. The proof is straightforward from the definition of Rm
+ -convex function and

global minimizer. □

3. Karush-Kuhn-Tucker sufficiency and underestimators for
vector-valued map

Let fj : Rn → R (j = 0, 1, 2, · · · ,m) be continuously differentiable functions on
an open subset of Rn. The mathematical programming problem is formalized as
follows:

(MP)

{
Minimize f0(x)

subject to fj(x) ≤ 0 (j = 1, 2, · · · ,m).

Definition 3.1 (Underestimator [4]). A function h : Rn → R is called an underes-
timator of a function f : Rn → R at x̄ ∈ Rn, if h satisfies the following conditions.

(a) For each x ∈ Rn, h(x) ≤ f(x) and f(x̄) = h(x̄).
(b) A point x̄ ∈ Rn is a stationary point of the function f : Rn → R if f is

differentiable at x̄ and ∇f(x̄) = 0.

The concept of underestimator, which is introduced by Jeyakumar-Srisatkunarajah
[4], is very powerful tool in mathematical programming problem because various
generalized convex functions such as pseudo-convex functions, and the invex func-
tions satisfy the property of underestimator, that is, every stationary point is a
global minimizer. 　　　　　
Theorem 3.2 ([4]). Let x̄ be a feasible point of (MP) at which Karush-Kuhn-Tucker
conditions hold with the multiplier λ. We assume that the Lagrangian L(·, λ) admits
an underestimator at x̄, at which it is differentiable. If every stationary point of the
underestimator is a global minimizer, then x̄ is a global minimizer of (MP).
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The aim of this section is to generalize the above results to vector-valued function.

3.1. Underestimators for vector-valued map. Throughout the paper, we as-
sume that f : Rn → Rm and g : Rn → Rl are continuously differentiable function
on an open subset of Rn. The Lagrangian of (P), denoted by L(x,A), is given by

L(x,A) = f(x) +Ag(x),

where A is an m × l matrix. If x̄ = (x̄1, · · · , x̄n)T is a local minimizer of (P) and
if a certain constraint qualification (see [2, 3, 7] for detail) holds then the following
Karush-Kuhn-Tucker conditions hold:

(KKT) there exists A ∈ Rm×l
+ such that Ag(x̄) = 0 and ∇L(x̄, A) = 0.

Definition 3.3. A vector-valued function h : Rn → Rm is called an underestimator
of a vector-valued function f : Rn → Rm at x̄ ∈ Rn, if h satisfies the following
conditions.

(a) For each x ∈ Rn, h(x) ≤Rm
+
f(x) and f(x̄) = h(x̄).

(b) A point x̄ ∈ Rn is a stationary point of the function f : Rn → Rm if f is
differentiable at x̄ and ∇f(x̄) = 0.

We generalize Theorem 3.2 to the case of a multi-objective optimization problem
(P).

Theorem 3.4. Let x̄ be a feasible point of (P) at which (KKT) hold with the mul-

tiplier A ∈ Rm×l
+ . We assume that the Lagrangian L(·, A) admits an underestimator

at x̄, at which it is differentiable. If every stationary point of the underestimator is
a global minimizer, then x̄ is a global minimizer of (P).

Proof. We set b1
T := (a11, a12, · · · , a1l), · · · , bmT := (am1, am2, · · · , aml), that is,

A =

a11 · · · a1l
...

. . .
...

am1 · · · aml

 =

 b1
T

...

bm
T

 .

By the assumption aij ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ l), we have

Ag(x) =

a11 · · · a1l
...

. . .
...

am1 · · · aml


 g1(x)

...
gl(x)

 =

 b1
T g(x)
...

bm
T g(x)

 ≤Rm 0.

Of course, we see that the first component of Ag(x) is b1
T g(x) = ⟨b1, g(x)⟩. Hence,

we have L1(x, b1) = f1(x) + ⟨b1, g(x)⟩.
Let h : Rn → Rm be the underestimator of L(·, A) at x̄, and let d ∈ Rn be

arbitrary. Then for each α > 0 we have

h1(x̄+ αd)− h1(x̄)

α
≤ L1(x̄+ αd, b1)− L1(x̄, b1)

α
.

Letting α → 0, we obtain ∇h1(x̄)
Td ≤ ∇L1(x̄, b1)

Td = 0. Hence, ∇h1(x̄)
Td ≤ 0

for each d ∈ Rn. Therefore, we obtain ∇h1(x̄) = 0 and x̄ is a stationary point of
h1. By the assumption, we have that h1(x̄) ≤ h1(x) for each x ∈ Rn.
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Finally, we show that x̄ is a global minimizer of (P). Let x be a feasible point of
(P). Since ⟨b1, g(x)⟩ ≤ 0 and ⟨b1, g(x̄)⟩ = 0, we have

f1(x) + ⟨b1, g(x)⟩ − f1(x̄)− ⟨b1, g(x̄)⟩ ≤ f1(x)− f1(x̄),

that is,

L1(x, b1)− L1(x̄, b1) ≤ f1(x)− f1(x̄).

Since h1(x) ≤ L1(x, b1) and h1(x̄) = L1(x̄, b1), we have

h1(x)− h1(x̄) ≤ f1(x)− f1(x̄).

Furthermore, since h1(x̄) ≤ h1(x), we obtain f1(x̄) ≤ f1(x). Similarly, with the
same argument as the above, we obtain

f2(x̄) ≤ f2(x), f3(x̄) ≤ f3(x), · · · , fm(x̄) ≤ fm(x)

and hence

(∗) f(x̄) ≤Rm
+
f(x) for all x ∈ Rn.

Then there does not exist x ∈ Rn such that f(x) ≤Rm
+ \{0} f(x), that is, x̄ is

a global minimizer of (P). Suppose contrary that there exists x ∈ Rn such that
f(x) ≤Rm

+ \{0} f(x̄). By the definition of ≤Rm
+
, we have

(∗∗) f(x) ≤Rm
+ \{0} f(x̄) ⇐⇒ f(x̄) − f(x) ∈ Rm

+\{0} ⇐⇒ f(x) − f(x̄) ∈
−Rm

+\{0}.
By (∗) and (∗∗), we have f(x) − f(x̄) ∈ Rm

+ ∩ {−Rm
+\{0}} = ∅, which is a contra-

diction. □

Example 2. We consider the multi-objective nonconvex programming

(P1)

Minimize (
1

4
x4 + x3 − 2x2 + 1, x4 + 4x3 − 8x2 + 4)

subject to (x2 − 25, x2 + 4x− 12) ≤R2
+
(0, 0).

Then x̄ = −4 and x = 1 are local minimizers of (P1). (KKT) are satisfied at both

points with A =

(
0 0
0 0

)
. The function h : R → R2 defined by

h(x) =

(
1

4
x4 + x3 − 2x2 + 1, x4 + 4x3 − 8x2 + 4) if x ≤ −4

(−31,−124) otherwise

is a nonconvex underestimator of the Lagrangian L(·, O) at x̄ = −4, where L(x, 0) =

(
1

4
x4 + x3 − 2x2 + 1, x4 + 4x3 − 8x2 + 4). We have also that

∇h(x) =

{
(x3 + 3x2 − 4x, 4x3 + 12x2 − 16x) if x ≤ −4

(0, 0) otherwise.

We easily see that all the stationary points of h are indeed its global minimizers
and the point x̄ = −4 is the unique global minimizer of (P1).
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Corollary 3.5. Let x̄ be a feasible point of (P) at which (KKT) holds with the

multiplier A ∈ Rm×l
+ . If the Lagrangian L(·, A) admits a Rm

+ -convex underestimator
at x̄ then x̄ is a global minimizer of (P).

Proof. Let ϕ = (ϕ1, ϕ2, · · · , ϕm) be the convex underestimator of L(·, A) at x̄, and
let d ∈ Rn be arbitrary. Then for each α > 0 we have

ϕ1(x̄+ αd)− ϕ1(x̄)

α
≤ L1(x̄+ αd, b1)− L1(x̄, b1)

α
.

Letting α → 0, we obtain (ϕ1)
′(x̄, d) ≤ ∇L1(x̄, b1)

Td = 0. Since ϕ is Rm
+ -convex

and (ϕi)
′(x̄, d) ≤ 0 for each d ∈ Rn and 1 ≤ i ≤ m, ϕ is differentiable at x̄ and

∇ϕ(x̄) = 0. Moreover, every stationary point of ϕ is a global minimizer of ϕ.
Therefore, the conclusion follows from Theorem 3.4.　 □

3.2. Conjugate maps and its applications. In this subsection, we consider the
conjugate maps for vector-valued function f and its applications to (P).

In this subsection, we set V := 2R
m \ {∅}.

Definition 3.6 (Tanino-Sawaragi [10, 11, 12]). Let f : Rn → Rm be a vector-valued
function. Then the set-valued map f∗ : Rm×n → V defined by

f∗(A) := Max

( ⋃
x∈Rn

{Ax− f(x)};Rm
+

)
is called the conjugate map of f .

Definition 3.7 (Tanino-Sawaragi [10, 11, 12]). Let f : Rn → Rm be a vector-
valued function and let f∗ : Rm×n → V be the conjugate map of f . By reiterating
the operation f → f∗ on f∗, we define the bi-conjugate of f , f∗∗ : Rn → V , by the
following form:

f∗∗(x) := Max

( ⋃
A∈Rm×n

{Ax− f∗(A)};Rm
+

)
.

However, generally speaking, f∗(A) is a set-valued mapping. To overcome the
difficulty, Kawasaki [5, 6] introduced set relation on V. He also defined conjugate
relation and introduced the concept of Γn-regularization to derive a duality theorem
in multi-objective programming. Based on his results, we give new definitions of
the bi-conjugate of f .

Definition 3.8. For f∗(A) ̸= ∅, we define f∗∗
l , f∗∗

u : Rn → V by

f∗∗
l (x) := l-Max

( ⋃
A∈Rm×n

[Ax− f∗(A)],Rm
+

)
,

f∗∗
u (x) := u-Max

( ⋃
A∈Rm×n

[Ax− f∗(A)],Rm
+

)
.

Proposition 3.9. Let f : Rn → Rm be a vector-valued function. Then the bi-
conjugate of f has the following properties.
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(a) If f∗(A) is a singleton for all A ∈ Rm×n, then f∗∗(x) ≤w
Rm
+

f(x) for all

x ∈ Rn.
(b) If f∗(A) satisfies the condition f∗(A) ⊂ Ax− f(x) +Rm

+ for all x ∈ Rn and

A ∈ Rm×n, then f∗∗
l (x) ≤l

Rm
+
f(x) for all x ∈ Rn.

(c) If f∗(A) satisfies the condition f∗(A) − f∗(A) ⊂ −Rm
+ for all A ∈ Rm×n,

then f∗∗
u (x) ≤u

Rm
+
f(x) for all x ∈ Rn.

Proof. (a) By the definition of f∗, we have

Ax− f(x) ≤Rm
+
f∗(A) ∀x ∈ Rn, ∀A ∈ Rm×n

and hence

Ax− f∗(A) ≤Rm
+
f(x) ∀x ∈ Rn, ∀A ∈ Rm×n.

By the definition of f∗∗, we obtain the conclusion.
(b) By the definition of f∗ and assumption (b), we have

{Ax− f(x)} ≤l
Rm
+
f∗(A) ∀x ∈ Rn, ∀A ∈ Rm×n,

and hence

{Ax} ≤l
Rm
+
f(x) + f∗(A). (f(x) + f∗(A) ⊂ Ax+ Rm

+ ).

Then we have

f(x) ∈ f(x) + f∗(A)− f∗(A) ⊂ Ax− f∗(A) + Rm
+ ,

that is, Ax− f∗(A) ≤l
Rm
+
f(x). By the definition of f∗∗

l , we obtain the conclusion.

(c) By the definition of f∗, we have

{Ax− f(x)} ≤u
Rm
+
f∗(A) ∀x ∈ Rn, ∀A ∈ Rm×n,

and hence

{Ax} ≤u
Rm
+
f(x) + f∗(A). (Ax ∈ f(x) + f∗(A)− Rm

+ ).

Then by assumption (c), we have

Ax− f∗(A) ⊂ f(x) + f∗(A)− f∗(A)− Rm
+ ⊂ f(x)− Rm

+ − Rm
+ = f(x)− Rm

+ ,

that is, Ax−f∗(A) ≤u
Rm
+
f(x). By the definition of f∗∗

u , we obtain the conclusion. □

Proposition 3.10. If f∗(A) is a singleton, then f∗∗ is u-Rm
+ -convex function, that

is,

f∗∗(λx1 + (1− λ)x2) ≤u
Rm
+
λf∗∗(x1) + (1− λ)f∗∗(x2)

for any x1, x2 ∈ Rn and λ ∈ [0, 1].

Proof. Let x1, x2 ∈ Rn and λ ∈ [0, 1]. Then we have

f∗∗(λx1 + (1− λ)x2) = Max

( ⋃
A∈Rm×n

{A(λx1 + (1− λ)x2)− f∗(A)};Rm
+

)

= Max

( ⋃
A∈Rm×n

{λAx1 + (1− λ)Ax2 − λf∗(A)− (1− λ)f∗(A)};Rm
+

)
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= Max

( ⋃
A∈Rm×n

{λ(Ax1 − f∗(A)) + (1− λ)(Ax2 − f∗(A))};Rm
+

)

= Max

( ⋃
A∈Rm×n

{λ(Ax1 − f∗(A))}+
⋃

A∈Rm×n

{(1− λ)(Ax2 − f∗(A))};Rm
+

)
= (⋆).

By using (i) of Proposition 2.3, we have

(⋆) ⊂ Max

(⋃
A

λ{Ax1−f∗(A)};Rm
+

)
+Max

(⋃
A

(1−λ){Ax2−f∗(A)};Rm
+

)
= (⋆⋆).

Moreover, by using (ii) of Proposition 2.3, we have

(⋆⋆) = λ ·Max

(⋃
A

{Ax1 − f∗(A)};Rm
+

)
+ (1− λ) ·Max

(⋃
A

{Ax2 − f∗(A)};Rm
+

)

= λf∗∗(x1) + (1− λ)f∗∗(x2) ⊂ λf∗∗(x1) + (1− λ)f∗∗(x2)− Rm
+ .

□

Remark 1. By (i) of Proposition 2.3, it is difficult to obtain l-type convexity of
vector-valued biconjugate function.

Corollary 3.11. Let x̄ be a feasible point of (P) at which (KKT) holds with the

multiplier A ∈ Rm×l
+ . If L∗∗(x̄, A) is a singleton and L∗∗(x̄, A) = L(x̄, A) then x̄ is

a global minimizer of (P).

Proof. By Proposition 3.10, L∗∗ is Rm
+ -convex function. Moreover, by Proposi-

tion 3.9, we have L∗∗(x̄, A) ≤Rm
+
L(x̄, A). Thus L∗∗(·, A) is a Rm

+ -convex underesti-

mator of L(·, A) at x̄. Therefore, conclusion follows from Corollary 3.5. □

Example 3. We consider the multi-objective nonconvex programming

(P2)

Minimize (
1

4
x4 − x3 + x2,

1

4
x4 − x3 + x2 + 3)

subject to (x− 5, x− 7) ≤R2
+
(0, 0).

(KKT) conditions are satisfied at x̄ = 0 and x̄ = 2 with A =

(
0 0
0 0

)
. The

Lagrangian L(x,O) := (
1

4
x4 − x3 + x2,

1

4
x4 − x3 + x2 + 3) and

L∗∗(x,O) =

(0, 3) if 0 ≤ x ≤ 2

(
1

4
x4 − x3 + x2,

1

4
x4 − x3 + x2 + 3) otherwise.

We easily see that L∗∗(x̄, O) = L(x̄, O) = (0, 3) at both points x̄ = 0 and x̄ = 2
which are global minimizers of (P2).
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4. Wolfe type duality

In this section, we present weak and strong duality results in the framework of
not necessarily convex programming problems. For (P), we consider Wolfe type
dual problem.

(D)

{
Maximize L(y,A) (y,A) ∈ Rn × Rm×l

subject to ∇L(y,A) = 0, A ∈ Rm×l
+

4.1. Weak duality.

Theorem 4.1 (Weak Duality). For the problem (P) and (D), we suppose that at

each feasible solution (y,A) of (D), the Lagrangian admits an underestimator L̃(·, A)
which satisfies the following conditions.

(1) L̃(·, A) is differentiable at that point.

(2) L̃(·, A) has the property that every stationary point is a global minimizer.

Then Max(D) ≤w
Rm
+

Min(P).

Proof. Let x ∈ Rn be feasible for (P), (y,A) ∈ Rn × Rm×l
+ be feasible for (D) and

L(y,A) :=
(
L1(y,A), L2(y,A), · · · , Lm(y,A)

)
,

L̃(y,A) :=
(
L̃1(y,A), L̃2(y,A), · · · , L̃m(y,A)

)
.

Then for each d ∈ Rn and for each α > 0 we have

L̃1(y + αd,A)− L̃1(y,A)

α
≤ L1(y + αd,A)− L1(y,A)

α
.

Letting α → 0, we obtain ∇L̃1(y,A)Td ≤ ∇L1(y,A)Td = 0. Therefore, we have

∇L̃1(y,A) = 0. By the definition of L1, we have

f1(x)− L1(y,A) ≥ L1(x,A)− L1(y,A). (†)

Since L̃1 is an underestimator of L1, we have

L1(x,A)− L1(y,A) ≥ L̃1(x,A)− L1(y,A). (††)

Moreover, by the definition of the underestimator and assumption (2), we obtain

L̃1(x,A)− L1(y,A) = L̃1(x,A)− L̃1(y,A) ≥ 0. († † †)

Combining (†), (††) and († † †), we obtain L1(y,A) ≤ f1(x). Similarly, with the
same argument as the above, we obtain

L2(y,A) ≤ f2(x), L3(y,A) ≤ f3(x), · · · , Lm(y,A) ≤ fm(x)

and hence L(y,A) ≤Rm
+
f(x).

Therefore, we have that Max(D) ≤w
Rm
+

Min(P) holds, that is, weak duality holds.

□

Corollary 4.2. For the problem (P) and (D), we suppose that at each feasible

solution (y,A) of (D), the Lagrangian admits a Rm
+ -convex underestimator L̃(·, A).

Then we have Max(D) ≤w
Rm
+

Min(P).
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Proof. Let x ∈ Rn be feasible for (P), (y,A) ∈ Rn × Rm×l
+ be feasible for (D) and

L(y,A) :=
(
L1(y,A), L2(y,A), · · · , Lm(y,A)

)
L̃(y,A) :=

(
L̃1(y,A), L̃2(y,A), · · · , L̃m(y,A)

)
.

Then for each d ∈ Rn and for each α > 0 we have

L̃1(y + αd,A)− L̃1(y,A)

α
≤ L1(y + αd,A)− L1(y,A)

α

Letting α → 0, we obtain (L̃1)
′(y,A)Td ≤ ∇L1(y,A)Td = 0. Therefore, we have

∇L̃1(y,A) = 0. Similarly, we obtain

(L̃2)
′(x̄, d) = 0, · · · , (L̃m)′(x̄, d) = 0.

Therefore, we have that L̃ is differentiable at x̄ and ∇L̃(x̄) = 0. Since L̃ is Rm
+ -

convex, every stationary point of L̃ is a global minimizer of L̃. Therefore, the
conclusion follows from Theorem 4.1.　

□

Corollary 4.3. For the problem (P) and (D), we suppose that at each feasible
solution (y,A) of (D), L∗∗(y,A) is a singleton and L∗∗y,A) = L(y,A). Then we
have Max(D) ≤w

Rm
+

Min(P).

Proof. Since L∗∗(·, A) is a Rm
+ -convex underestimator of L(·, A) at each feasible

(y,A) of (D), the conclusion follows from Corollary 4.2. □

4.2. Strong duality.

Theorem 4.4 (Strong Duality). For the problem (P) and (D), we suppose that
at each feasible solution (y,A) of (D), the Lagrangian admits an underestimator

L̃(·, A) which satisfies the following conditions.

(1) L̃(·, A) is differentiable at that point.

(2) L̃(·, A) has the property that every stationary point is a global minimizer.

If (KKT) holds at a minimizer of (P) then the following statements hold.

(a) If we assume the condition L(·, A) ≤l
Rm
+

Max(D), then we have Max(D)∈
[Min(P)]l.

(b) If we assume the condition Min(P) ⊂ Max(D)−Rm
+ , then we have Max(D)∈

[Min(P)]u.
(c) If we assume the condition L(·, A) ≤w

Rm
+

Max(D), then we have Max(D) =

Min(P).

Proof. (a) Let x̄ ∈ Rn be a minimizer of (P). Then, by the assumption, there exists

Ā ∈ Rm×l
+ such that Āg(x̄) = 0 and ∇L(x̄, Ā) = 0, that is, (x̄, Ā) is feasible for (D).

Therefore, by assumption (a) and Theorem 4.1, we have

L(x̄, Ā) ≤l
Rm
+
Max(D) ≤l

Rm
+
Min(P).

Since f(x̄) = L(x̄, Ā) ∈ Min(P), we have

Max(D) ⊂ L(x̄, Ā) + Rm
+ ⊂ Min(P) + Rm

+ ,
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that is, Min(P)≤l
Rm
+

Max(D). By the definition of [·]l, we obtain the conclusion.

(b) Let x̄ ∈ Rn be a minimizer of (P). Then, by the assumption, (x̄, Ā) is feasible
for (D). Therefore, by Theorem 4.1, we have

L(x̄, Ā) ≤u
Rm
+
Max(D) ≤u

Rm
+
Min(P).

(We remark that by the definition of maximal point, L(x̄, Ā) ≤u
Rm
+
Max(D) is always

true.) By assumption (b), we have

Min(P) ≤u
Rm
+
Max(D) ≤u

Rm
+
Min(P).

By the definition of [·]u, we obtain the conclusion.
(c) With the same argument as the proof of (a) and taking account of the fact

that Rm
+ is a pointed convex cone, we obtain the conclusion. □

Remark 2. If we consider some scalarizing functions which satisfies monotonicity
condition, that is, for A,B ∈ V and scalarizing function s : V → R we have that
A ≤l

Rm
+
B implies s(A) ≤ s(B), then

A ∈ [B]l =⇒ s(A) = s(B).

Corollary 4.5. For the problem (P) and (D), we suppose that at each feasible

solution (y,A) of (D), the Lagrangian admits a Rm
+ -convex underestimator L̃(·, A).

If (KKT) holds at a minimizer of (P) then the following statements hold.

(a) If we assume the condition L(·, A) ≤l
Rm
+

Max(D), then we have Max(D)∈
[Min(P)]l.

(b) If we assume the condition Min(P) ⊂ Max(D)−Rm
+ , then we have Max(D)∈

[Min(P)]u.
(c) If we assume the condition L(·, A) ≤w

Rm
+

Max(D), then we have Max(D) =

Min(P).

Corollary 4.6. For the problem (P) and (D), L∗∗(y,A) is a singleton and
L∗∗(y,A) = L(y,A) for each feasible (y,A) of (D). If (KKT) holds at a minimizer
of (P) then the following statements hold.

(a) If we assume the condition L(·, A) ≤l
Rm
+

Max(D), then we have Max(D)∈
[Min(P)]l.

(b) If we assume the condition Min(P) ⊂ Max(D)−Rm
+ , then we have Max(D)∈

[Min(P)]u.
(c) If we assume the condition L(·, A) ≤w

Rm
+

Max(D), then we have Max(D) =

Min(P).

5. Conclusions

In this paper, we have given Karush-Kuhn-Tucker sufficiency criteria for a feasible
point to be a global minimizer of nonlinear multi-objective programming problems
by introducing the concept of underestimator for Lagrangian of the nonlinear multi-
objective optimization problem. We also presented duality results for nonlinear
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multi-objective programming problems in terms of underestimator in the framework
of set optimization problem. Moreover, we have given new definitions of bi-conjugate
of vector-valued function and investigated convexity property of bi-conjugate map
in the framework of set optimization problem.

Since for a given vector-valued function, its conjugate map is set-valued map
(see also [5, 6]), we think that set optimization problem plays a significant role
to derive duality theory for multi-objective programming problems. Especially, in
Corollary 3.11/4.3/4.6, the assumption that “L∗∗ is a singleton” is very strong. To
relax the above condition, we have to introduce the concept of underestimator for
set-valued map and it will be the subject of forthcoming research.
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