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A RELAXED HYBRID STEEPEST DESCENT METHOD FOR
SOLVING STRONGLY CONVEX MINIMIZATION PROBLEM VIA
CONJUGATE GRADIENT DIRECTION

NIMIT NIMANA, THITIMA PAEKO, AND NARIN PETROT"

ABSTRACT. In this paper, we consider the strongly convex minimization problem
in a Hilbert space. We propose a coupling iterative scheme of relaxed steepest
descent method and conjugate gradient direction method for solving the consid-
ered problem. We prove that a sequence generated by the proposed algorithm
converges strongly to the unique solution of the problem provided that some
suitable assumptions are guaranteed.

1. INTRODUCTION

Let H be a real Hilbert space, f : H — R be a real-valued strongly convex dif-
ferentiable function and C' C H be a nonempty closed convex subset. The classical
strongly convex minimization problem is to consider the following problem:

minimize  f(x)
subject to xz € C.

(1.1)

By the necessary and sufficient optimality conditions for convex constrained min-
imization, it is well known that the optimal solution to (1.1) is nothing else than
the solution to the variational inequality problem of finding the point z* in C' such
that

(1.2) (Vf("),v—2%) =0,

for all v € C.

In order to find the solution of (1.2), Goldstein [5] proposed the so-called project
gradient method which started by given x; € C' and constructed a sequence ()
by

Tn+1l = -PC(‘Tn - ,qu(a:n)),

for all n > 1, where P is the metric projection operator onto the subset C' and p is
a positive stepsize. However, in many practical situation, the metric projection may
not have a closed form expression and the cost of computation can be very high.
To avoid this limitation, the so-called hybrid steepest descent method has been
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proposed. Actually, in 2001 Yamada [16] proposed the method in the following
form: given x; € H and define a sequence (x,) by

Tpt1 = T(xn — ponV f (1))
for all n > 1, where T : H — H is a nonexpansive operator in which
C=Fix(T):={x e H:T(x) =z},

the stepsize ;1 > 0 and the stepsize (o) is nonincreasing sequence in (0, 1]. After
that, many authors have improved both theoritical and numerical behaviour of
the hybrid steepest descent method, see for instance [3, 4, 6, 8, 9, 11, 12, 13] and
references therein.

A direction to improve numerical performance of the hybrid steepest descent
method is due to the work of Tiduka and Yamada [9] which proposed the so-called
hybrid conjugate gradient method by generating an iterative sequence (z,,) in the
following;:

Tnt1 = T(xn + andn)a
where dy := —V f(z1) and for all n > 2,
dp 1= —Vf(lﬂn) + Bndnfla

and (B,) is a nonnegative step-size sequence. Under the boundedness of the gen-
erated sequence (V f(x,)), it has been proved that the sequence (z,) converges to
the unique solution to (1.2).

The aim of this paper is to present an iterative method by using the idea of
the hybrid conjugate gradient descent method for minimizing the strongly convex
minimization problem over the fixed-point constraint of the form:

minimize  f(z)

(13) subject to x € X NFix(T),

where the following assumptions are assumed:

(A1) f: H — R is an a-strongly convex Fréchet differentiable with L-Lipschitz
continuous gradient.
(A2) T : H — H is a nonexpansive operator with Fix(T") # (.
(A3) X C H is a nonempty closed convex and bounded subset in which Fix(7") N
X 0,
Under some imposed control conditions on step-size sequences and a parameter,
we prove the convergence of the generated sequence to the unique solution to the
considered problem without assuming the boundedness of the generated sequence

(Vf(xn)).

2. PRELIMINARIES

We summarize some useful notations, definitions and properties which we will
utilize later. For further details, the reader can consult the well-known books, for
instance, [1, 2, 14].
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Let H be a real Hilbert space with an inner product (-,-) and the corresponding
norm || - .

Let f : H — R be a real-valued function, and x,v € H. The directional derivative
of f at z in the direction v is given by

Flor) i tim L) 1)

h—0 h ’

provided that the limit exists. We say that the function f is Gateaux differentiable
at x if the directional derivative f’(x,v) exists for all v € H and there is g € H such
that

f'(z,v) = (g,v).
We call g by Gateaux derivative or Gateaux gradient of f at x and denote it by
Vf(z).
We say that the function f is Fréchet differentiable at © € H if there is y € H
such that
fl@+h) = flx) = {y; h)

11m
||Al|—0 A

=0,

we call y by Fréchet derivative or gradient of f at x and denote it by Dy (x).

Note that if the function f is Fréchet differentiable at x € H, then f is Gateaux
differentiable at x, and V f(z) = D(z).

A real-valued function f: H — R is said to be convex if

S =Nz +Ay) < (1 =N f(x)) + (),
for all z,y € H and A € [0, 1]. We say that f is a-strongly convex with a parameter
a > 0if
1
FOL= Nz + ) < (1= N f@) +Af(y) = 5oA1 =Nz =y,

for all z,y € H and X\ € [0,1]. It can be noted that the gradient of a a-strongly
convex function f is a-strongly monotone, that is

(Vf(x) = Vf(y),z—y) >alz—y|?

for all x,y € H.
An operator T : H — H is said to be L-Lipschitz continuous with L > 0 if

|Tz —Ty|| < Li|lz —yl],

for all z,y € H. We call an operator T nonexpansive if it is 1-Lipschitz continuous,
that is

1Tz = Tyl| < [|z = yll,

for all z,y € H. It is worth noting that the set of all fixed points of a nonexpansive
operator is a closed and convex set.

The following theorem states an important property of a nonexpansive operator
with a nonempty fixed-point set.
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Proposition 2.1 ([14]). Let T : H — H be a nonexpansive operator with Fix(T) #
0. If (x,) is a sequence in H and x € H such that x,, — x and ||T(zy) — x| — 0,
then we have x € Fix(T).

Let X be a nonempty subset of H and = € H. If there exists a point y € X such
that

|z =yl < [lz = =],

for all z € X, then the point y is called the metric projection of x onto X, and it is
denoted by Pxz. Note that if the set X is a nonempty closed and convex set, then
for every x € H, there is the unique metric projection Pxzx.

The following proposition will play an important role in the convergence analysis.

Proposition 2.2 ([16, Lemma 3.1(b)]). Let T : H — H be a nonexpansive operator
and f : H — R be a a-strongly conver Fréchet differentiable with its gradient
Vf : H — H which is L-Lipschitz continuous. Define the operator T» : H — H
by TN(z) == T(xz — pAV f(z)) for all @ € H. If the parameters p € (0,2%) and
A € [0,1], then for every x,y € H, we have

177 (2) = T < (1 = A7)l —yll,

where T :=1— /1 — p(2a — pL?) € (0,1].

In order to prove our main theorem, we need the following lemma which can be
found in [10, Lemma 3.1].

Proposition 2.3. Let (a,) be a sequence of nonnegative real numbers such that
there erists a subsequence (an;) of (an) with an;, < an, ., for all j € N, and define
the set of indexes (V(n))n>n, by

v(n) =max{k € [no,n] : ax < ap41}.

Then the following properties hold:

(1) (¥(n))n>n, is nondecreasing.
(ii) limy oo v(n) = 00.
(iil) ay(n) < aymy41 and an < ay(ny41 for all n > ng.

Another important tool for proving our main result is stated in the next propo-
sition which can be found in [15, Lemma 2.5].

Proposition 2.4. Let (ay,) be a positive real sequence, (t,) be a real sequence and
(o) be a real sequence in [0,1] with Y 2 | o = 00. Suppose that

An+41 < (]- - an)an + aptn,
for alln > 1. If limsup,,_,. tn <0, then lim, o0 an = 0.
Proposition 2.5 ([14]). If x,y € H and a € R, then it holds that

laz + (1 = a)yl* + a(l = a)lle — ylI* = allz[]” + (1 — a)lly|*
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3. THE PROPOSED METHOD AND ITS CONVERGENCE

In this section we will present an iterative method for solving the considered
minimization problem and subsequently prove its convergence result.

Algorithm 1: Relaxed hybrid steepest descent method

Initialization: Select a starting point x; € H, the parameters
p € (0,2a/L?), (\y) C (0,1), (o) € (0,1] and (B,) C [0, +00). Set

dy ===V f(xy).
Step 1: For current iterates x, € H and d, € H, compute z,11 € H by
(3.1) Tnt1 := Px (1 = A\p)xpn + AT (2 + pandy)).

Step 2: Define the search direction dyy; € H as
(3:2) dnt1 = =V f(Zn41) + Bns1dn.

Update n:=n + 1 and go to Step 1.

Remark 3.1. (i) Since the constrained set X is bounded, the iterate Px((1 —
An)Zn + AT (2 + poydy,)) is bounded for all n € N. This yields that the sequence
(zy,) is also bounded.

(ii) It is worth noting that the proposed method differs from the hybrid conjugated
gradient [9]. Actually, if we set the relaxation parameter A\, = 1 for all n € N, the
iterate x4 is in the form x,, 41 := Px (T (z,, + pandy,)) which cannot reduce to the
hybrid conjugate gradient method since the constrained set X cannot be the whole
Hilbert space H.

Now, we are in a position to present our main theorem.

Theorem 3.2. Let the sequence (x,) be given by Algorithm 1. Suppose that
limp yoon, = 0, D020 = 00, limpyoofp = 0 and 0 < liminf, ;oo Ay, <
limsup,,_,., An < 1. Then the sequence (x,) converges strongly to the unique solu-
tion of the problem (1.3).

Proof. Let n > 1 and z* € X NFix(T') be the unique solution of the problem (1.3).
We first note that

[1Px (1 = Ap)&n + AT (2 + popdy,)) — |2
= [IPx((1 = Aa)zn + AT (25 + pendy)) — Px ()]
(1 = M) Zn + AT (2 + pagdy) — ¥ 2
(L= An)(@n — 27) + AT (@ + pandy,) — x*)||2,
Proposition 3.17 yields that
lzn4n =22 < {[(1 = Aa)(@n — &) + AT (20 + pandy,) — )|
= (1=A)||zn — x*”2 + M| [T (zn + pandy,) — ‘T*H2
(1 = M) (T (zn + pand,) — %) — (25 — x*)HZ
= (L= )llzn — 21> + MallT (w0 + pendy) — 2*|?
(3.3) (L= M) T (2 + proundn) — a5

[lons1 — 2"

IN
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Next, we will show that the sequences (V f(x,)) and (d,) are bounded. Since ()
is bounded, there is an M > 0 such that ||z,| < M for all n € N. Let us consider

IVl < NIVF(@n) = VI + V()]
< Lflzn =2+ [V ()]
< L([lznll + [l271)) + [[VF ()]
< LM+ Lifz"[| + [IV f ()],

which means that (Vf(z,)) is a bounded sequence. Furthermore, since we know
that the stepsize (8,) C [0,+00) satisfies lim, o B, = 0, there exists m; € N
such that 8, < % for all n > my. Denote Ky := sup,>;||Vf(zn)|| < oo and
Ky := max{Kjy, ||dn, ||}, we see that 2K > ||dy,,||. Moreover, by the definition of
(dyn), we note that

lusall < Nl = V7 @n )|l + [[Bnsadal
< 195 @arn)ll+ Busalldal
1
< 19 @)l + 5 lldal
1 1
(3.4 < K+ G lldall < Ko+ Sldall

We claim that ||d,|| < 2Ks for all n > m;. Indeed, if n = my, then we have
l|dnl| = ||dm,|| < 2K2. For n > mj, we assume that ||d,|| < 2K5. By using the
inequality (3.4), we note that

1 1
||dnt1]] < K2+ §||dn|| < Ko+ 5(2K2) < 2K,

which implies that ||d,|| < 2K, for all n > m;. Now, denote K* :=
max{||di||, ||dz2]l, -, ||dm,—1]], 2K2}, we have ||d,|| < K* for all n € N, which means
that the sequence (d,) is bounded.
Next, by using the nonexpansiveness of 7', we note that
1T (xn + pomdn) = T ()| < [n + pomdn — || < [lan — 27 4+ po||dnl],
which is
T (an + pandn) = T )P < (lzn — 2| + pan|dal])?
= |lzn — 27|* + 2pcn]|dall |z — 2|
(3.5) +uag || dall?.
By substituting the inequality (3.5) in the inequality (3.3), we have
lznsr —2*|7 < (1= Aa)llen — | + Anllan — 2|
+2pAnn || dn ||| |zn — 27| + )‘n/ﬁai |dn”2
(1= M) T (2 + pandy) — | ?
=z — 2] + 2pAnanlldul ||z — 2| + 12 Anad ||da[*
(3.6) (1 =X T (2 + pandy) — x|
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©n = 2uAp 0 || dp |20 — 37*H2 + N2)‘nan2‘|dn”2’

for all n € N, we have

37 lznsr — 2|7 < flew = 2P + @n = A1 = M)l (25 + pandn) — a0l

Note that

lim sup[2uAnan||dn|llan — 27+ p*Anag|ldn]?]
n—oo

= limsup 2, on||dn||l|z, — 2*[|?
n—oo
+lim sup g A, 0| dy ||
n—oo
= 2plimsup Ay ||dp ||z — 2]
n—o0

+p? lim sup A, 0| da .
n—oo

Since limsup,,_,, An < 1, the boundednesses of the sequences (d,), (x,), we have

(3.8)

lim ¢, = 0.

n—oo

By setting z, := x, + puandy, the fact that ||z + y|| < ||2]|* + 2(y,z + y) for all
x,y € H, and using Proposition 2.2, we note that

IT(zn  +

IN

IN

where

piendy) — T(a*)||?

|2 + pan (=V f(2n) + Brdn-1) — x*HQ

120 — pen ¥V f (@n) + pen Budn—1 — & + pa, V f(@*) = pan V f ()|
(@0 = penV f(xn)) = (@ = panV f(2*)) + panfpdn—1 — panV f(z*)|?
[(@n — panV fzn)) = (¢ — pan V f(2*))||?

+2(xy, — pa,Vf(x,) — % + pay frndn—1, pon Brdn—1 — pa, V f(4))
(1 = ran)?lfen — 27

20 (X + ppon (=V f(xn) + Brdn—1) — 2™, pfndn_1 — pV f(z¥))
(1= 7)o — 2| + 2n{(Tn + pindn — 2°, ndn_1 — pV ("))
(1 = Tap)||en — 2*||* + 20 1B (Tn + pond, — %, dy_1)

+20nu{Ty + pond, —x*, =V f(z¥))

(1 = 7an)|lzn = 2*|1? + 200180 (20 — 2%, dp—1)

2o p(rn — ", =V f(2)) + 20mp(pondn, =V f(z7))

(1 = 7an) ||z = 2*|1* + 20080 (20 — ¥, dp—1)

20" — o, V(7)) + 20242, — T £ (7))

(1= 7ap)||zn — nc*||2 + 21,6,

2

£, = {Hﬁn% @ ) + Bt =, V@) —Vf(:z:*))} :

T
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Substituting the above inequality in (3.3), we get
lznir —2*|P < (1= Az — 2*|° + A (1 — 7o) [l — 22
(3.9) +27 M — Aa(1 = M) T (2 + pondy) — |2

Since A, € (0,1), we have 0 < A\, (1—\,,) < A, which together with the inequalities
(3.9) yield that

lenrs =22 < (1= Aa)llew — 27| + Aa(L = ra) [z, — 2

+21 Ananén
(1= Ap + Ay — T\ || — 2% 2 + 27 Mnbnan,
(3.10) = (1 =7an\)||zn — 2% |2 + 26, (TanAn).

We claim that T\, € (0,1) and > 2 Tap Ay = +oo. Now, since 7 € (0, 1],
(o) € (0,1) and (A,) C (0,1), we have TapA, € (0,1) for all n > 1. Furthermore,
since 0 < liminf, oo A, < limsup,,_,oo An = A, where A € (0, 1). Thus, for all € > 0,
there is ng € N such that \,, > A +¢€ > ¢ for all n > ny.

Note that
o0 o0 o0 o0
Z T Ay = T Z QpAn > T Z Qp€ = TE€ Z ap,.
n=ng n=ng n=ng n=ng
Since > °  ay = +oo, we have Te) ° ~a, = +oo, which implies that
ZZO:”O TOp Ay, = +00.
Denote a,, := ||z, — 2*||? for all n > 1, we will show that lim,, o ||z, — 2*||2 = 0

by dividing the proof into two cases.

Case I: suppose that there is ng > 1 such that a,1 < a,, for all n > ng. In this
situation, the sequence (a,) converges and let lim, _,oc a, = 7. We will show that
limy, 00 ||T (20 + pandy,) — x,|| = 0. Now, by using the inequalities (3.6) and (3.8),
we note that

0 < limsup (1 = M\)||T (20 + pandy) — 2,2

n—oo
< limsup(a, — ant1 + pn)
n—oo
= lim ap, — lim ap41 + lim ¢, =7—7r4+0=0,
n—oo n—o0 n—00
that is
lim sup A (1 — M) || T (2 + patndy,) — |2 = 0,
n—oo
which yields that
(3.11) lim ||T'(2y, + poendn) — zn|| = 0.
n—o0

Since (x,) is bounded, the sequence ((z* — x,, V f(x*))) is also bounded. Thus,
there exists a subsequence (x,,) of (z,) such that

limsup(a™ —wn, VF(2")) = lm (27 — 2y, Vf(27)).

n—oo
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Since (xy,) is bounded, there are T € H and a subsequence (l’nl ) such that Tn;, — z.
We will show that € Fix(T") N X. Let us note from (3) that

lim ”T(ivn ) — T, | = lim HT(%L ) — T(:Bnij +Nanijdmj)

j—o0 J n—oo
—I—T($n + MO, dnij) - xnij H
j—oo J 7 J J
+ lim [|T(zp, + pon, dp, ) — Tp, ||
j—00 J J J J
= lim |T(zn,.) — T(xn, + pan, dp, )|
j—00 j j g

< lim Hxn — (T, + pom, dp, |
]_} J J J

= ]li)rgo H/"Lanij dnij H

= g lim o, .

By using the boundedness of (d,,), we obtain that
(3.12) lim [|T(zp, ) — Tn;, | =0.

]—)
Now the fact that Tn;, — Z, the inequality (3.12) and Proposition 2.1, we get that
zeFix(T)nX.
Since z* is the unique solution of the considered problem, we have

lim sup(a” — 0, VS () = Jim (" = 2, V()
= lim (2" ~ 2, V("))
— (" —3 V@)
(3.13) < 0.

By using the assumptions lim,_,o @, = 0,lim,, o B, = 0, and the facts that (d,)
and (z,) are bounded, we have

,U,ﬁ Mﬁn

(3.14) limsup = (2" — 2*,d""!) < limsup =—||z, — 2*|||dn_1]| = 0,
n—oo T n—o00
and then
(P o
(3.15) limsup = (d", =V f(z")) < limsup ~—||d,||[[V f(z")|| = 0.
n—00 n—0o0

Invoking the inequalities (3.13), (3.14) and (3.15), we have

n—00 T

lim sup <'ufn<z” — 2%, d"h + H(w* —z", Vf(z")) + ,uQTan (d", —Vf(x*))) <0.

Thus, we have lim sup,,_, . 2§, = 2limsup,,_,, & < 0, Hence, Proposition 2.4 and
the inequality (3.10), we conclude that lim,, o ||z, — 2*||* = 0.
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Case II: suppose that there exists a subsequence (ay, ) of (ay) such that a,, <
an,+1 for all & > 1 and let {v(n)}>2; be defined as in Proposition 2.3. Then, for
all n > ng, we have

(316) a‘]/(n) S au(n)+17
and
(3.17) A, S al,(n)H.

By utilizing the inequality (3.7), we have
(3.18)
Ay(n)+1 — Au(n) < *)‘z/(n)(l - )‘y(n))HT(xu(n) + /‘O‘V(n)du(nv — Ty(n) | |2 + Pu(n)-
It follows from the inequalities (3.16) and (3.18) that
0< _Au(n)(l - Au(n))HT(aju(n) + :U’azz(n)du(n)) - xu(n)HZ + Pr(n)-
Thus, we obtain that
M) (L= AT (@ () + 1 (n) () = Tum) | < iy

Since lim,, Du(n) = limy, o0 n = 0, we have
Jim Ay ) (1= M) 1T (@) + 100y dun)) — Tuy|* <0,
and then
Jim |7 (2 () + gty () dyn)) = Tuml| = 0.
Now, let (z,(n,)) be a subsequence of (z,,)) such that

limsup(z* — (), Vf(2¥)) = lim (2" — 2,(,), Vf(27)).
1— 00

n—oo
Since (7,(,,)) is a bounded sequence, there are ¥ € H and a subsequence (z,, ))
J
in which z,(,, )y = 7. In a similar fashion to Case I, we also obtain that T €
J

Fix(T) N X. Now, since z* is the unique solution to the considered problem, we
have

lim Sup<l‘* — Ly(n)> Vf(l‘*» = lim <ﬂf* — Tu(ng)s Vf(q:*»
n—o0 i—00
= lim (z* — Ty(ni.)s Vf(z¥))
Jj—oo J
= (2" -2, Vf(z"))
(3.19) < 0,

and by using the same ideas of the inequalities (3.14) and (3.15), we obtain that
lim sup 2§,,(,) < 0.

n—00
We note from the inequality (3.10) that
Ay(n)+1 < (1 - Tau(n)Au(n))au(n) + 261/(71) (Tau(n)Au(n))
= Qy(n) = TOY(n) A’n(a’u(n)) + 2€Z/(TL) (Taz/(n) )\II(TL))
QAy(n) + Ty (n) AIf(n) (251/(71,) - al/(n))7
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and then
0< Au(n)+1 — Au(n) < Tau(n))‘zz(n) (2§V(n) - au(n))-

Since 7 € (0,1], (ay@)) C (0,1) and (A,(n)) C (0,1), we have Ta,(,Aum) € (0,1),
thus Ta,j(n))\,/(n) > 0.
Now, we have

0< 7_Oéy(n))‘y(n) (2‘51/(71) - au(n))a
which is
0< 2£V(7’Z) — Qy(n)s

which implies that 0 < a,@,) < 2§,(,). Since limsup,,_, 2§,(») < 0, we have
0 < limsup,,_, ay(n) < limsup,,_,, 2§,(,) < 0, and then limsup,,_,., a,¢,) = 0.
Thus, we obtain that lim, o0 ay(,) = 0 and limp 00 @y ()41 — @y(n) = 0. By using
the relation in (3.17), we have

0 < limsup a,, < limsup a, ()41
n—oo n—00

= lim sup[a, (n)+1 — Gy(n)] +limsup a,,y =0+ 0 =0,
n—00 n—0o0
that is limsup,,_,, @, = 0, which implies that lim, - an = 0, which means that
limy, 00 |2, — 2*||* = 0. From these two cases, we conclude that the sequence (z,)
converges to the unique solution to the considered problem. O

4. SOME EXTENSIONS

In this section, we will consider the solving of the minimization problem over the
finite intersection of fixed-point sets of nonexpansive operators and a simple closed
convex and bounded constraint by applying the results obtained in the previous
section.

Let us consider the problem of the form: of the form:

minimize  f(x)

(4.1) subject to 2 € X NN, Fix(T3),

where the following assumptions are assumed:

(Al) f: H — R is an a-strongly convex Fréchet differentiable with L-Lipschitz
continuous gradient.

(A2) T;: H— H,i=1,...,m, are nonexpansive operators with Fix(T;) # (.

(A3) X C H is a nonempty closed convex and bounded subset in which
M, Fi(T3) 0 X #0.

The following algorithm allows us to compute the operators 15,7 = 1,...,m
cyclically.
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Algorithm 2: Relaxed cyclic hybrid steepest descent method

Initialization: Select a starting point x1 € H, the parameters
p € (0,2a/L?), (\y) C (0,1), (o) € (0,1] and (B,) C [0, +00). Set

dy := =V f(x1).
Step 1: For current iterates x, € H and d,, € H, compute x,4+1 € H by
(4.2) Tpt1 = Px((l — )\n)xn + AnTme_l cee TQTl({L'n + ,uandn)).

Step 2: Define the search direction d, 11 € H as

dpt1 = =V [(@nt1) + Bns1dn.
Update n :=n 4+ 1 and go to Step 1.

By applying Theorem 3.2 together with the fact that the composition of a finite
numbers of nonexpansive operators is also nonexpansive, we immediately obtain the
the following corollary.

Corollary 4.1. Let the sequence (x,) be given by Algorithm 2. Suppose that
limy yoon, = 0, D020y = 00, limp oo By = 0 and 0 < liminf, ;oo Ay, <
limsup,, oo An < 1. Then the sequence () converges strongly to the unique solu-
tion of the problem (4.1).

Remark 4.2. Algorithm 2 and the corresponding convergence result in Corollary
4.1 are different from the iterative method presented in [12]. In fact, in order to
update the next iterate x,41 in (4.2), we compute the convex combination of x,
and 1), Tp—1 - - - ToT1 (zp, + pondy,), whereas in [12], the authors utilized the sum of
Ty + pondy, and T Th—1 - - - ToT1 (zy, + pondy,).

The next algorithm allows us to compute the operators T;,¢ = 1, ..., m simulta-
neously.

Algorithm 3: Relaxed simultaneous hybrid steepest descent method
Initialization: Select a starting point 1 € H, the parameters
p € (0,2a/L?), (\,) C (0,1), (o) € (0,1], (B,) C [0, 4+00), and
(wi)gl C (0, 1) with Zzn:l w; = 1. Set dy = —Vf(:(}l)
Step 1: For current iterates x, € H and d,, € H, compute x,4+1 € H by

(4.3) Tt = Px((1 = An)zn + An Y wiTi(2 + pandy)).
i=1
Step 2: Define the search direction d,+; € H as
dn+1 = _Vf($n+1) + BnJrldn-
Update n:=n + 1 and go to Step 1.

By applying Theorem 3.2 together with the fact that the convex combination of
a finite numbers of nonexpansive operators is also nonexpansive, we immediately
obtain the the following corollary.

Corollary 4.3. Let the sequence (x,) be given by Algorithm 3. Suppose that
limp, yoon, = 0, D070 = 00, limp oo B = 0 and 0 < liminf, ;oo Ay, <
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limsup,,_,., An < 1. Then the sequence (x,) converges strongly to the unique solu-
tion of the problem (4.1).

5. CONCLUSION

The object of this work was the solving of a strongly convex minimization problem

over the intersection of fixed-point set of a nonexpansive operator and a nonempty
closed convex bounded set. We associated to it the so-called relaxed hybrid steepest
descent method. We proved strong convergence of the generated sequence of iterates

to

i
2
3

[4

[5

9

[10

[11

12
(13
(14

[15

the unique solution to the considered problem.
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