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proposed. Actually, in 2001 Yamada [16] proposed the method in the following
form: given x1 ∈ H and define a sequence (xn) by

xn+1 = T (xn − µαn∇f(xn))

for all n ≥ 1, where T : H → H is a nonexpansive operator in which

C = Fix(T ) := {x ∈ H : T (x) = x},

the stepsize µ > 0 and the stepsize (αn) is nonincreasing sequence in (0, 1]. After
that, many authors have improved both theoritical and numerical behaviour of
the hybrid steepest descent method, see for instance [3, 4, 6, 8, 9, 11, 12, 13] and
references therein.

A direction to improve numerical performance of the hybrid steepest descent
method is due to the work of Iiduka and Yamada [9] which proposed the so-called
hybrid conjugate gradient method by generating an iterative sequence (xn) in the
following:

xn+1 := T (xn + αndn),

where d1 := −∇f(x1) and for all n ≥ 2,

dn := −∇f(xn) + βndn−1,

and (βn) is a nonnegative step-size sequence. Under the boundedness of the gen-
erated sequence (∇f(xn)), it has been proved that the sequence (xn) converges to
the unique solution to (1.2).

The aim of this paper is to present an iterative method by using the idea of
the hybrid conjugate gradient descent method for minimizing the strongly convex
minimization problem over the fixed-point constraint of the form:

minimize f(x)
subject to x ∈ X ∩ Fix(T ),

(1.3)

where the following assumptions are assumed:

(A1) f : H → R is an α-strongly convex Fréchet differentiable with L-Lipschitz
continuous gradient.

(A2) T : H → H is a nonexpansive operator with Fix(T ) ̸= ∅.
(A3) X ⊆ H is a nonempty closed convex and bounded subset in which Fix(T )∩

X ̸= ∅.
Under some imposed control conditions on step-size sequences and a parameter,

we prove the convergence of the generated sequence to the unique solution to the
considered problem without assuming the boundedness of the generated sequence
(∇f(xn)).

2. Preliminaries

We summarize some useful notations, definitions and properties which we will
utilize later. For further details, the reader can consult the well-known books, for
instance, [1, 2, 14].
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Let H be a real Hilbert space with an inner product ⟨·, ·⟩ and the corresponding
norm ∥ · ∥.

Let f : H → R be a real-valued function, and x, v ∈ H. The directional derivative
of f at x in the direction v is given by

f ′(x, v) := lim
h→0

f(x+ hv)− f(x)

h
,

provided that the limit exists. We say that the function f is Gateaux differentiable
at x if the directional derivative f ′(x, v) exists for all v ∈ H and there is g ∈ H such
that

f ′(x, v) = ⟨g, v⟩.

We call g by Gateaux derivative or Gateaux gradient of f at x and denote it by
∇f(x).

We say that the function f is Fréchet differentiable at x ∈ H if there is y ∈ H
such that

lim
∥h∥→0

f(x+ h)− f(x)− ⟨y, h⟩
∥h∥

= 0,

we call y by Fréchet derivative or gradient of f at x and denote it by Df (x).
Note that if the function f is Fréchet differentiable at x ∈ H, then f is Gateaux

differentiable at x, and ∇f(x) = Df (x).
A real-valued function f : H → R is said to be convex if

f((1− λ)x+ λy) ≤ (1− λ)f(x)) + λf(y),

for all x, y ∈ H and λ ∈ [0, 1]. We say that f is α-strongly convex with a parameter
α > 0 if

f(1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)− 1

2
αλ(1− λ)∥x− y∥2,

for all x, y ∈ H and λ ∈ [0, 1]. It can be noted that the gradient of a α-strongly
convex function f is α-strongly monotone, that is

⟨∇f(x)−∇f(y), x− y⟩ ≥ α∥x− y∥2,

for all x, y ∈ H.
An operator T : H → H is said to be L-Lipschitz continuous with L > 0 if

||Tx− Ty|| ≤ L||x− y||,

for all x, y ∈ H. We call an operator T nonexpansive if it is 1-Lipschitz continuous,
that is

||Tx− Ty|| ≤ ||x− y||,

for all x, y ∈ H. It is worth noting that the set of all fixed points of a nonexpansive
operator is a closed and convex set.

The following theorem states an important property of a nonexpansive operator
with a nonempty fixed-point set.
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Proposition 2.1 ([14]). Let T : H → H be a nonexpansive operator with Fix(T ) ̸=
∅. If (xn) is a sequence in H and x ∈ H such that xn ⇀ x and ∥T (xn)− xn∥ → 0,
then we have x ∈ Fix(T ).

Let X be a nonempty subset of H and x ∈ H. If there exists a point y ∈ X such
that

||x− y|| ≤ ||x− z||,

for all z ∈ X, then the point y is called the metric projection of x onto X, and it is
denoted by PXx. Note that if the set X is a nonempty closed and convex set, then
for every x ∈ H, there is the unique metric projection PXx.

The following proposition will play an important role in the convergence analysis.

Proposition 2.2 ([16, Lemma 3.1(b)]). Let T : H → H be a nonexpansive operator
and f : H → R be a α-strongly convex Fréchet differentiable with its gradient
∇f : H → H which is L-Lipschitz continuous. Define the operator T λ : H → H
by T λ(x) := T (x − µλ∇f(x)) for all x ∈ H. If the parameters µ ∈ (0, 2α

L2 ) and
λ ∈ [0, 1], then for every x, y ∈ H, we have

||T λ(x)− T λ(y)|| ≤ (1− λτ)||x− y||,

where τ := 1−
√
1− µ(2α− µL2) ∈ (0, 1].

In order to prove our main theorem, we need the following lemma which can be
found in [10, Lemma 3.1].

Proposition 2.3. Let (an) be a sequence of nonnegative real numbers such that
there exists a subsequence (anj ) of (an) with anj < anj+1 for all j ∈ N, and define
the set of indexes (ν(n))n≥n0 by

ν(n) = max {k ∈ [n0, n] : ak < ak+1} .

Then the following properties hold:

(i) (ν(n))n≥n0 is nondecreasing.
(ii) limn→∞ ν(n) = ∞.
(iii) aν(n) ≤ aν(n)+1 and an ≤ aν(n)+1 for all n ≥ n0.

Another important tool for proving our main result is stated in the next propo-
sition which can be found in [15, Lemma 2.5].

Proposition 2.4. Let (an) be a positive real sequence, (tn) be a real sequence and
(αn) be a real sequence in [0, 1] with

∑∞
n=1 αn = ∞. Suppose that

an+1 ≤ (1− αn)an + αntn,

for all n ≥ 1. If lim supn→∞ tn ≤ 0, then limn→∞ an = 0.

Proposition 2.5 ([14]). If x, y ∈ H and α ∈ R, then it holds that

||αx+ (1− α)y||2 + α(1− α)||x− y||2 = α||x||2 + (1− α)||y||2.
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3. The proposed method and its convergence

In this section we will present an iterative method for solving the considered
minimization problem and subsequently prove its convergence result.

Algorithm 1: Relaxed hybrid steepest descent method

Initialization: Select a starting point x1 ∈ H, the parameters
µ ∈ (0, 2α/L2), (λn) ⊂ (0, 1), (αn) ⊂ (0, 1] and (βn) ⊂ [0,+∞). Set
d1 := −∇f(x1).
Step 1: For current iterates xn ∈ H and dn ∈ H, compute xn+1 ∈ H by

xn+1 := PX((1− λn)xn + λnT (xn + µαndn)).(3.1)

Step 2: Define the search direction dn+1 ∈ H as

dn+1 := −∇f(xn+1) + βn+1dn.(3.2)

Update n := n+ 1 and go to Step 1.

Remark 3.1. (i) Since the constrained set X is bounded, the iterate PX((1 −
λn)xn + λnT (xn + µαndn)) is bounded for all n ∈ N. This yields that the sequence
(xn) is also bounded.

(ii) It is worth noting that the proposed method differs from the hybrid conjugated
gradient [9]. Actually, if we set the relaxation parameter λn = 1 for all n ∈ N, the
iterate xn+1 is in the form xn+1 := PX(T (xn +µαndn)) which cannot reduce to the
hybrid conjugate gradient method since the constrained set X cannot be the whole
Hilbert space H.

Now, we are in a position to present our main theorem.

Theorem 3.2. Let the sequence (xn) be given by Algorithm 1. Suppose that
limn→∞ αn = 0,

∑∞
n=1 αn = ∞, limn→∞ βn = 0 and 0 < lim infn→∞ λn ≤

lim supn→∞ λn < 1. Then the sequence (xn) converges strongly to the unique solu-
tion of the problem (1.3).

Proof. Let n ≥ 1 and x∗ ∈ X ∩ Fix(T ) be the unique solution of the problem (1.3).
We first note that

||xn+1 − x∗||2 = ||PX((1− λn)xn + λnT (xn + µαndn))− x∗||2

= ||PX((1− λn)xn + λnT (xn + µαndn))− PX(x∗)||2

≤ ||(1− λn)xn + λnT (xn + µαndn)− x∗||2

= ||(1− λn)(xn − x∗) + λn(T (xn + µαndn)− x∗)||2,
Proposition 3.17 yields that

||xn+1 − x∗||2 ≤ ||(1− λn)(xn − x∗) + λn(T (xn + µαndn)− x∗)||2

= (1− λn)||xn − x∗||2 + λn||T (xn + µαndn)− x∗||2

−λn(1− λn)||(T (xn + µαndn)− x∗)− (xn − x∗)||2

= (1− λn)||xn − x∗||2 + λn||T (xn + µαndn)− x∗||2

−λn(1− λn)||T (xn + µαndn)− xn||2.(3.3)
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Next, we will show that the sequences (∇f(xn)) and (dn) are bounded. Since (xn)
is bounded, there is an M > 0 such that ∥xn∥ ≤ M for all n ∈ N. Let us consider

||∇f(xn)|| ≤ ||∇f(xn)−∇f(x∗)||+ ||∇f(x∗)||
≤ L||xn − x∗||+ ||∇f(x∗)||
≤ L(||xn||+ ||x∗||) + ||∇f(x∗)||
≤ LM + L||x∗||+ ||∇f(x∗)||,

which means that (∇f(xn)) is a bounded sequence. Furthermore, since we know
that the stepsize (βn) ⊂ [0,+∞) satisfies limn→∞ βn = 0, there exists m1 ∈ N
such that βn ≤ 1

2 for all n ≥ m1. Denote K1 := supn≥1 ||∇f(xn)|| < ∞ and
K2 := max{K1, ||dm1 ||}, we see that 2K2 ≥ ||dm1 ||. Moreover, by the definition of
(dn), we note that

||dn+1|| ≤ || − ∇f(xn+1)||+ ||βn+1dn||
≤ ||∇f(xn+1)||+ βn+1||dn||

≤ ||∇f(xn+1)||+
1

2
||dn||

≤ K1 +
1

2
||dn|| ≤ K2 +

1

2
||dn||,(3.4)

We claim that ||dn|| ≤ 2K2 for all n ≥ m1. Indeed, if n = m1, then we have
||dn|| = ||dm1 || ≤ 2K2. For n > m1, we assume that ||dn|| ≤ 2K2. By using the
inequality (3.4), we note that

||dn+1|| ≤ K2 +
1

2
||dn|| ≤ K2 +

1

2
(2K2) ≤ 2K2,

which implies that ||dn|| ≤ 2K2 for all n ≥ m1. Now, denote K∗ :=
max{||d1||, ||d2||, . . . , ||dm1−1||, 2K2}, we have ||dn|| ≤ K∗ for all n ∈ N, which means
that the sequence (dn) is bounded.

Next, by using the nonexpansiveness of T , we note that

∥T (xn + µαndn)− T (x∗)∥ ≤ ∥xn + µαndn − x∗∥ ≤ ∥xn − x∗∥+ µαn∥dn∥,

which is

∥T (xn + µαndn)− T (x∗)∥2 ≤ (∥xn − x∗∥+ µαn∥dn∥)2

= ∥xn − x∗∥2 + 2µαn∥dn∥∥xn − x∗∥
+µ2α2

n∥dn∥2.(3.5)

By substituting the inequality (3.5) in the inequality (3.3), we have

∥xn+1 − x∗∥2 ≤ (1− λn)||xn − x∗||2 + λn||xn − x∗||2

+2µλnαn||dn||||xn − x∗||+ λnµ
2α2

n||dn||2

−λn(1− λn)||T (xn + µαndn)− xn||2

= ||xn − x∗||2 + 2µλnαn||dn||||xn − x∗||2 + µ2λnα
2
n||dn||2

−λn(1− λn)||T (xn + µαndn)− xn||2.(3.6)
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By setting

φn := 2µλnαn||dn||||xn − x∗||2 + µ2λnαn
2||dn||2,

for all n ∈ N, we have

(3.7) ∥xn+1 − x∗∥2 ≤ ||xn − x∗||2 + φn − λn(1− λn)||T (xn + µαndn)− xn||2.

Note that

lim sup
n→∞

[2µλnαn||dn||||xn − x∗||2 + µ2λnα
2
n||dn||2]

= lim sup
n→∞

2µλnαn||dn||||xn − x∗||2

+ lim sup
n→∞

µ2λnα
2
n||dn||2

= 2µ lim sup
n→∞

λnαn||dn||||xn − x∗||2

+µ2 lim sup
n→∞

λnα
2
n||dn||2.

Since lim supn→∞ λn < 1, the boundednesses of the sequences (dn), (xn), we have

(3.8) lim
n→∞

φn = 0.

By setting zn := xn + µαndn, the fact that ∥x + y∥ ≤ ∥x∥2 + 2⟨y, x + y⟩ for all
x, y ∈ H, and using Proposition 2.2, we note that

∥T (xn + µαndn)− T (x∗)∥2

≤ ∥xn + µαn(−∇f(xn) + βndn−1)− x∗∥2

= ∥xn − µαn∇f(xn) + µαnβndn−1 − x∗ + µαn∇f(x∗)− µαn∇f(x∗)∥2

= ∥(xn − µαn∇f(xn))− (x∗ − µαn∇f(x∗)) + µαnβndn−1 − µαn∇f(x∗)∥2

≤ ∥(xn − µαn∇f(xn))− (x∗ − µαn∇f(x∗))∥2

+2⟨xn − µαn∇f(xn)− x∗ + µαnβndn−1, µαnβndn−1 − µαn∇f(x∗)⟩
≤ (1− ταn)

2∥xn − x∗∥2

+2αn⟨xn + µαn(−∇f(xn) + βndn−1)− x∗, µβndn−1 − µ∇f(x∗)⟩
≤ (1− ταn)∥xn − x∗∥2 + 2αn⟨xn + µαndn − x∗, µβndn−1 − µ∇f(x∗)⟩
= (1− ταn)∥xn − x∗∥2 + 2αnµβn⟨xn + µαndn − x∗, dn−1⟩

+2αnµ⟨xn + µαndn − x∗,−∇f(x∗)⟩
= (1− ταn)∥xn − x∗∥2 + 2αnµβn⟨zn − x∗, dn−1⟩

+2αnµ⟨xn − x∗,−∇f(x∗)⟩+ 2αnµ⟨µαndn,−∇f(x∗)⟩
= (1− ταn)∥xn − x∗∥2 + 2αnµβn⟨zn − x∗, dn−1⟩

+2αnµ⟨x∗ − xn,∇f(x∗)⟩+ 2α2
nµ

2⟨dn,−∇f(x∗)⟩
= (1− ταn)∥xn − x∗∥2 + 2ταnξn,

where

ξn :=

{
µβn
τ

⟨zn − x∗, dn−1⟩+
µ

τ
⟨x∗ − xn,∇f(x∗)⟩+ µ2αn

τ
⟨dn,−∇f(x∗)⟩

}
.
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Substituting the above inequality in (3.3), we get

||xn+1 − x∗||2 ≤ (1− λn)||xn − x∗||2 + λn(1− ταn)∥xn − x∗∥2

+2ταnλnξn − λn(1− λn)||T (xn + µαndn)− xn||2.(3.9)

Since λn ∈ (0, 1), we have 0 < λn(1−λn) < λn, which together with the inequalities
(3.9) yield that

||xn+1 − x∗||2 ≤ (1− λn)||xn − x∗||2 + λn(1− ταn)∥xn − x∗∥2

+2τλnαnξn

= (1− λn + λn − ταnλn)||xn − x∗||2 + 2τλnξnαn

= (1− ταnλn)||xn − x∗||2 + 2ξn(ταnλn).(3.10)

We claim that ταnλn ∈ (0, 1) and
∑∞

n=1 ταnλn = +∞. Now, since τ ∈ (0, 1],
(αn) ⊂ (0, 1) and (λn) ⊂ (0, 1), we have ταnλn ∈ (0, 1) for all n ≥ 1. Furthermore,
since 0 < lim infn→∞ λn ≤ lim supn→∞ λn = λ, where λ ∈ (0, 1). Thus, for all ϵ > 0,
there is n0 ∈ N such that λn ≥ λ+ ϵ > ϵ for all n ≥ n0.

Note that
∞∑

n=n0

ταnλn = τ
∞∑

n=n0

αnλn > τ
∞∑

n=n0

αnϵ = τϵ
∞∑

n=n0

αn.

Since
∑∞

n=n0
αn = +∞, we have τϵ

∑∞
n=n0

αn = +∞, which implies that∑∞
n=n0

ταnλn = +∞.

Denote an := ∥xn − x∗∥2 for all n ≥ 1, we will show that limn→∞ ||xn − x∗||2 = 0
by dividing the proof into two cases.

Case I: suppose that there is n0 ≥ 1 such that an+1 ≤ an for all n ≥ n0. In this
situation, the sequence (an) converges and let limn→∞ an = r. We will show that
limn→∞ ||T (xn + µαndn)− xn|| = 0. Now, by using the inequalities (3.6) and (3.8),
we note that

0 ≤ lim sup
n→∞

λn(1− λn)||T (xn + µαndn)− xn||2

≤ lim sup
n→∞

(an − an+1 + φn)

= lim
n→∞

an − lim
n→∞

an+1 + lim
n→∞

φn = r − r + 0 = 0,

that is

lim sup
n→∞

λn(1− λn)||T (xn + µαndn)− xn||2 = 0,

which yields that

(3.11) lim
n→∞

||T (xn + µαndn)− xn|| = 0.

Since (xn) is bounded, the sequence (⟨x∗ − xn,∇f(x∗)⟩) is also bounded. Thus,
there exists a subsequence (xni) of (xn) such that

lim sup
n→∞

⟨x∗ − xn,∇f(x∗)⟩ = lim
i→∞

⟨x∗ − xni ,∇f(x∗)⟩.
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Since (xni) is bounded, there are x̂ ∈ H and a subsequence (xnij
) such that xnij

⇀ x̂.

We will show that x̂ ∈ Fix(T ) ∩X. Let us note from (3) that

lim
j→∞

∥T (xnij
)− xnij

∥ = lim
n→∞

∥T (xnij
)− T (xnij

+ µαnij
dnij

)

+T (xnij
+ µαnij

dnij
)− xnij

∥
= lim

j→∞
∥T (xnij

)− T (xnij
+ µαnij

dnij
)∥

+ lim
j→∞

∥T (xnij
+ µαnij

dnij
)− xnij

∥

= lim
j→∞

∥T (xnij
)− T (xnij

+ µαnij
dnij

)∥

≤ lim
j→∞

∥xnij
− (xnij

+ µαnij
dnij

)∥

= lim
j→∞

∥µαnij
dnij

∥

= µ lim
j→∞

αnij
∥dnij

∥.

By using the boundedness of (dn), we obtain that

(3.12) lim
j→∞

∥T (xnij
)− xnij

∥ = 0.

Now the fact that xnij
⇀ x̂, the inequality (3.12) and Proposition 2.1, we get that

x̂ ∈ Fix(T ) ∩X.
Since x∗ is the unique solution of the considered problem, we have

lim sup
n→∞

⟨x∗ − xn,∇f(x∗)⟩ = lim
i→∞

⟨x∗ − xni ,∇f(x∗)⟩

= lim
j→∞

⟨x∗ − xnij
,∇f(x∗)⟩

= ⟨x∗ − x̂,∇f(x∗)⟩
≤ 0.(3.13)

By using the assumptions limn→∞ αn = 0, limn→∞ βn = 0, and the facts that (dn)
and (zn) are bounded, we have

(3.14) lim sup
n→∞

µβn
τ

⟨zn − x∗, dn−1⟩ ≤ lim sup
n→∞

µβn
τ

||zn − x∗||||dn−1|| = 0,

and then

(3.15) lim sup
n→∞

µ2αn

τ
⟨dn,−∇f(x∗)⟩ ≤ lim sup

n→∞

µ2αn

τ
||dn||||∇f(x∗)|| = 0.

Invoking the inequalities (3.13), (3.14) and (3.15), we have

lim sup
n→∞

(
µβn

τ
⟨zn − x∗, dn−1⟩+ µ

τ
⟨x∗ − xn,∇f(x∗)⟩+ µ2αn

τ
⟨dn,−∇f(x∗)⟩

)
≤ 0.

Thus, we have lim supn→∞ 2ξn = 2 lim supn→∞ ξn ≤ 0, Hence, Proposition 2.4 and
the inequality (3.10), we conclude that limn→∞ ||xn − x∗||2 = 0.
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Case II: suppose that there exists a subsequence (ank
) of (an) such that ank

<
ank+1 for all k ≥ 1 and let {ν(n)}∞n=1 be defined as in Proposition 2.3. Then, for
all n ≥ n0, we have

(3.16) aν(n) ≤ aν(n)+1,

and

(3.17) an ≤ aν(n)+1.

By utilizing the inequality (3.7), we have

aν(n)+1 − aν(n) ≤ −λν(n)(1− λν(n))||T (xν(n) + µαν(n)dν(n))− xν(n)||2 + φν(n).

(3.18)

It follows from the inequalities (3.16) and (3.18) that

0 ≤ −λν(n)(1− λν(n))||T (xν(n) + µαν(n)dν(n))− xν(n)||2 + φν(n).

Thus, we obtain that

λν(n)(1− λν(n))||T (xν(n) + µαν(n)dν(n))− xν(n)||2 ≤ φν(n).

Since limn→∞ φν(n) = limn→∞ φn = 0, we have

lim
n→∞

λν(n)(1− λν(n))||T (xν(n) + µαν(n)dν(n))− xν(n)||2 ≤ 0,

and then

lim
n→∞

||T (xν(n) + µαν(n)dν(n))− xν(n)|| = 0.

Now, let (xν(ni)) be a subsequence of (xν(n)) such that

lim sup
n→∞

⟨x∗ − xν(n),∇f(x∗)⟩ = lim
i→∞

⟨x∗ − xν(ni),∇f(x∗)⟩.

Since (xν(ni)) is a bounded sequence, there are x̂ ∈ H and a subsequence (xν(nij
))

in which xν(nij
) ⇀ x̂. In a similar fashion to Case I, we also obtain that x̂ ∈

Fix(T ) ∩ X. Now, since x∗ is the unique solution to the considered problem, we
have

lim sup
n→∞

⟨x∗ − xν(n),∇f(x∗)⟩ = lim
i→∞

⟨x∗ − xν(ni),∇f(x∗)⟩

= lim
j→∞

⟨x∗ − xν(nij
),∇f(x∗)⟩

= ⟨x∗ − x̂,∇f(x∗)⟩
≤ 0,(3.19)

and by using the same ideas of the inequalities (3.14) and (3.15), we obtain that

lim sup
n→∞

2ξν(n) ≤ 0.

We note from the inequality (3.10) that

aν(n)+1 ≤ (1− ταν(n)λν(n))aν(n) + 2ξν(n)(ταν(n)λν(n))

= aν(n) − ταν(n)λn(aν(n)) + 2ξν(n)(ταν(n)λν(n))

= aν(n) + ταν(n)λν(n)(2ξν(n) − aν(n)),
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and then

0 ≤ aν(n)+1 − aν(n) ≤ ταν(n)λν(n)(2ξν(n) − aν(n)).

Since τ ∈ (0, 1], (aν(n)) ⊂ (0, 1) and (λν(n)) ⊂ (0, 1), we have τaν(n)λν(n) ∈ (0, 1),
thus τaν(n)λν(n) > 0.

Now, we have

0 ≤ ταν(n)λν(n)(2ξν(n) − aν(n)),

which is

0 ≤ 2ξν(n) − aν(n),

which implies that 0 ≤ aν(n) ≤ 2ξν(n). Since lim supn→∞ 2ξν(n) ≤ 0, we have
0 ≤ lim supn→∞ aν(n) ≤ lim supn→∞ 2ξν(n) ≤ 0, and then lim supn→∞ aν(n) = 0.
Thus, we obtain that limn→∞ aν(n) = 0 and limn→∞ aν(n)+1 − aν(n) = 0. By using
the relation in (3.17), we have

0 ≤ lim sup
n→∞

an ≤ lim sup
n→∞

aν(n)+1

= lim sup
n→∞

[aν(n)+1 − aν(n)] + lim sup
n→∞

aν(n) = 0 + 0 = 0,

that is lim supn→∞ an = 0, which implies that limn→∞ an = 0, which means that
limn→∞ ∥xn − x∗∥2 = 0. From these two cases, we conclude that the sequence (xn)
converges to the unique solution to the considered problem. □

4. Some extensions

In this section, we will consider the solving of the minimization problem over the
finite intersection of fixed-point sets of nonexpansive operators and a simple closed
convex and bounded constraint by applying the results obtained in the previous
section.

Let us consider the problem of the form: of the form:

minimize f(x)
subject to x ∈ X ∩

⋂m
i=1 Fix(Ti),

(4.1)

where the following assumptions are assumed:

(A1) f : H → R is an α-strongly convex Fréchet differentiable with L-Lipschitz
continuous gradient.

(A2) Ti : H → H, i = 1, . . . ,m, are nonexpansive operators with Fix(Ti) ̸= ∅.
(A3) X ⊆ H is a nonempty closed convex and bounded subset in which⋂m

i=1 Fix(Ti) ∩X ̸= ∅.

The following algorithm allows us to compute the operators Ti, i = 1, . . . ,m
cyclically.
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Algorithm 2: Relaxed cyclic hybrid steepest descent method

Initialization: Select a starting point x1 ∈ H, the parameters
µ ∈ (0, 2α/L2), (λn) ⊂ (0, 1), (αn) ⊂ (0, 1] and (βn) ⊂ [0,+∞). Set
d1 := −∇f(x1).
Step 1: For current iterates xn ∈ H and dn ∈ H, compute xn+1 ∈ H by

xn+1 := PX((1− λn)xn + λnTmTm−1 · · ·T2T1(xn + µαndn)).(4.2)

Step 2: Define the search direction dn+1 ∈ H as

dn+1 := −∇f(xn+1) + βn+1dn.

Update n := n+ 1 and go to Step 1.

By applying Theorem 3.2 together with the fact that the composition of a finite
numbers of nonexpansive operators is also nonexpansive, we immediately obtain the
the following corollary.

Corollary 4.1. Let the sequence (xn) be given by Algorithm 2. Suppose that
limn→∞ αn = 0,

∑∞
n=1 αn = ∞, limn→∞ βn = 0 and 0 < lim infn→∞ λn ≤

lim supn→∞ λn < 1. Then the sequence (xn) converges strongly to the unique solu-
tion of the problem (4.1).

Remark 4.2. Algorithm 2 and the corresponding convergence result in Corollary
4.1 are different from the iterative method presented in [12]. In fact, in order to
update the next iterate xn+1 in (4.2), we compute the convex combination of xn
and TmTm−1 · · ·T2T1(xn + µαndn), whereas in [12], the authors utilized the sum of
xn + µαndn and TmTm−1 · · ·T2T1(xn + µαndn).

The next algorithm allows us to compute the operators Ti, i = 1, . . . ,m simulta-
neously.

Algorithm 3: Relaxed simultaneous hybrid steepest descent method

Initialization: Select a starting point x1 ∈ H, the parameters
µ ∈ (0, 2α/L2), (λn) ⊂ (0, 1), (αn) ⊂ (0, 1], (βn) ⊂ [0,+∞), and
(ωi)

m
i=1 ⊂ (0, 1) with

∑m
i=1 ωi = 1. Set d1 := −∇f(x1).

Step 1: For current iterates xn ∈ H and dn ∈ H, compute xn+1 ∈ H by

xn+1 := PX((1− λn)xn + λn

m∑
i=1

ωiTi(xn + µαndn)).(4.3)

Step 2: Define the search direction dn+1 ∈ H as

dn+1 := −∇f(xn+1) + βn+1dn.

Update n := n+ 1 and go to Step 1.

By applying Theorem 3.2 together with the fact that the convex combination of
a finite numbers of nonexpansive operators is also nonexpansive, we immediately
obtain the the following corollary.

Corollary 4.3. Let the sequence (xn) be given by Algorithm 3. Suppose that
limn→∞ αn = 0,

∑∞
n=1 αn = ∞, limn→∞ βn = 0 and 0 < lim infn→∞ λn ≤
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lim supn→∞ λn < 1. Then the sequence (xn) converges strongly to the unique solu-
tion of the problem (4.1).

5. Conclusion

The object of this work was the solving of a strongly convex minimization problem
over the intersection of fixed-point set of a nonexpansive operator and a nonempty
closed convex bounded set. We associated to it the so-called relaxed hybrid steepest
descent method. We proved strong convergence of the generated sequence of iterates
to the unique solution to the considered problem.

Acknowledgements

This work was supported by Faculty of Science, Khon Kaen University.

References

[1] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in

Hilbert Spaces, CMS Books in Mathematics, 2nd ed., Springer, New York, 2017.

[2] A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in

Mathematics 2057, Springer-Verlag, Berlin, Heidelberg, Germany, 2012.

[3] A. Cegielski, Application of quasi-nonexpansive operators to an iterative method for variational

inequality, SIAM. J. Optim. 25 (2015), 2165–2181.

[4] A. Cegielski and R. Zalas, Methods for variational inequality problem over the intersection

of fixed point sets of quasi-nonexpansive operators, Numer. Funct. Anal. Optim. 34 (2013),

255–283.

[5] A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc. 70 (1964),

709–710.

[6] H. Iiduka, Three-term conjugate gradient method for the convex optimization problem over the

fixed point set of a nonexpansive mapping, Appl. Math. Comput. 217 (2011), 6315–6327.

[7] H. Iiduka, Fixed point optimization algorithms for distributed optimization in networked sys-

tems, SIAM J. Optim. 23 (2013), 1–26.

[8] H. Iiduka, Convex optimization over fixed point sets of quasi-nonexpansive and nonexpansive

mappings in utility-based bandwidth allocation problems with operational constraints, J. Com-

put. Appl. Math. 282 (2015), 225–236.

[9] H. Iiduka and I.Yamada, A use of conjugate gradient direction for the convex optimization

problem over the fixed point set of a nonexpansive mapping, SIAM J. Optim. 19 (2009), 1881–

1893.
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