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2. Preliminaries

Throughout the paper, (X,A) is a measurable space, that is, X is a nonempty
set and A is a σ-field of subsets of X. Let R denote the set of the real numbers and
N the set of the natural numbers. Let R := [−∞,∞] be the set of the extended real
numbers with usual total order and algebraic structure. Assume that (±∞) · 0 =
0 · (±∞) = 0 since this proves to be convenient in measure and integration theory.

For any a, b ∈ R, let a ∨ b := max{a, b} and a ∧ b := min{a, b} and for any
f, g : X → R, let (f ∨ g)(x) := f(x) ∨ g(x) and (f ∧ g)(x) := f(x) ∧ g(x) for every
x ∈ X. Let F0(X) denote the set of all A-measurable real-valued functions on
X. Then F0(X) is a real linear space with usual pointwise addition and scalar
multiplication. For any f, g ∈ F0(X), the notation f ≤ g means that f(x) ≤ g(x)
for every x ∈ X. Let F+

0 (X) := {f ∈ F0(X) : f ≥ 0}. A function taking only a
finite number of real numbers is called a simple function. Let S(X) denote the set
of all A-measurable simple functions on X.

For a sequence {an}n∈N ⊂ R and a ∈ R, the notation an ↑ a means that {an}n∈N
is nondecreasing and an → a, and an ↓ a means that {an}n∈N is nonincreasing and
an → a. For a sequence {An}n∈N ⊂ A and A ∈ A, the notation An ↑ A means that
{An}n∈N is nondecreasing and A =

∪∞
n=1An, and An ↓ A means that {An}n∈N is

nonincreasing and A =
∩∞

n=1An. The characteristic function of a set A, denoted
by χA, is the function on X such that χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise.
Given two sets A and B, let A△B := (A \ B) ∪ (B \ A) and Ac := X \ A. Let 2X

denote the collection of all subsets of X.

2.1. Nonadditive measures. A nonadditive measure is a set function µ : A →
[0,∞] such that µ(∅) = 0 and µ(A) ≤ µ(B) whenever A,B ∈ A and A ⊂ B. This
type of set function is also called a monotone measure [?], a capacity [?], or a fuzzy
measure [?, ?] in the literature.

Let M(X) denote the set of all nonadditive measures µ : A → [0,∞]. We say that
µ is order continuous [?] if µ(An) → 0 whenever An ↓ ∅, conditionally continuous
from above if µ(An) → µ(A) whenever An ↓ A and µ(A1) < ∞, continuous from
above if µ(An) → µ(A) whenever An ↓ A, continuous from below if µ(An) → µ(A)
whenever An ↑ A, continuous if it is continuous from above and from below, and
null-continuous [?] if µ(

∪∞
n=1Nn) = 0 whenever {Nn}n∈N ⊂ A is nondecreasing

and µ(Nn) = 0 for every n ∈ N. If µ is continuous from above, then it is order
continuous. The conditional continuity from above follows from the continuity from
above, but the converse does not hold even for the Lebesgue measure on the real
line. If µ is continuous from below, then it is null-continuous.

Following the terminology used in [?], µ is called weakly null-additive if µ(A∪B) =
0 whenever A,B ∈ A and µ(A) = µ(B) = 0 and null-additive if µ(A ∪ B) =
µ(A) whenever A,B ∈ A and µ(B) = 0, Furthermore, we say that µ satisfies the
pseudometric generating property ((p.g.p.) for short) [?] if µ(An∪Bn) → 0 whenever
An, Bn ∈ A and µ(An)∨µ(Bn) → 0, and is monotone autocontinuous from below [?]
if µ(A\Bn) → µ(A) whenever A,Bn ∈ A, µ(Bn) → 0, and {Bn}n∈N is nonincreasing.
It is easy to see that µ satisfies the (p.g.p.) if and only if for any ε > 0 there is δ > 0
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such that µ(A ∪ B) < ε whenever A,B ∈ A and µ(A) ∨ µ(B) < δ. If µ satisfies
the (p.g.p.), then it is weakly null-additive. If µ is monotone autocontinuous from
below, then it is null-additive, hence weakly null-additive.

A nonadditive measure µ is called subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) for
every disjoint A,B ∈ A, relaxed subadditive if there is a constant K ≥ 1 such that
µ(A∪B) ≤ K {µ(A) + µ(B)} for every disjoint A,B ∈ A (in this case µ is called K-
relaxed subadditive). Every subadditive nonadditive measure is relaxed subadditive.
If µ is relaxed subadditive, then it satisfies the (p.g.p.). See [?, ?, ?] for further
information on nonadditive measures.

Remark 2.1. The relaxed subadditivity is also called the quasi-subadditivity accord-
ing to the terminology used in metric space theory.

2.2. The Sugeno and Shilkret integrals. The Choquet integral [?, ?] is one
of important integrals that is widely used in nonadditive measure theory and its
applications. In addition to the Choquet integral, the following nonlinear integrals
are also important.

Let µ ∈ M(X). The Sugeno integral [?, ?] is defined by

Su(µ, f) := sup
t∈[0,∞)

t ∧ µ({f > t})

for every f ∈ F+
0 (X) and the Shilkret integral [?, ?] is defined by

Sh(µ, f) := sup
t∈[0,∞)

tµ({f > t})

for every f ∈ F+
0 (X). In the above definitions the nonincreasing distribution func-

tion µ({f > t}) may be replaced with µ({f ≥ t}) and the interval of the range in
which the variable t moves may be replaced with [0,∞] or (0,∞) without changing
the integral value.

The following elementary properties of the Sugeno and Shilkret integrals are easy
to prove; see also [?] and [?]. Note that these integrals are not additive in general.

• Monotonicity: For any f, g ∈ F+
0 (X), if f ≤ g, then Su(µ, f) ≤ Su(µ, g) and

Sh(µ, f) ≤ Sh(µ, g).
• Generativity: For any A ∈ A and c ≥ 0, it follows that Su(µ, cχA) = c∧µ(A)
and Sh(µ, cχA) = cµ(A).

• Truncated subhomogeneousness: For any f ∈ F+
0 (X) and c ≥ 0, it follows

that Su(µ, cf) ≤ max{1, c}Su(µ, f).
• Positive homogeneousness: For any f ∈ F+

0 (X) and c ≥ 0, it follows that
Sh(µ, cf) = c Sh(µ, f).

• Elementariness: If h ∈ S(X) is represented by

h =
n∑

k=1

(ck − ck−1)χAk
=

n∨
k=1

ckχAk
,
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where n ∈ N, c0 = 0 < c1 < c2 < · · · < cn < ∞, and A1 ⊃ A2 ⊃ · · · ⊃ An,
then it follows that

Su(µ, h) =

n∨
k=1

ck ∧ µ(Ak) and Sh(µ, h) =
n∨

k=1

ckµ(Ak).

• Upper marginal continuity: For any f ∈ F+
0 (X), it follows that

Su(µ, f) = sup
r>0

Su(µ, f ∧ r) and Sh(µ, f) = sup
r>0

Sh(µ, f ∧ r).

• Measure-truncation: For any f ∈ F+
0 (X), it follows that

Su(µ, f) = sup
s>0

Su(µ ∧ s, f) and Sh(µ, f) = sup
s>0

Sh(µ ∧ s, f),

where (µ ∧ s)(A) := µ(A) ∧ s for every A ∈ A and s > 0.
• Exponentiation: Let 0 < p < ∞. For any f ∈ F+

0 (X) it follows that

Su(µ, fp) = Su(µ1/p, f)p and Sh(µ, fp) = Sh(µ1/p, f)p.

• Integrability: For any f ∈ F+
0 (X) and α ∈ [0,∞], it follows that

Su(µ, f) ≤ α ∨ µ({f > α}).
Consequently, it follows that Su(µ, f) < ∞ if and only if there is α0 ∈ [0,∞)
such that µ({f > α0}) < ∞.

The relaxed subadditivity of the Sugeno and Shilkret integrals can be character-
ized in the following way.

Proposition 2.2. Let µ ∈ M(X).

(1) The following assertions are equivalent.
(i) µ is K-relaxed subadditive for some K ≥ 1.
(ii) For any f, g ∈ F+

0 (X), it follows that

Su(µ, f + g) ≤ K
{
Su(µ, f) + Su(µ, g)

}
.

In particular, the Sugeno integral is subadditive if and only if µ is subaddi-
tive.

(2) If µ is K-relaxed subadditive, then for any f, g ∈ F+
0 (X) it follows that

Sh(µ, f + g) ≤ 2K
{
Sh(µ, f) + Sh(µ, g)

}
.

Proof. (1) (i)⇒(ii) Let f, g ∈ F+
0 (X). Let a := Su(µ, f) and b := Su(µ, g). We may

assume that both a and b are finite. Let ε > 0. If it were true that µ({f > a+ε}) > a
then we would have

a = Su(µ, f) ≥ (a+ ε) ∧ µ({f > a+ ε}) > a,

which is impossible. It thus follows that µ({f > a + ε}) ≤ a. Similarly, we have
µ({f > b+ ε}) ≤ b. Then the K-relaxed subadditivity of µ yields

µ({f + g > a+ b+ 2ε}) ≤ µ({f > a+ ε} ∪ {g > b+ ε}) ≤ K(a+ b),

so that

Su(µ, f + g) ≤ (a+ b+ 2ε) ∨ µ({f + g > a+ b+ 2ε})
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≤ (a+ b+ 2ε) ∨
{
K(a+ b)

}
.

Letting ε ↓ 0 implies the desired inequality.
(ii)⇒(i) Let A,B ∈ A and assume that A ∩B = ∅. For each r > 0, let f := rχA

and g := rχB. Then, assertion (ii) implies that

(1) r ∧ µ(A ∪B) ≤ K
{
r ∧ µ(A) + r ∧ µ(B)

}
.

First consider the case where µ(A ∪ B) = ∞. Suppose, contrary to our claim,
that both µ(A) and µ(B) are finite. Then, letting r := K

{
µ(A) +µ(B)

}
+1 > 0 in

(??) yields

K
{
µ(A) + µ(B)

}
+ 1 ≤ K

{
µ(A) + µ(B)

}
,

which is impossible. Therefore, at least one of µ(A) and µ(B) is infinite, so that

µ(A ∪B) = ∞ = K
{
µ(A) + µ(B)

}
.

If µ(A ∪ B) < ∞ then letting r := µ(A ∪ B) + 1 > 0 in (??) yields the desired
inequality. Therefore, µ is K-relaxed subadditive.

(2) It can be easily proved by the fact that

{f + g > t} ⊂ {f > t/2} ∪ {g > t/2}

for every f, g ∈ F+
0 (X) and t ≥ 0. □

Remark 2.3. (1) The subadditivity of the Sugeno integral was proved in [?, Propo-
sition 5] for nonadditive measures on the discrete space (N, 2N).

(2) The Shilkret integral is not subadditive even if µ is σ-additive. To show this,
let X := (0, 1) and let A be the σ-field of all Borel subsets of X. Let λ be the
Lebesgue measure on R. Define the functions f, g : X → [0,∞) by f(x) := 1/x and
g(x) := 1/(1 − x) for every x ∈ X. Then it follows that Sh(λ, f) = Sh(λ, g) = 1
and Sh(λ, f + g) = 4. In fact, the Shilkret integral is subadditive if and only if µ
is maxitive, that is, µ(A ∪ B) = µ(A) ∨ µ(B) whenever A,B ∈ A and A ∩ B = ∅;
see [?, Theorem 4].

2.3. Various modes of convergence of measurable functions. Let {fn}n∈N ⊂
F0(X) and f ∈ F0(X). There are several ways to define the convergence of se-
quences of measurable functions. We say that {fn}n∈N converges µ-almost every-
where to f , denoted by fn → f µ-a.e., if there is N ∈ A such that µ(N) = 0
and fn(x) → f(x) for every x ̸∈ N . We also say that {fn}n∈N converges µ-almost
uniformly to f , denoted by fn → f µ-a.u., if for any ε > 0 there is Eε ∈ A such
that µ(Eε) < ε and fn converges to f uniformly on X \Eε. Another concept of con-
vergence is not quite intuitive, but it has some advantages in analysis. We say that

{fn}n∈N converges in µ-measure to f , denoted by fn
µ−→ f , if µ({|fn−f | > ε}) → 0

for every ε > 0. Every sequence of measurable functions converging µ-almost uni-
formly converges µ-almost everywhere and in µ-measure to the same limit function.

The three modes of convergence introduced above require that the differences be-
tween the elements fn of the sequence and the limit function f should become small
in some sense as n increases. The following definition involves only the elements of
the sequence. We say that {fn}n∈N is Cauchy in µ-measure if for any ε > 0 and
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δ > 0 there is n0 ∈ N such that µ({|fm − fn| > ε}) < δ whenever m,n ∈ N and
m,n ≥ n0.

See a survey paper [?] for further information on various modes of convergence
of measurable functions in nonadditive measure theory.

2.4. Equivalence relation and quotient space. The quotient space of F0(X)
is constructed by an equivalence relation determined by a nonadditive measure µ.
The proof of the following statements is routine and left it to the reader.

• Assume that µ is weakly null-additive. Given f, g ∈ F0(X), define the
binary relation f ∼ g on F0(X) by µ({|f − g| > c}) = 0 for every c > 0
so as to become an equivalence relation on F0(X). For every f ∈ F0(X)
the equivalence class of f is the set of the form {g ∈ F0(X) : f ∼ g} and
denoted by [f ]. Then the quotient space of F0(X) is defined by F0(X) :=
{[f ] : f ∈ F0(X)}.

• Assume that µ is weakly null-additive. Given equivalence classes [f ], [g] ∈
F0(X) and c ∈ R, define addition and scalar multiplication on F0(X) by
[f ] + [g] := [f + g] and c[f ] := [cf ]. They are well-defined, that is, they are
independent of which member of an equivalence class we choose to define
them. Then F0(X) is a real linear space.

The binary relation on F0(X) defined above may not be transitive unless µ is
weakly null-additive; see [?, Example 5.1]. In what follows, let S(X) := {[h] : h ∈
S(X)}.

2.5. Prenorms. Let V be a real linear space. A prenorm on V is a nonnegative
real-valued function ∥ · ∥ defined on V such that ∥0∥ = 0 and ∥−x∥ = ∥x∥ for every
x ∈ V . Then the pair (V, ∥ ·∥) is called a prenormed space. A prenorm ∥ ·∥ is called
homogeneous if it follows that ∥cx∥ = |c|∥x∥ for every x ∈ V and c ∈ R and truncated
subhomogeneous if it follows that ∥cx∥ ≤ max(1, |c|)∥x∥ for every x ∈ V and c ∈ R.
A seminorm is a prenorm that is homogeneous and satisfies the triangle inequality,
that is, ∥x + y∥ ≤ ∥x∥ + ∥y∥ for every x, y ∈ V . Then a norm is a seminorm that
separates points of V , that is, for any x ∈ V , if ∥x∥ = 0 then x = 0. Following [?], a
prenorm ∥·∥ is called relaxed if it satisfies a relaxed triangle inequality, that is, there
is a constant K ≥ 1 such that ∥x + y∥ ≤ K {∥x∥+ ∥y∥} for every x, y ∈ V (in this
case, we say that ∥·∥ satisfies the K-relaxed triangle inequality). A quasi-seminorm
on V is a prenorm that is homogeneous and satisfies a relaxed triangle inequality.
Then a quasi-norm is a quasi-seminorm that separates points of V .

To associate with similar characteristics of nonadditive measures, a prenorm ∥ ·∥
is called weakly null-additive if ∥x + y∥ = 0 whenever x, y ∈ V and ∥x∥ = ∥y∥ = 0
and null-additive if ∥x+ y∥ = ∥x∥ whenever x, y ∈ V and ∥y∥ = 0.

Let (V, ∥ · ∥) be a prenormed space. Let {xn}n∈N ⊂ V and x ∈ V . We say that
{xn}n∈N converges to x, denoted by xn → x, if ∥xn − x∥ → 0. We may simply
say that {xn}n∈N converges if the limit x is not needed to specify. The notion
of a Cauchy sequence involves only the elements of the sequence and we say that
{xn}n∈N is Cauchy if for any ε > 0 there is n0 ∈ N such that ∥xm−xn∥ < ε whenever
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m,n ∈ N and m,n ≥ n0. Not every converging sequence is Cauchy since prenorms
satisfy neither the triangle inequality nor its relaxed ones in general. A subset B of
V is called bounded if supx∈B ∥x∥ < ∞.

A prenormed space (V, ∥ · ∥) is called complete if every Cauchy sequence in V
converges to an element in V . It is called quasi-complete if every bounded Cauchy
sequence in V converges to an element in V . The denseness and the separability
can be defined in the same way as in ordinary normed spaces. We say that V is
separable if there is a countable subset D of V such that D is dense in V , that is,
for any x ∈ V and ε > 0 there is y ∈ D such that ∥x− y∥ < ε.

If the prenorm ∥ · ∥ is needed to emphasize in the above terms, then the phrase
“with respect to ∥ · ∥” is added to each term.

3. The Lorentz spaces defined by the Sugeno integral

Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. When µ is σ-additive, the
ordinary Lorentz space is defined by

Lp,q(µ) := {f ∈ F0(X) : ∥f∥p,q < ∞},
where ∥ · ∥p,q is the Lorentz quasi-seminorm on Lp,q(µ) defined by the Lebesgue
integral as

(2) ∥f∥p,q := p1/q
(∫ ∞

0

[
tµ({|f | > t})1/p

]q dt
t

)1/q

for every f ∈ F0(X) [?, Theorem 6.6]. In this section, a type of the Lorentz spaces
is defined by using the Sugeno integral as an analog of the ordinary Lorentz spaces.

The right side of (??) can be expressed as(
p

q

)1/q

Ch(µq/p, |f |q)1/q

in terms of the Choquet integral defined by

Ch(µ, f) :=

∫ ∞

0
µ({f > t})dt

for every f ∈ F+
0 (X) and µ ∈ M(X), which is due to the fact that

Ch(µq/p, |f |q) =
∫ ∞

0
qtq−1µ({|f | > t})q/pdt.

This observation leads to the study of the Lorentz spaces defined by the Choquet
integral [?] and also to the following definition.

Definition 3.1. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Define the
function ( · )p,q : F0(X) → [0,∞] by

(f)p,q :=

(
p

q

)1/q

Su(µq/p, |f |q)1/q

for every f ∈ F0(X) and let

Sup,q(µ) := {f ∈ F0(X) : (f)p,q < ∞}.
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The space Sup,q(µ) is called the Sugeno-Lorentz space and the prenorm ( · )p,q on
Sup,q(µ) is called the Sugeno-Lorentz prenorm.

Proposition 3.2. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞.

(1) It follows that

(f)p,q =

(
p

q

)1/q

Su(µ1/p, |f |).

(2) For any A ∈ A and c ∈ R it follows that

(cχA)p,q =

(
p

q

)1/q

min
{
|c|, µ(A)1/p

}
.

(3) For any f ∈ Sup,q(µ) it follows that (f)p,q = 0 if and only if µ({|f | > c}) = 0
for every c > 0; they are equivalent to the condition that µ({|f | > 0}) = 0
if µ null-continuous.

(4) For any f ∈ Sup,q(µ) and c ∈ R it follows that

(cf)p,q ≤ max {1, |c|} (f)p,q.

Hence the prenorm ( · )p,q is truncated subhomogeneous.
(5) For any f ∈ Sup,q(µ) and c > 0 it follows that

min {cp, µ({|f | > c})} ≤
(
q

p

)p/q

(f)pp,q.

(6) For any f, g ∈ Sup,q(µ), if |f | ≤ |g| then (f)p,q ≤ (g)p,q.
(7) µ is weakly null-additive if and only if ( · )p,q is weakly null-additive.
(8) µ is null-additive if and only if ( · )p,q is null-additive.
(9) µ is null-additive if and only if it follows that (f)p,q = (g)p,q whenever

f, g ∈ Sup,q(µ) and f ∼ g.

(10) If µ is K-relaxed subadditive for some K ≥ 1, then ( · )p,q satisfies the (2K)
1
p -

relaxed triangle inequality.

Proof. Assertions (1)–(9) can be derived in the same manner as [?, ?] or by similar
verification.

(10) Since µ is K-relaxed subadditive, µ1/p is (2K)1/p-relaxed subadditive. It

thus follows from (1) of Proposition ?? that ( · )p,q satisfies the (2K)1/p-triangle
inequality. □

From (4) and (10) of Proposition ?? it follows that Sup,q(µ) is a real linear
subspace of F0(X) if µ is relaxed subadditive.

There is a close relationship between convergence in measure and convergence
with respect to ( · )p,q. The conclusion of the following proposition can be found in [?,
?], where µ is assumed to be conditionally continuous from above and continuous
from below. The same proof works for an arbitrary nonadditive measure; see also [?,
?].

Proposition 3.3. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Let {fn}n∈N ⊂
F0(X) and f ∈ F0(X). Then (fn − f)p,q → 0 if and only if fn

µ−→ f .
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The quotient space

Su p,q(µ) := {[f ] : f ∈ Sup,q(µ)}

is defined by the equivalence relation introduced in Subsection ??. Given an equiv-
alence class [f ] ∈ Su p,q(µ), define the prenorm on Su p,q(µ) by

([f ])p,q := (f)p,q,

which is well-defined by (9) of Proposition ?? if µ is null-additive. This prenorm has
the same properties as the prenorm on Sup,q(µ) and separates points of Su p,q(µ),
that is, for any [f ] ∈ Su p,q(µ), if ([f ])p,q = 0 then [f ] = 0.

In the rest of this section, following [?], we show that the Sugeno-Lorentz spaces
coincide with the space of all Sugeno integrable functions, which is defined by

Su(µ) := {f ∈ F0(X) : (f)1 < ∞},

where ( · )1 is defined by

(f)1 := Su(µ, |f |) = (f)1,1

for every f ∈ F0(X). This is proved by the fact Su(µ, |f |) < ∞ if and only if

Su(µq/p, |f |q) < ∞, which follows from [?, Lemma 9.4]. Consequently, if µ is null-
additive, then Su p,q(µ) also coincides with

Su(µ) := {[f ] : f ∈ Su(µ)},

where ([f ])1 := (f)1 for every [f ] ∈ Su(µ). Furthermore, if µ is finite, then

Su(µ, |f |) ≤ µ(X) < ∞

for every f ∈ F0(X), hence it follows that Sup,q(µ) = Su(µ) = F0(X) and
Su p,q(µ) = Su(µ) = F0(X). For this reason, in what follows, the spaces Sup,q(µ)
and Su p,q(µ) will be written as Su(µ) and Su(µ) respectively and the latter spaces
are refereed to as the Sugeno integrable functions space.

For any a, b ∈ [0,∞] and 0 < r < ∞ the inequalities

a ∧ br ≤ (a ∧ b)r + a ∧ b, (a ∧ b)r ≤ (a ∧ br)r + a ∧ br

holds [?]. The first inequality yields

(3) (f)p,q ≤
(
p

q

)1/q

{(f)p1 + (f)1}

and the second one yields

(4) (f)
1/p
1 ≤

{(
q

p

)1/q

(f)p,q

}1/p

+

(
q

p

)1/q

(f)p,q,

both of which hold for every f ∈ F0(X). From these inequalities we see that for
any sequence {fn}n∈N ⊂ F0(X), it converges with respect to ( · )p,q if and only if it
converges with respect to ( · )1 and that it is Cauchy with respect to ( · )p,q if and
only if it is Cauchy with respect to ( · )1.
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4. Completeness and separability of the Sugeno-Lorentz spaces

The completeness and separability of function spaces is useful and important in
functional analysis. The completeness is especially effective in guaranteeing the
limit of a sequence of functions in methods of successive approximation, while the
separability enables us to obtain constructive proofs for many theorems that can be
turned into algorithms for use in numerical and constructive analysis.

In this section, the completeness of Su(µ) with respect to ( · )p,q will be shown by
a Cauchy criterion for functions in F0(X). This criterion ensures that any Cauchy
in µ-measure sequence in F0(X) has a subsequence converging µ-almost uniformly
and its proof needs to introduce a new characteristic of nonadditive measures.

Definition 4.1 ([?, Definition 3.2]). Let µ ∈ M(X). We say that µ satisfies
property (C) if for any sequence {En}n∈N ⊂ A, it follows that µ (

∪∞
n=k En) → 0

whenever supl∈N µ
(∪k+l

n=k En

)
→ 0.

It is easy to see that every nonadditive measure that is continuous from below sat-
isfies property (C). Other examples of nonadditive measures satisfying property (C)
can be found in [?, Proposition 3.3].

We can now formulate a Cauchy criterion for functions in F0(X).

Theorem 4.2 ([?, Theorem 3.4]). Let µ ∈ M(X). If µ satisfies property (C) and
the (p.g.p.), then any Cauchy in µ-measure sequence in F0(X) has a subsequence
converging µ-almost uniformly.

To prove the completeness of a function space, we must verify that any Cauchy
sequence converges and its limit function belongs to the same function space. The
following Fatou type lemma is useful for this verification.

Proposition 4.3. Let µ ∈ M(X). The following assertions are equivalent.

(i) µ is monotone autocontinuous from below.
(ii) For any {fn}n∈N ⊂ F0(X) and f ∈ F0(X), if they satisfy

(a) fn(x) ≤ fn+1(x) ≤ f(x) for every x ∈ X and n ∈ N,
(b) fn

µ−→ f ,
then µ({fn > t}) ↑ µ({f > t}) for every continuity point t of the function
µ({f > t}).

(iii) The Sugeno monotone nondecreasing almost uniform convergence theorem
holds for µ, that is, for any {fn}n∈N ⊂ F+

0 (X) and f ∈ F+
0 (X), if they

satisfy
(a) fn(x) ≤ fn+1(x) ≤ f(x) for every x ∈ X and n ∈ N,
(b) fn → f µ-a.u.,
then it follows that Su(µ, fn) ↑ Su(µ, f).

(iv) The Sugeno Fatou almost uniform convergence lemma holds for µ, that is,
for any {fn}n∈N ⊂ F+

0 (X) and f ∈ F+
0 (X), if fn → f µ-a.u., then it follows

that

Su(µ, f) ≤ lim inf
n→∞

Su(µ, fn).
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Proof. (i)⇒(ii) For each t ≥ 0 and n ∈ N, let φn(t) := µ({fn > t}) and φ(t) :=
µ({f > t}). Let t0 ∈ R be a continuity point of φ. Then condition (a) implies that

φn(t) ≤ φn+1(t) ≤ φ(t)

for every t ∈ R and n ∈ N, which yields supn∈N φn(t0) ≤ φ(t0). It thus suffices to
show

(5) φ(t0) ≤ sup
n∈N

φn(t0).

To see this, fix ε > 0 and let A := {f > t0 + ε} and Bn := {|fn − f | > ε} for every
n ∈ N. Then we have

(6) µ(A \Bn) ≤ µ({fn > t0})

for every n ∈ N. Furthermore, condition (a) implies that {Bn}n∈N is nonincreasing
and condition (b) implies that µ(Bn) → 0. Hence, the monotone autocontinuity of
µ from below yields

(7) µ(A) = sup
n∈N

µ(A \Bn).

Consequently, it follows from (??) and (??) that

φ(t0 + ε) ≤ sup
n∈N

φn(t0),

which implies (??) since t0 is a continuity point of φ.
(ii)⇒(iii) We first show the conclusion in the case where µ is finite. For each

r > 0, let g := f ∧ r and gn := fn ∧ r for every n ∈ N. Fix k ∈ N and take the
continuity points c1, c2, . . . , ck of the function µ({g > t}) such that

• 0 = c0 < c1 < c2 < · · · < ck−1 < ck < r,
• |ci − ci−1| < 2r/k (i = 1, 2, . . . , k − 1) and |r − ck| < r/k.

For each n ∈ N, let

hn,k :=
k∨

i=1

ciχ{gn>ci} and hk :=
k∨

i=1

ciχ{g>ci}.

Then 0 ≤ hn,k(x) ≤ r, 0 ≤ hk(x) ≤ r, |hn,k(x)−gn(x)| < 2r/k, and |hk(x)−g(x)| <
2r/k for every x ∈ X and n ∈ N.

Now, since {gn}n∈N and g satisfy conditions (a) and (b) of assertion (ii), it follows
that

µ({gn > ci}) ↑ µ({g > ci})
for every i ∈ {1, 2, . . . , k}. Hence, letting n → ∞ yields

(8) Su(µ, hn,k) =

k∨
i=1

ci ∧ µ({gn > ci}) →
k∨

i=1

ci ∧ µ({g > ci}) = Su(µ, hk).

Since

|Su(µ, g)− Su(µ, hk)| ≤
2r

k
µ(X)
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and

|Su(µ, gn)− Su(µ, hn,k)| ≤
2r

k
µ(X)

for every n ∈ N, it follows from (??) that

lim sup
n→∞

|Su(µ, gn)− Su(µ, g)| ≤ 4r

k
µ(X).

Since k ∈ N is arbitrarily fixed, letting k → ∞ yields

Su(µ, g) = lim
n→∞

Su(µ, gn) = sup
n∈N

Su(µ, gn).

Hence, by the upper marginal continuity of the Sugeno integral stated in Subsec-
tion ?? we have

Su(µ, f) = sup
r>0

Su(µ, f ∧ r) = sup
r>0

sup
n∈N

Su(µ, fn ∧ r)

= sup
n∈N

sup
r>0

Su(µ, fn ∧ r) = sup
n∈N

Su(µ, fn).

We turn to the general case. For any s > 0, the nonadditive measure µ ∧ s,
which is defined by (µ ∧ s)(A) := µ(A) ∧ s for every A ∈ A, is finite and monotone
autocontinuous from below. Hence, by what has been shown above we have

sup
n∈N

Su(µ ∧ s, fn) = Su(µ ∧ s, f),

and hence,

Su(µ, f) = sup
s>0

Su(µ ∧ s, f)

= sup
s>0

sup
n∈N

Su(µ ∧ s, fn)

= sup
n∈N

sup
s>0

Su(µ ∧ s, fn)

= sup
n∈N

Su(µ, fn)

by the measure-truncation of the Sugeno integral stated in Subsection ??.
(iii)⇒(iv) For each n ∈ N, let gn := infk≥n fk. Then, {gn}n∈N and f satisfy

conditions (a) and (b) of assertion (iii). It thus follows that

Su(µ, f) = lim
n→∞

Su(µ, gn) ≤ lim
n→∞

inf
k≥n

Su(µ, fk) = lim inf
n→∞

Su(µ, fn).

(iv)⇒(i) Take A,Bn ∈ A and assume that {Bn}n∈N is nonincreasing and µ(Bn) →
0. For each r > 0, let fn := rχA\Bn

for every n ∈ N and f := rχA. Then fn → f
µ-a.u. Hence, assertion (iv) yields

r ∧ µ(A) = Su(µ, f) ≤ lim inf
n→∞

Su(µ, fn)

= lim inf
n→∞

r ∧ µ(A \Bn)

≤ lim sup
n→∞

r ∧ µ(A \Bn) ≤ r ∧ µ(A),

so that r∧µ(A\Bn) → r∧µ(A). Since r > 0 is arbitrary, we have µ(A\Bn) → µ(A).
Therefore µ is monotone autocontinuous from below. □
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We are now in a position to show the completeness of the Sugeno-Lorentz spaces.

Theorem 4.4. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Assume that µ
is monotone autocontinuous from below and satisfies property (C) and the (p.g.p.).
Then Su(µ) and Su(µ) are quasi-complete with respect to ( · )p,q.

Proof. By inequalities (??) and (??) given in Section ??, it suffices to show that
Su(µ) and Su(µ) are quasi-complete with respect to ( · )1. Let {fn}n∈N ⊂ Su(µ) be
bounded and Cauchy. By (5) of Proposition ??, the sequence {fn}n∈N is Cauchy in
µ-measure, so that by Theorem ?? one can find a subsequence {fnk

}k∈N of {fn}n∈N
and a function f ∈ F0(X) such that fnk

→ f µ-a.u.
Let ε > 0. Since {fn}n∈N is Cauchy, there is n0 ∈ N such that if m,n ≥ n0 then

(9) Su(µ, |fm − fn|) = (fm − fn)1 < ε.

Fix n ∈ N with n ≥ n0. Then, |fnk
− fn| → |f − fn| µ-a.u. if k → ∞. Since µ is

monotone autocontinuous from below, it follows from Proposition ?? that

Su(µ, |f − fn|) ≤ lim inf
k→∞

Su(µ, |fnk
− fn|)

≤ lim sup
k→∞

Su(µ, |fnk
− fn|)

≤ sup
k≥l

Su(µ, |fnk
− fn|)(10)

for every l ∈ N. Since nk → ∞, there is k0 ∈ N such that nk ≥ n0 for every k ≥ k0,
it thus follows from (??) and (??) that

(f − fn)1 ≤ sup
k≥k0

Su(µ, |fnk
− fn|) ≤ ε,

which yields (f − fn)1 → 0.
Next we show that f ∈ Su(µ). Since {fn}n∈N is bounded with respect to ( · )1

and |fnk
| → |f | µ-a.u., it follows from Proposition ?? that

(f)1 = Su(µ, |f |) ≤ lim inf
k→∞

Su(µ, |fnk
|) ≤ sup

n∈N
(fn)1 < ∞.

Hence f ∈ Su(µ). Thus Su(µ) is quasi-complete.
Since every nonadditive measure that is monotone autocontinuous from below is

null-additive, the quotient space Su(µ) and the quotient prenorm ( · )p,q are well-
defined and it turns out that Su(µ) is quasi-complete. □

Corollary 4.5. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Assume that
µ is relaxed subadditive, monotone autocontinuous from below, and satisfies prop-
erty (C). Then Su(µ) and Su(µ) are complete with respect to ( · )p,q. Furthermore,
the prenorm ( · )p,q satisfies a relaxed triangle inequality.

Proof. By assumption, µ is even more null-additive and satisfies the (p.g.p.). Fur-
thermore, by (10) of Proposition ?? the prenorm ( · )p,q satisfies the K-relaxed tri-
angle inequality for some K > 1, so that every Cauchy sequence in Su(µ) and Su(µ)
is bounded. The conclusion thus follows from Theorem ??. □
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The following example shows that property (C) cannot be dropped in Theorem ??
and Corollary ??.

Example 4.6. Let X := N and A := 2X . Let µ : A → [0, 2] be the nonadditive
measure defined by

µ(A) :=


0 if A = ∅,∑

i∈A 1/2i if A is a nonempty finite subset of N,

1 +
∑

i∈A 1/2i if A is an infinite subset of N.

For each n ∈ N, let An := {1, 2, . . . , n} and fn := χAn . Then by [?, Proposi-
tion 3.11] µ is subadditive, hence relaxed subadditive, monotone autocontinuous
from below, and satisfies the (p.g.p.), while it does not satisfy property (C). Fur-
thermore, {fn}n∈N does not converge in µ-measure.

Let 0 < p < ∞ and 0 < q < ∞. Then it follows from (2) of Proposition ?? that

(fn)p,q =

(
p

q

)1/q

min

1,

(
n∑

i=1

1

2i

)1/p


and

(fn+l − fn)p,q =

(
p

q

)1/q

min

1,

(
n+l∑

i=n+1

1

2i

)1/p


for every n, l ∈ N. Hence {fn}n∈N ⊂ Su(µ) is bounded and Cauchy. Suppose that
Su(µ) is quasi-complete. Then {fn}n∈N converges, hence converges in µ-measure
by Proposition ??, which is impossible. Therefore, Su(µ) is not quasi-complete.

Next we consider dense subsets and the separability of the Sugeno-Lorentz spaces.
Recall that S(X) is the set of all A-measurable simple functions on X and S(X) =
{[h] : h ∈ S(X)}.

Theorem 4.7. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Assume that µ is
order continuous. Then, S(X) is a dense subset of Su(µ) with respect to ( · )p,q. If
µ is additionally assumed to be null-additive, then S(X) is a dense subset of Su(µ)
with respect to ( · )p,q.

Proof. Since any simple function is bounded, we have

(h)p,q =

(
p

q

)1/q

Su(µ1/p, |h|) ≤
(
p

q

)1/q

sup
x∈X

|h(x)| < ∞,

hence S(X) is a subset of Su(µ).
Let f ∈ Su(µ). Then, by [?, Theorem 7.2] there is {hn}n∈N ⊂ S(X) such that

hn
µ−→ f . Hence (hn − f)p,q → 0 by Proposition ??. Therefore, S(X) is dense in

Su(µ). The denseness of S(X) in Su(µ) is now obvious. □

We say that µ has a countable basis if there is a countable subset D of A such
that for any A ∈ A and ε > 0 there is D ∈ D for which µ(A△D) < ε.
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Theorem 4.8. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Assume that µ
is order continuous and satisfies the (p.q.p.). Assume that µ has a countable basis.
Then there is a countable subset E of Su(µ) such that for any f ∈ Su(µ) and ε > 0
there is h ∈ E such that (f − h)p,q < ε. Hence Su(µ) is separable with respect to
( · )p,q. If µ is additionally assumed to be null-additive, then Su(µ) is separable with
respect to ( · )p,q.

Proof. Let D be a countable basis of µ. We may assume that D is a field of sets
in A; see [?, Lemma III.8.4]. Let E be the set of all linear combinations of the
characteristic functions of sets in D with rational coefficients. Then E is a countable
subset of Su(µ).

Let f ∈ Su(µ). By the proof of [?, Theorem 7.7] there is {hn}n∈N ⊂ S(X) such

that hn
µ−→ f . Hence (hn − f)p,q → 0 by Proposition ??. Therefore Su(µ) is

separable. The separability of Su(µ) is now obvious. □

5. The Shilkret-Lorentz spaces

In this section, a type of the Lorentz spaces is defined by using the Shilkret
integral instead of the Lebesgue integral and its completeness and separability are
discussed.

Definition 5.1. Let µ ∈ M(X). Define the function ⟨ · ⟩p,q : F0(X) → [0,∞] by

⟨f⟩p,q :=
(
p

q

)1/q

Sh(µq/p, |f |q)1/q

for every f ∈ F0(X) and let

Shp,q(µ) := {f ∈ F0(X) : ⟨f⟩p,q < ∞}.

The space Shp,q(µ) is called the Shilkret-Lorentz space and the prenorm ⟨ · ⟩p,q on
Shp,q(µ) is called the Shilkret-Lorentz prenorm.

The following proposition can be proved in the same way as Proposition ??.

Proposition 5.2. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞.

(1) It follows that

⟨f⟩p,q =
(
p

q

)1/q

Sh(µ1/p, |f |).

(2) For any A ∈ A and c ∈ R it follows that

⟨cχA⟩p,q =
(
p

q

)1/q

|c|µ(A)1/p.

(3) For any f ∈ Shp,q(µ) it follows that ⟨f⟩p,q = 0 if and only if µ({|f | > c}) = 0
for every c > 0; they are equivalent to the condition that µ({|f | > 0}) = 0
if µ null-continuous.

(4) For any f ∈ Shp,q(µ) and c ∈ R it follows that ⟨cf⟩p,q = |c|⟨f⟩p,q. Hence
the prenorm ⟨ · ⟩p,q is homogeneous.
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(5) For any f ∈ Shp,q(µ) and c > 0 it follows that

µ({|f | > c}) ≤ 1

cp

(
q

p

)p/q

⟨f⟩pp,q.

(6) For any f, g ∈ Shp,q(µ), if |f | ≤ |g| then ⟨f⟩p,q ≤ ⟨g⟩p,q.
(7) µ is weakly null-additive if and only if ⟨ · ⟩p,q is weakly null-additive.
(8) µ is null-additive if and only if ⟨ · ⟩p,q is null-additive.
(9) µ is null-additive if and only if it follows that ⟨f⟩p,q = ⟨g⟩p,q whenever

f, g ∈ Shp,q(µ) and f ∼ g.
(10) If µ is K-relaxed subadditive for some K ≥ 1, then ⟨ · ⟩p,q satisfies the

2
1+ 1

pK
1
p -relaxed triangle inequality.

If µ is relaxed subadditive, then it follows from (4) and (10) of Proposition ??
that Shp,q(µ) is a real linear subspace of F0(X) and the prenorm ⟨ · ⟩p,q on Shp,q(µ)
is a quasi-seminorm

The quotient space

Sh p,q(µ) := {[f ] : f ∈ Shp,q(µ)}

is defined by the equivalence relation introduced in Subsection ??. Given an equiv-
alence class [f ] ∈ Sh p,q(µ), define the prenorm on Sh p,q(µ) by

⟨[f ]⟩p,q := ⟨f⟩p,q,

which is well-defined by (9) of Proposition ?? if µ is null-additive. This prenorm has
the same properties as the prenorm on Shp,q(µ) and separates points of Sh p,q(µ),
that is, for any [f ] ∈ Sh p,q(µ), if ⟨[f ]⟩p,q = 0 then [f ] = 0.

We first show that the Shilkret-Lorentz spaces coincide with the Lorentz spaces
of weak type discussed in [?] with equivalence of prenorms. Recall that the Lorentz
space of weak type is defined by

Lp,∞(µ) := {f ∈ F0(X) : ∥f∥p,∞ < ∞},

where ∥ · ∥p,∞ is the Lorentz prenorm of weak type defined by

∥f∥p,∞ := Sh(µ1/p, |f |)

for every f ∈ Lp,∞(µ). If µ is null-additive, then the quotient space

Lp,∞(µ) := {[f ] : f ∈ Lp,∞(µ)}

is defined by the equivalence relation introduced in Subsection ?? and the prenorm
on Lp,∞(µ) is defined by

∥[f ]∥p,∞ := ∥f∥p,∞
for every [f ] ∈ Lp,∞(µ). Then it follows from (1) of Proposition ?? that

(11) ⟨f⟩p,q =
(
p

q

)1/q

Sh(µ1/p, |f |) =
(
p

q

)1/q

∥f∥p,∞,
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which shows that Shp,q(µ) = Lp,∞(µ) and Sh p,q(µ) = Lp,∞(µ) with equivalence of
prenorms. Consequently, the following results immediately follow from [?, Theo-
rem 7.4 and Corollary 7.5]. Recall that every nonadditive measure that is monotone
autocontinuous from below is null-additive.

Theorem 5.3. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Assume that µ
is monotone autocontinuous from below and satisfies property (C) and the (p.g.p.).
Then Shp,q(µ) and Shp,q(µ) are quasi-complete with respect to ⟨ · ⟩p,q.

Corollary 5.4. Let µ ∈ M(X). Let 0 < p < ∞ and 0 < q < ∞. Assume
that µ is relaxed subadditive, monotone autocontinuous from below, and satisfies
property (C). Then Shp,q(µ) is complete with respect to the quasi-seminorm ⟨ · ⟩p,q
and Shp,q(µ) is complete with respect to the quasi-norm ⟨ · ⟩p,q.

The following example shows that property (C) cannot be dropped in Theorem ??
and Corollary ??.

Example 5.5. Let X := N and A := 2X . Let µ be the nonadditive measure
given in Example ??. For each n ∈ N, let An := {1, 2, . . . , n} and fn := χAn .
As already mentioned in Example ??, µ is subadditive, hence relaxed subadditive,
monotone autocontinuous from below, and satisfies the (p.g.p.), while it does not
satisfy property (C). Furthermore, {fn}n∈N does not converge in µ-measure.

Let 0 < p < ∞ and 0 < q < ∞. Then it follows from (2) of Proposition ?? that

⟨fn⟩p,q =
(
p

q

)1/q
(

n∑
i=1

1

2i

)1/p

and

⟨fn+l − fn⟩p,q =
(
p

q

)1/q
(

n+l∑
i=n+1

1

2i

)1/p

for every n, l ∈ N, hence the sequence {fn}n∈N ⊂ Shp,q(µ) is bounded and Cauchy.
Suppose that Shp,q(µ) is quasi-complete. Then, {fn}n∈N converges with respect to
⟨ · ⟩p,q, hence it converges in µ-measure by (5) of Proposition ??, which is impossible.
Therefore Shp,q(µ) is not quasi-complete.

The last example shows that the set S(X) is not dense in Shp,q(µ).

Example 5.6. Let X := (0, 1] and A be the σ-field of all Borel subsets of X. Let
λ be the Lebesgue measure on R. Let 0 < p < ∞ and 0 < q < ∞. Let µ := λp and
let f(x) := 1/x for every x ∈ X. Then, µ is order continuous, f ∈ Shp,q(µ), and
S(X) ⊂ Shp,q(µ). Nevertheless, it follows that

⟨f − h⟩p,q ≥
(
p

q

)1/q

for every h ∈ S(X). Thus S(X) is not dense in Shp,q(µ).

Proof. It follows from (??) and [?, Proposition 7.7]. □



282 J. KAWABE

6. Summary of results

In this paper, given a nonadditive measure µ, the Sugeno-Lorentz spacesSup,q(µ),
the Shilkret-Lorentz spaces Shp,q(µ), and their quotient spaces are defined by using
the Sugeno and Shilkret integrals. The completeness and separability of those spaces
are discussed in terms of the characteristic of µ. Some of our results are as follows.

• The Sugeno-Lorentz spaces (Sup,q(µ), ( · )p,q) are equal to the Sugeno in-
tegrable functions space (Su(µ), ( · )1) and their prenorms satisfy inequali-
ties (??) and (??).

• The Shilkret-Lorentz spaces (Shp,q(µ), ⟨ · ⟩p,q) are equal to the Lorentz spaces
of weak type (Lp,∞(µ), ∥ · ∥p,∞) and their prenorms satisfy equation (??).

Consequently, the study of the Sugeno-Lorentz spaces Sup,q(µ) and the Shilkret-
Lorentz spaces Shp,q(µ) can be reduced to the study of the Sugeno integrable func-
tions space Su(µ) and the Lorentz spaces of weak type Lp,∞(µ), respectively.

Regarding the completeness, the following results are shown.

• Assume that µ is monotone autocontinuous from below and satisfies prop-
erty (C) and the (p.g.p.). Then

– the spaces Su(µ) and Su(µ) are quasi-complete with respect to ( · )p,q.
– the spaces Shp,q(µ) and Sh p,q(µ) are quasi-complete with respect to

⟨ · ⟩p,q.
• Assume that µ is relaxed subadditive, monotone autocontinuous from below,
and satisfies property (C). Then

– the spaces Su(µ) and Su(µ) are complete with respect to the prenorm
( · )p,q that satisfies a relaxed triangle inequality.

– the space Shp,q(µ) is complete with respect to the quasi-seminorm
⟨ · ⟩p,q and the space Sh p,q(µ) is complete with respect to the quasi-
norm ⟨ · ⟩p,q.

All the results listed above hold for every subadditive nonadditive measure that
is continuous from below since such a nonadditive measure is relaxed subadditive,
monotone autocontinuous from below, null-additive, weakly null-additive, and sat-
isfies property (C) and the (p.g.p.).

Regarding dense subsets and the separability, the following results are shown.

• Assume that µ is order continuous. Then S(X) is dense in Su(µ) with
respect to ( · )p,q. If µ is additionally assumed to be null-additive, then
S(X) is dense in Su(µ) with respect to ( · )p,q.

• Assume that µ is order continuous and satisfies the (p.g.p.). Assume that
µ has a countable basis. Then Su(µ) is separable with respect to ( · )p,q. If
µ is additionally assumed to be null-additive, then Su(µ) is separable with
respect to ( · )p,q.

It is possible to advance the study to topological and the topological linear prop-
erties of the Sugeno-Lorentz spaces and the Shilkret-Lorentz spaces, but we will not
develop them here.



THE COMPLETENESS AND SEPARABILITY OF THE LORENTZ SPACES 283

References

[1] R.E. Castillo, H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer, Switzerland,

2016.

[2] M. Cattaneo, On maxitive integration, Fuzzy Sets Syst. 304 (2016) 65–81.

[3] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953–54) 131–295.

[4] D. Denneberg, Non-Additive Measure and Integral, second edition, Kluwer Academic Pub-

lishers, Dordrecht, 1997.

[5] M.M. Deza, E. Deza, Encyclopedia of Distances, third edition, Springer, Heidelberg, 2014.
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