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A NOTE ON RELATIONS BETWEEN SKEWNESS AND
GEOMETRICAL CONSTANTS OF BANACH SPACES

KEN-ICHI MITANI® AND KICHI-SUKE SAITO

ABSTRACT. We study some relations between the skewness s(X) and geometrical
constants of Banach spaces X, especially the modulus of smoothness px (1) and
the characteristic of convexity eo(X). A sufficient condition for the inequality
s(X) < 2px (1) is given in terms of £9(X), and an estimate of s(X) from below
by €o(X) is also given.

1. INTRODUCTION AND PRELIMINARIES

Let X be a real Banach space with dim X > 2, and Sx = {z € X : ||z|| = 1}.
The skewness s(X) of X was introduced by Fitzpatrick and Reznick [3], as follows:
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An equivalent definition of s(X) can be found in [3] as the following form:

s(X) = sup {(z,y) = (y,2) - w,y € Sx},
where (-, -) is the “generalized inner product” of Ritt [12]:
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(cf.[1]). It is obvious that 0 < s(X) < 2 for any Banach space X. They showed
that X is a Hilbert space if and only if s(X) = 0, and X is uniformly non-square if
and only if s(X) < 2. Moreover, the s(X)-constants were calculated for L,, spaces.
A modified version of s(X) was investigated by Baronti and Papini [2].

In this paper, we study relations between s(X) and some geometrical constants.
We first discuss relations between s(X) and the modulus of smoothness px(1). It is
known that s(X) < 2px(1) for any Banach space X([2]). A sufficient condition for
strict inequality in above is given in terms of the characteristic of convexity eo(X).
This is an improvement of a result in [9]. Moreover, we give an estimate of s(X)
from below by €¢(X), which directly gives that s(X) < 2 implies £¢(X) < 2.

We recall some definitions and notations (cf. [4, 7]). A Banach space X is called
uniformly non-square if there exists § > 0 such that for any z,y € Sx, either
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le+y| <2(1—=96)or ||z —y|| <2(1—0). The James constant J(X) of X is defined
by

J(X) = sup { min{||z +y|, |z —y[} : 2,y € Sx}.

It is obvious that X is uniformly non-square if and only if J(X) < 2. The modulus
of converity of X is defined by

r+y

5x () —inf{l—

H:x,yESX,HHT—yHZe?}, 0<e<2.

The characteristic of convezity of X is defined by
£0(X) =sup{e € [0,2] : dx(e) = 0}.

X is uniformly convex if dx(e) > 0 for all 0 <& < 2, i.e., £9(X) = 0. The modulus
of smoothness of X is defined by

_ |z + Tyl + |z — Tyl
px (1) = sup

2

—1:1:,y€SX}, T 2> 0.

The uniform non-squareness is characterized as follows:

Proposition 1.1 ([5]). Let X be a Banach space. The following are equivalent.
(i) X is uniformly non-square.

(ii) 0x(g) > 0 for some 0 < e < 2.

(iif) £0(X) < 2.

(i) px(1) < 1.

The following lemmas will be useful later.

Lemma 1.2 ([6]). Let {x,},{yn} be sequences in a Banach space X such that
{[lznll}o2; and {||yn||}o>, are convergent to mnon-zero limits, respectively. The fol-
lowing are equivalent.

(1) im0 [|[Zn + Ynll = limpoo ([|2n | + [lynl)-

‘:2.

() oo | 27 + iy
Lemma 1.3 ([8]). Let X be a Banach space and x € X with x # 0. Then for each
y in X, the function
[l + tyll — =]

t

t—
from R\{0} into R is non-decreasing.

Lemma 1.4. Let X be a Banach space. Whenever {x,} and {y,} are sequences in
Sx with limy, o0 (Tn, + ypn) = 0, it follows that limy, o ||Tn — yn|| = 2.

Proof. 1t is clear from the triangle inequality. O

Lemma 1.5. Let X be a Banach space. Whenever {x,} and {yn} are sequences in
Sx with imy, o0 |20, + ynl|| = 2, it follows that limy, o |27 — yn|| < 0(X).
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Proof. Since {||z,, — yn||} is bounded, we may assume without loss of generality
that limy, 0 || 2 — yn|| exists. Put a = lim,, o0 ||z, — ynl|- If @ = 2, then X is not

uniformly non-square and hence a = g¢(X) = 2. Let a < 2. Put uy, = [|zn — ynl|-
Since
bx(un) < 1— || 222
it follows that dx(un) — 0 as n — oo. Noting that dx is continuous on [0,2) we
have dx(a) =0 and so a < gg(X). This completes the proof. O
2. RESULTS

The following result is due to Baronti and Papini [2].

Proposition 2.1 ([2]). Let X be a Banach space. Then
(2.1) s(X) < 2px(1).

If X is not uniformly non-square, then s(X) = 2px(1) = 2. In [9], the first,
second authors and Takahashi showed that if X is uniformly convex, then we have
strict inequality in (2.1). Note here that there exists some non-uniformly convex
(uniformly non-square) space X that we have equality in (2.1). In fact, let X be
(s-f1 space, that is, the space R? with the norm defined by

ol = { [l 710220
[z @122 <0

for x = (x1,22) (cf. [5]). Note that X is not uniformly convex and is uniformly
non-square. As in [9], we have s(X) = 2px (1) = 1. The following shows that there
exist many non-uniformly convex (uniformly non-square) Banach spaces X that we
have strict inequality in (2.1).

Proposition 2.2. Let X be a Banach space. If e9(X) < 1/2, then s(X) < 2px(1).
Proof. Assume that s(X) = 2px(1). Take sequences {z,} and {y,} in Sx with

S(X) - % < <$n7yn> - <yn7$n>'

Let s and ¢ be any numbers in (0,1). Since |(z,y)| < ||z||||ly|| for all =,y € X([3]),
sequence {(yn,x,)} is bounded and hence we may assume without loss of generality
that limy, o0 (Yn, T, ) exists. Then, by Lemma 1.3,

Tp + S — ||z

<$nayn> - <yna$n> < H = yzH H nH - <yna$n>
Tn + — ||z

< |zn ynlll lznll (s )

My = tall = llyall
-t

_ Myn = zall = [lynll
-1

<z +ynll =1

< H-Tn +yn|| -1
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= [[2n + ynll + l2n — ynll =2 < 2px (1) = s(X).

As n — o0, it follows that

(2.2) =l _ .o,
S
(2.3) % =b-1
and
(2.4) s(X)=a+b—-2=2px(1),

where a = limy, o0 ||Zn + Ynll, b = limp—o0 ||yn — z0l|, ¢ = limy 00 || 20 + sy || and
d = limy, 0 ||Yn — tzp||. If @ = 0, then b = 2 by Lemma 1.4. Hence it follows from
(2.4) that px (1) = 0. This is a contradiction to the fact that px (1) > v/2 — 1(cf.
[5]). Hence a > 0. Similarly, b > 0. From (2.2) and (2.3), it follows that

(2.5) Jim {|s(zn +ya) + (1 = s)aa| = lm ([ls(zn +ya)|| + (1 = s)zn]))

and
(2.6) i {[t(yn — 2n) + (1 = )ynll = lim ([[t(yn — zn) + [[(1 = )yall)
n—oo n—oo
for all s,t in (0,1). By Lemma 1.2,
n—o0 Il |z, + yn| n—oo Hyn_mn”
As Lemma 1.5 we have
— || Tnt+Yn —
—_— — < eg and lim H < ego(X).
T [y ol <200 g =y ] 200
Since ||z, + yn|| — a as n — oo, we obtain
(2.7) T [|Zn ¥ _ (X)
a
by using the triangle inequality. Similarly,
(2.8) Tm |22y | < eo(X).
n—oo

If a < 1, then it follows from (2.7) that

—_

1
eo(X) > = lim ||y + (1 —a)zy|| > (1 —(1—-a)) =1
a n—oo
If b <1, then it follows from (2.8) that
1 — 1
c0(X) > 3 Tl — (1= D)yl > (1~ (1)) =

Let @ > 1 and b > 1. By (2.3) we have d > 1 and hence lim,_, ||yn — tx,|| > 1 for
all t € (0,1]. Thus it follows that

1
go(X) > = lim |lyn — (@ — Dy >

~ a n—oo

1
- >
P

DN |

by (2.7). This completes the proof. O
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As an immediate consequence of this proposition we have the following.

Corollary 2.3 ([9]). Let X be a Banach space. If X is uniformly convez, then
S(X) < 20x(1).

In [11], Takahashi and Kato gave an estimate px(1) from above by the James
constant J(X).

Proposition 2.4 ([11]). Let X be a Banach space. Then

px(1) < 2{1 - J(lX)}

Combining the preceding proposition with Proposition 2.1, we obtain the following.

Proposition 2.5 ([9]). Let X be a Banach space. Then
1
2.9 x)<afi- —1
Combining Proposition 2.2 with Proposition 2.4, we have the strict inequality in

(2.9).
Proposition 2.6. Let X be a Banach space. If eg(X) < 1/2, then

s(x) < 4f1 - J(lX)}

In the following, we consider an estimate the constant s(X) from below by €q(X).

Lemma 2.7. Let X be a Banach space with 1 <eg(X) <2 and 0 <t < 1. Then

S(X) > 4t —t22+€0(X) 9
+1
Proof. Let 0 < tg < 1. Take sequences {uy,},{v,} in Sx such that ||u, — v,| —
eo(X) and ||up, + vn|| = 2. Put wy, = up + tovn, 2n = Uy — toUn, Tn = wy/||wy]]
and y, = zp/||zn|| for each n. Since ||wy| < 1+ tp and ||w,|| = ||un + vy — (1 —
to)vnll > |lun + vnl| — (1 — to), we have ||w,| — 1+ to. Since sequences {||zn]},
{{zn,yn)}, {{yn,zn)} are bounded, we may without loss of generality assume that
llznll = a, (zn,yn) — b and (y,,z,) — c for some a,b,c. Since ||z,| < 1+ to and

[znll = llvn = up + (1 = to)unll = [[un = vall = (1 = to), we have
(2.10) 60(X)—(1—t0) <a<l+4t
and hence it follows from our assumption that a > to > 0. Also, ||w, —toz,| = 1+t3
and ||z, + town|| = 1+ 3. Thus we have for all ¢ with 0 < ¢ < ¢,
lwn + tznll = lwall o llwn = tozn]l = lwall _ 1+ 8§ — [lwn]
t - —to —to ’

from which it follows that
1

= T (Wno Zn)
lwn[ll2nll

(Tns Yn)
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_ 1y et tel = flwall
= 11m
| 2| t=-+0 t

L 1+t5— flwall

~ llzall —to

As n — oo, we have
I 14+t —(1+t) 1—t

b> ~ .
T a —to a
From (2.10),
1+t
On the other hand, for all ¢ with with 0 < ¢ < ¢,
12n + twnll = llznll _ llzn + townll = llznll _ 1+43 — [zl
t - to to ’
from which it follows that
1 1 lzn + twpl| — 2]
R P | Pl o L :
1 1 + 13— |20l
| to '
As n — oo, we have
1 1+4+t—a
STttt
From (2.10),
"< 141§ — (e0(X) — (1 —t0)) _ 1§ —to+2—eo(X)
- (1 +to)to (1+to)to
Thus,
s(X)>b—c
1—ty t3—to+2—eo(X)
“ 14ty (1+to)to
=265+ 2t — 2+ £0(X)
(1 +to)to

Aty — 2+ e0(X)

I
This completes the proof. O

Lemma 2.8. Let X be a Banach space with 1 < e¢(X) < 2. We define a function
fon(0,1) as

sy =120
Then
(2.11) sup f(£) =2+ 2(2 — £9(X)) — 2¢/(2 — 20(X))(6 — e0(X)).

te(0,1)
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Proof. Let g9(X) = 2. Since f is decreasing on (0, 1), we have
sup f(t) =2
te(0,1)

and so (2.11). Let 1 <eg(X) < 2. Put d =2 —¢¢(X) € (0,1]. Since the derivative
of fis

i) = 482 4+t) — (4t —d)(2t+1)  —4t* +2dt +d

B (t2 +1)2 B GCE

we have f’(t1) = 0 and f has the maximum at ¢ = ¢;, where

b= L+ ) € (0,1).

We now calculate the value f(¢1). By f/(t1) = 0, we have
4(t2 1) = (4t — d) (2t + 1),

which implies

[ P S S ° 9
t] + 1 2t1 +1 d+\/m_|_2
=2{d+1-/d(d+4)}.
Thus we obtain (2.11). This completes the proof. O

Remark 2.9. Note that if £9(X) < 3/2, then
2122 — £0(X)) — 2/(2 = £0(X))(6 — (X)) < 0.

Combining Lemma 2.8 with Lemma 2.7, we obtain the main result.

Theorem 2.10. Let X be a Banach space. Then
(2.12) s(X) >242(2—¢9(X)) — 2\/(2 —£0(X))(6 —eo(X)).

Remark 2.11. The inequality (2.12) in the preceding theorem directly gives that
s(X) < 2 implies g9(X) < 2.

Remark 2.12. In [9], the first, second authors and Takahashi estimated s(X) from
below by the James constant J(X), as follows:

$(X)>2+44(2—-J(X)) -4/ (2— J(X))4 - J(X))
for any Banach space X. We define a function f on [0, 2] as
fO)y=2+4(2—1t)—4/(2—t)(4 —1).
It is easy to see that f is increasing. Also, Takahashi [10] showed that
J(X) = eo(X)
for any Banach space X. Hence we obtain

s(X) = f(J(X)) = f(eo(X))-

Namely,
(2.13) $(X) >2+4(2 —o(X)) — 4/ (2 — e0(X)) (4 — 0(X)).
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We mention that the inequality (2.12) in Theorem 2.10 is sharper than the inequality
(2.13). Indeed, we define a function g on [0, 2] as

g(t) =2+22-1) =2/ (2 - 1)(6 - 1).
It is obvious that g(t) > f(¢) for all 0 <t < 2. Therefore we obtain
2122 — £4(X)) — 2/ = 20(X))(6 — 20(X))
= g(e0(X)) = f(e0(X))
=2+ 4(2 — 20(X)) — 4V/(2 — 0(X)) (4 — e0(X)).
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