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papers we investigated the pseudorandomness or the randomness properties of non-
regular almost Ramanujan graphs by comparing the eigenvalue distributions of the
adjacency matrices of these graphs to the famous Wigner semi-circle distribution.

In this paper, by calculating the distribution of poles of the Ihara zeta functions
we directly investigate whether these almost Ramanujan graphs satisfy the graph
Riemann Hypothesis. Comparing to the Ramanujan circle, the radius of which is
used as a criteria related to the graph Riemann Hypothesis, we calculate the mean
and the standard deviation of the absolute values of the poles and we estimate
the difference and the variation from the Ramanujan circle. Here we propose the
ratio of this mean value to the radius of the Ramanujan circle, called Ramanujan
radius ratio (abbr. RRr), and the variation or the standard deviation of these
distributions, called the Ramanujan radius variation and deviation (abbr. RRv
and RRd), respectively, as characteristic constants which show levels or some other
properties of randomness of these given graphs.

For the intermediate network model between the regular, locally connected,
graphs and the random graphs, Watts and Strogatz in [16] proposed the concept of
a small-world network by increasing the edges rewiring probability p from p = 0,
the regular graph, to p = 1, the random graph. They characterized the small-world
properties as the network model, which has high clustering like a lattice and has
short path lengths like a random graph. While the cluster analysis or clustering is
very well-known for the recent epidemic or pandemic disease, the clustering states,
mainly estimated by the clustering coefficients, give one of the most important in-
dicators, which characterize the small-worldness of graph networks. We calculate
the average of clustering coefficients of each nonregular graph to show the relations
with the randomness and we estimate the small-worldness coefficients, which also
give the level of randomness, of our nonregular graphs.

In order to construct various random matrices we use a simple method, deviding
the adjacency matrix into two kinds of submatrices by giving large and small prob-
ability values of the edge-connectivity, which generate some clustering parts and
the other sparse parts in the graph. We take two modulus L1, L2 : L1 > L2 of the
pseudorandom numbers where a given integer L1 can be called a sparse parameter,
since L1 gives the small probability 1/L1 for the occurrence of 1 and the large one
1−(1/L1) for 0- occurrence in adjacency submatrices. On the contrary, by the large
probability 1/L2 it generates the clustering parts in the graph. In these construc-
tion processes we devide the vertices of the graph into 6 groups and, by defining the
two probabilities of connectivity between the vertices in one group and those in the
other group, we can obtain the various types of random graphs, which have various
clustering poperties.

For these random graphs, using the cycle basis and estimating the numbers of each
cycle in these graphs, we statistically calculate the fitting curves to the distributions
of these cycle numbers and we can estimate their fluctuation exponents. We call this
value the Cycle-Fluctuation Exponent (abbr. CFE) on the analogy of the exponent
β in (1/f)β fluctuation. Here we show an example in Fig.1,2 where L1 = 12, L2 = 4,
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|V |: number of vertices, |E|: number of edges. In Figure 1, log-log scale, we use a
linear regression.

Fig 1. fluct.log fit
Fig 2. fluct.fitting

In [9] we obtained the following numerical results.
As the randomness of the edge connectivity is uniformly increasing,

(i) the eigenvalue distribution of the adjacency matrix approaches to theWigner
semi-circle,

(ii) the average of clustering coefficients is decreasing,
(iii) the cycle-number band of cycle basis is spreading widely,
(iv) the distribution of poles of the Ihara zeta functions is condensing into the

circle given by the graph Riemann Hypothesis,
(v) the small-worldness coefficient is decreasing and converging to 1.

As the randomness and uniformness of the edge connectivity is decreasing, the
contrary of each above claim holds.

Since our previous results, which show only tendency, increasing or decreasing,
of various random properties, contain indistinct and ambiguous expression, the
purpose of this paper is to quantify the above properties by introducing the new
parameters of the various random graphs. Especially, we compare CFE to the
other parameters, the small-worldness coefficient (SWC), the Ramanujan radius
ratio (RRr) and the the Ramanujan radius variation or deviation (RRv or RRd)
and, clarifying the relations among these parameters, we numerically characterize
the clustering and random properties of our weak or almost Ramanujan graphs.

Our plan of this paper is as follows. In section 2 we introduce the notations
of the graph theory and the properties of regular Ramanujan graphs and we give
the definition of the Ihara zeta function. In section 3 we give the construction
process of the various random graphs given by our two types, sparse or clustering,
of pseudorandom number generators. In section 4 we give the numerical results on
CFE, using cycle bases of our given random graphs and in section 5 we give the
definitions of SWC and we numerically estimate these coefficients. In section 6 we
calculate RRr and RRd by using the distribution of poles of the Ihara zeta functions
and we investigate the relations to the parameters CFE and SWC. In section 7
we give the various definitions of almost Ramanujan graphs and we numerically



240 KOICHIRO NAITO

investigate the relations with the weak graph Riemann Hypothesis by comparing the
distribution of the eigenvalues to the Wigner semi-circle. Our concluding remarks
are in section 8.

2. Regular Ramanujan graph and Ihara zeta function

Let X = (V,E) be a graph where V = {v1, v2, ..., vn} is the set of vertices and
E is the set of edges. Let aij be the number of edges joining vi to vj , then the
adjacency matrix of the graph X is given by A = (aij). We assume that (i) X is
simple; there is at most one edge joining adjacent vertices, aij ∈ {0, 1} for every
i, j, (ii) X has no loops; aii = 0 for every vi ∈ V and (iii) X is undirected; A is a
n× n symmetric matrix.

Let k ≥ 2 be an integer and the graph X be k-regular, that is, for every vi ∈ V ,∑
vj∈V

aij = k.

Since A is an n-by-n symmetric matrix, it had n real eigenvalues, counting mul-
tiplicities,

µ0 ≥ µ1 ≥ · · · ≥ µn−1.

The following proposition is easily obtained (cf. [3]).

Proposition 2.1. Let X be a finite connected k-regular graph with n vertices. Then

• µ0 = k;
• |µi| ≤ k, 1 ≤ i ≤ n− 1.

For a graph X = (V,E) and F ⊂ V , define the boundary ∂F of F by the set
of edges with one extremity in F and the other in V − F , that is, ∂F is the set of
edges connecting F to V − F .

Definition 2.2. The expanding constant h(X) of the graph X is defined by

h(X) = inf{ |∂F |
min{|F |, |V − F |}

: F ⊂ V, 0 < |F | < +∞}.

For the relation between the nontrivial eigenvalue µ ̸= k and the expanding
constant h(X) Dodziuk has shown the following estimates.

Proposition 2.3 ([4]). Let X = (V,E) be a finite, connected, k-regular simple
graph. Let µ1 be the first nontrivial eigenvalue of X. Then

k − µ1

2
≤ h(X) ≤

√
2k(k − µ1).

Let {Xm} be a family of finite, connected, k-regular graphs with |Vm| → +∞ as
m → +∞.

{Xm} is called a family of expanders if there exists a constant ε > 0 such that

h(Xm) ≥ ε, ∀m ≥ 1.

It follows from Proposition 2.3 that we can easily obtain an equivalent condition
for the existence of a family of expanders.
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Corollary 2.4. Let {Xm} be a family of finite, connected, k-regular simple graphs
with |Vm| → ∞ as m → ∞. Then, {Xm} is a family of expanders if and only if
there exists a constant ε > 0 such that

k − µ1(Xm) ≥ ε, ∀m ≥ 1.

For the asymptotic behaviors of these eigenvalues the following Alon-Boppana
theorem is well known.

Theorem 2.5 ([1]). Let {Xm} be a family of finite, connected, k-regular simple
graphs with |Vm| → +∞ as m → +∞. Then,

lim inf
m→+∞

µ1(Xm) ≥ 2
√
k − 1.

Here we give the definition of Ramanujan graph.

Definition 2.6. A finite, connected k-regular graph X is a Ramanujan graph if for
every nontrivial eigenvalue µ( ̸= ±k) of X,

|µ| ≤ 2
√
k − 1.

Since an expander constant of a regular graph is greater than or equal to (k −
µ1)/2, making µ1 as small as possible gives us good expander graphs. However, by
the Alon-Boppana theorem, we cannot do better than

lim inf
m→+∞

µ1(Xm) ≥ 2
√
k − 1.

Hence, Ramanujan graphs make good expanders.
For a graph X = (V,E) and a path C = a1a2 · · · as where aj is an oirented edge

of X, we say that it has a backtrack if aj+1 = a−1
j for some j = 1, ..., s − 1 and a

tail if as = a−1
1 . The length of C is s = ν(C) and C is called a closed path or cycle

if the starting vertex is the same as the terminal vertex.
The closed path C = a1 · · · as is called a primitive or prime path if it has no

backtrack or tail and C ̸= Dn, n ≥ 2. For the closed path C = a1 · · · as, the
equivalence class [C] is the following set

[C] = {a1 · · · as, a2 · · · asa1, ..., asa1 · · · as−1}.

A prime in the graph X is an equivalent class [C] of prime paths. The length of the
path C is denoted by ν(C) = s.

Definition 2.7. The Ihara zeta function for a finite connected graph without 1-
degree vertices is defined to be the following function of the complex number u,
with |u| sufficiently small,

ζX(u) =
∏
[P ]

(1− uν(P ))−1

where the product is over all the primes [P ] in X.

Definition 2.8. The radius of the largest circle of convergence of ζX(u) is denoted
by RX .
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When X is a (q + 1)-regular graph, RX = 1/q.

Definition 2.9. Let X be a connected (q+1)-regular graph. We say that the Ihara
zeta function ζX(q−s) satisfies the Riemann Hypothesis iff, when 0 < Re s < 1,

ζX(q−s)−1 = 0 ⇒ Re s =
1

2
.

If u = q−s, Re s = 1
2 means that |u| = 1/

√
q.

The following theorem shows the deep and significant relation between the Ra-
manujan graph and the number theory (cf. [15]).

Theorem 2.10. For a connected (q + 1)-regular graph X, ζX(u) satisfies the Rie-
mann Hypothesis if and only if the graph X is Ramanujan.

3. Pseudorandom number generator

In this section we construct the adjacency matrices of nonregular random Ra-
manujan graphs, using the two sequences of (0,1)-pseudorandom numbers, which
have two different probabilities of 1-occurrence and following the method in [10]
and [11].

In order to construct various random matrices we use a simple method, devid-
ing the adjacency matrix into two kinds of submatrices by giving large and small
probability values of the edge-connectivity, which generate some clustering parts
and the other sparse parts in the graph. We take two modulus L1, L2 : L1 > L2 of
the pseudorandom numbers where a given integer L1 = 12 can be called a sparse
parameter, since L1 gives the small probability p1 = 1/L1 = 1/12 for the occurrence
of 1 and the probability 1− (1/L1) = 11/12 for 0- occurrence in adjacency subma-
trices. On the contrary, by the large probability p2 = 1/L2 = 1/4 it generates the
clustering parts in the graph. In our construction process we devide the vertices of
the graph into 6 groups, colored by red, yellow and pink, which are warm colors,
and blue, green and purple which are cold colors. By defining the two probabilities
of connectivity between the vertices in one group and those in the other group,
we can obtain the various types of random graphs, which have various clustering
properties. To simplify the argument we define the following notations.

Gr, Gy, Gpk, Gb, Gg, Gpl denote the set of red, yellow, pink, blue, green and purple
vertices, respectively, and p(v1, v2) denotes the probability of connectivity between
the vertices v1 and v2.

We consider the following two cases (i), (ii) with the corresponding random graphs
(i’), (ii’). Every graph has the same number of vertices |V | = 150.

(i) p(v1, v2) = 1/4 if v1 and v2 in Gt for t = r, y or pk;
otherwise, p(v1, v2) = 1/12.

(i’) The corresponding random graph to (i), which has the same number of edges
|E1| as that of (i) and for every pair of vertices v1, v2, p(v1, v2) is constant,

which satisfies |E1| = p(v1, v2)

(
|V |
2

)
.
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(ii) p(v1, v2) = 1/4 if v1 and v2 in Gt for t = r, y or pk or if v1 ̸∈ Gpl and
v2 ∈ Gpl or if v1 ∈ Gpl and v2 ̸∈ Gpl ;
otherwise, p(v1, v2) = 1/12.

(ii’) The correponding random graph to (ii), which has the same number of edges
|E2| as that of (ii) and for every pair of vertices v1, v2, p(v1, v2) is constant,

which satisfies |E2| = p(v1, v2)

(
|V |
2

)
.

First we construct a sequence of pseudorandom numbers by using a p-adic logistic
map.

(1): Choose a seed, a p-adic integer number, ξ = 13
1

103 ∈ Zp, p = 67.
(2): For large integers N1, N2 : N1 + N2 = n2 (n = 150), construct two sequence

{ξj}Ni
j=1, i = 1, 2, by a p-adic logistic map lp, which is given by

lp(x) =
xp − x

p
for x ∈ Zp,

ξ1 = ξ, ξ2 = lp(ξ1), ..., ξj = lp(ξj−1), ...

(see [13]). In [12] we have taken their modulo p: ξj,p = ξj (mod p) and we have
shown the randomness of the sequence by RMT test.
(3): LetM(= 6) be the number of groups of vertices and M2(= 36) be the number of
submatrices of the adjacency matrix and s = 25 be the dimension of each submatrix.

According to the cases (i) and (ii) we devide the sequence of submatrices to the
following two parts, the dense subsequence and the sparse subsequence.
For the two subsequences of submatrices in the case (i)

the number of the dense submatrices is M/2 = 3,
the number of the sparse submatrices is M2 −M/2 = 33.

For the two subsequences of submatrices in the case (ii)
the number of the dense submatrices is 2(M − 1) +M/2 = 13,
the number of the sparse submatrices is M2 − {2(M − 1) +M/2} = 23.
According to these partitions we devide the sequence of pseudorandom numbers

of (2) to the two parts as follows.
For the two integers L1 = 12, L2 = 4, which are sparse orders,

in the case of (i), let N1 = n2 − s2(M/2), N2 = s2(M/2) and then we calculate

ξj,L1 = ξj mod L1, j = 1, ..., N1,

and

ξj,L2 = ξj mod L2, j = 1, ..., N2.

In the case of (ii), let N1 = n2 − s2{(M − 1) + M/2}, N2 = s2{(M − 1) + M/2}
(here, note that it is not {2(M − 1) +M/2}) and then we calculate

ξj,L1 = ξj mod L1, j = 1, ..., N1,

and

ξj,L2 = ξj mod L2, j = 1, ..., N2.
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(4): Construct two {0, 1}-sequences {c(i)j } from {ξj,Li}, i = 1, 2, defined by

c
(i)
j =

{
0 if ξj,Li ̸= 1
1 if ξj,Li = 1

, i = 1, 2, j = 1, ..., Ni.

(5): We cut {c(i)j } into Ji = Ni/s
2 pieces of equal length s2, then shape them to

two sequences of s × s square submatrices {C(i)
j } = {(c(i)kl )j}, i = 1, 2, j = 1, ..., Ji.

Furthermore, from these two sequences of submatrices {C(i)
j } we construct n × n

matrices CI , CII . The dense submatrices (i = 2) are colored by red to show high
contrast to the sparse submatrices (i = 1).

In the case of (i) we define

CI =



C
(2)
1 C

(1)
2 · · · · · · · · · C

(1)
6

C
(1)
7 C

(1)
8 · · · · · · · · · C

(1)
12

C
(1)
13 C

(1)
14 C

(2)
15 . . . · · · C

(1)
18

· · · · · · · · · C
(1)
22 · · · . . .

· · · · · · · · · · · · C
(2)
29 · · ·

· · · · · · · · · · · · · · · C
(1)
36


and in the case of (ii) we define

CII =



C
(2)
1 C

(1)
2 · · · · · · · · · C

(2)
6

C
(1)
7 C

(1)
8 · · · · · · · · · C

(2)
12

C
(1)
13 C

(1)
14 C

(2)
15 . . . · · · C

(2)
18

· · · · · · · · · C
(1)
22 · · · C

(2)
24

· · · · · · · · · · · · C
(2)
29 C

(2)
30

· · · · · · · · · · · · · · · C
(1)
36


.

Next we construct the adjacency symmetric matrices from CI , CII .
(6): Construct upper triangle matrices Si of Ci, i = I, II which have the upper
triangle parts of Ci, i = I, II with 0 diagonal elements, respectively.
(7): Calculate Ti = Si +

tSi, i = I, II, which are the adjacency matrices.
(8): When the graphs given by the adjacency matrices have tails, 1-degree vertices,
we apply the sagemath command, “.remove tails”. Then we can obtain the two
simple graphs GI,GII from these adjacency matrices TI , TII , respectively.
(9): By using the numbers of vertices and edges of these two graphs and applying
the sagemath command “graphs.RandomGNM(|V |, |E|)” where |V | = 150 and |E|
is the number of edges of each graph we construct the two random graphs RGI,RGII,
which have the same numbers of edges as those of GI,GII, respectively.
(10): We numerically estimate the various properties, the qualities and the quanti-
ties of these graphs GI,RGI,GII,RGII.

4. Fluctuation of k-cycles

A cycle basis of an undirected graph is a set of simple cycles that forms a basis of
the cycle space of the graph. There are so many various definitions of cycle basis,
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but here we use a fundamental cycle basis formed from the minimum spanning tree
of the given graph. Here we calculate the distributions of number of k-cycle, which
has k vertices, by using the cycle basis. For the various random graphs constructed
in section 3, using the cycle basis and estimating the numbers of each cycle in these
graphs, we statistically calculate the fitting curves to the distributions of these cycle
numbers and we estimate their fluctuation exponents. We call this value the Cycle-
Fluctuation Exponent (abbr. CFE) on the analogy of the exponent β in (1/f)β

fluctuation.

By using the sagemath command “graphs.cycle basis”, we can easily count the
numbers of each k-cycle in the list of the cycle basis and draw their histograms,
which show the distributions of the numbers of k-cycles from k = 3 to around 20.
Since we consider that the stability of the cyclic structure is most important, that
is, each selected k-cycle cannot be constructed by some symmetric differences of
k′(< k)-cycles in the cycle basis, we use the numbers of the 3-cycles not only in the
basis, but considering all 3-cycles of the graph, and the k-cycles in the cycle basis
for k ≥ 4. Under this revision for the 3-cycles we obtain the following numerical
results.

[GI]
Fig.3 and Fig.4: By using the sagemath command “min spanning tree” we draw

the spanning tree and the graph of all edges with |E| = 1117. Since the warm
colored vertices have higher connectivity between the same color vertices, we can
admit the clusters of the red, the pink and the yellow vertices, while the cold colored
vertices are dissipative in the minimum spanning trees. In the other random cases
all vertices are completely mixed in RGI (Fig.7), RGII(Fig.15) and we can find the
clusters of the purple and the other color vertices in GII (Fig.11), which have higher
connectivity between them, while the purple vertices themselves are dissipative.

Fig 3. GI : Spantree Fig 4. GI : |E| = 1117

Fig.5 and Fig.6: The fitting line on the log-log scale by linear regression and the
numbers of k-cycle in the cycle-basis with its fitting curve: f(k) ∝ (1/k)β , CFE:
β = 1.8928
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Fig 5. GI : LinRegress
Fig 6. GI : CFE

[RGI]
Fig.7 and Fig.8: The spanning tree and the graph of all edges with |E| = 1117.

Fig 7. RGI :Spantree Fig 8. RGI : |E| = 1117

Fig.9 and Fig.10: The fitting line on the log-log scale by linear regression and the
numbers of k-cycle in the cycle-basis with its fitting curve: f(k) ∝ (1/k)β , CFE:
β = 1.7852

Fig 9. RGI : LinRegress
Fig 10. RGI : CFE

[GII]
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Fig.11 and Fig.12: The spanning tree and the graph of all edges with |E| = 1604.

Fig 11. GII : Spantree
Fig 12. GII : |E| = 1604

Fig.13 and Fig.14: The fitting line on the log-log scale by linear regression and
the numbers of k-cycle in the cycle-basis with its fitting curve: f(k) ∝ (1/k)β , CFE:
β = 3.5682

Fig 13. GII: LinRegress
Fig 14. GII: CFE

[RGII]
Fig.15 and Fig.16: The spanning tree and the graph of all edges with |E| = 1604.
Fig.17 and Fig.18: The fitting line on the log-log scale by linear regression and

the numbers of k-cycle in the cycle-basis with its fitting curve: f(k) ∝ (1/k)β , CFE:
β = 2.6543

5. Small-worldness coefficient

For a vertex v, which has its degree value k, in a graph G(V,E), the (local)
clustering coefficient C(v) is defined by

C(v) =
2λ(v)

k(k − 1)

where λ(v) is the the number of triangles on v, that is, the number of subgraphs
of G with 3 edges and 3 vertices, one of which is v and k(k − 1)/2 is the number
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Fig 15. RGII : Spantree Fig 16. RGII : |E| = 1604

Fig 17. RGII : LinRegress
Fig 18. RGII : CFE

of triples on v ∈ G, that is, the number of subgraphs with 2 edges and 3 vertices,
one of which is v and such that v is incident to both edges. The average of the
clustering coefficients C is given by

C =
1

|V |
∑
v∈V

C(v).

The small-worldness coefficient σ is defined by

σ =
(C/Cr)

(L/Lr)

where C and L are the average clustering coefficient and the average path length of
the given graph and Cr and Lr are those of an equivalent random graph, respectively.
It is calculated by comparing clustering and path length of a given graph to an
equivalent random graph and it is known that if σ > 1 : C ≫ Cr, L ≈ Lr, the
network, given by this graph, has small-worldness and, as σ ↓ 1, the randomness of
this network is increasing.

While the cluster analysis or clustering is very well-known for the recent epi-
demic or pandemic disease, the clustering states, mainly estimated by the cluster-
ing coefficients, give one of the most important indicators, which characterize the
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small-worldness of graph networks. We calculate the average of clustering coeffi-
cients of each nonregular graph to show the relations with the randomness and we
estimate the small-worldness coefficients, which also give the level of randomness,
of our nonregular graphs.

Since the random values of the clustering coefficient Cr and the average path
length Lr have rather large variance and instability, we take their mean values
from the 1000 times trials. Since we use the pseudo-random process given by the
p-adic chaotic system, the constants C,L are invariant if the seeds and the other
parameters are not changed.

Here we give the table of the small-worldness coefficients σ with the constants,
C,L,Cr, Lr in our random nonregular graphs GI,RGI,GII,RGII and also, with the
exponent CFE to compare the small-worldness coefficients to the distributions of
k-cycle numbers of the cycle-basis.

Gr \Const |E| Cr Lr C L σ CFE

GI 1117 0.100 2.103 0.105 2.108 1.048 1.893
RGI 1117 0.100 2.103 0.101 2.106 1.006 1.785
GII 1604 0.144 1.896 0.168 1.904 1.164 3.568
RGII 1604 0.144 1.895 0.144 1.894 1.013 2.654

While the small-world coefficients are essentially related to the triangles, that is,
3-cycles of the graph, CFE are calculated by k-cycle basis for all k ≥ 3 and the
diffrence values of CFE between GI and GII are greater than those of SWC. We can
say that CFE contains more information on clustering or dissipative structures of
graphs than SWC.

6. Graph Riemann hypothesis and poles of Ihara zeta functions

In Section 2 for the regular Ramanujan graph case we see that the poles of the
Ihara zeta function ζX(u), u = q−s = Rs

X , satisfies Graph Riemann Hypothesis,
that is, they are just on the circle |u| =

√
RX , Re s = 1/2, when 0 < Re s < 1. The

value RX , defined in section 2 as the radius of the largest circle of convergence of
ζX(u), plays an important role in the nonregular graph. We call

√
RX Ramanujan

radius and the circle with its radius
√
RX Ramanujan circle.

In this section we numerically calculate the distribution of poles of ζX(u) for our
nonregular pseudorandom graphs, using the determinant formula given by Bass in
[2]. We use the same notations and the definitions as those in Section 2, but here
we consider the nonregular graphs.

Theorem 6.1 ([2]). Let A be the adjacency matrix of X and Q the diagonal matrix
with jth diagonal entry qj such that qj+1 is the degree of the jth vertex of X. Then
we have the Ihara three-term determinant formula

ζX(u)−1 = (1− u2)r−1 det(I −Au+Qu2)

where r is the rank of th fundamental group of X; r − 1 = |E| − |V |.
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Following the results obtained by Kotani and Sunagawa in [7] on nonregular
graphs, we investigate the ‘weak Graph Riemann Hypothesis’.

Theorem 6.2 ([7]). Suppose that a graph X has vertices with maximum degree
q + 1 and minimum degree p+ 1. Then

(1) Every pole of ζX(u) satisfies RX ≤ |u| ≤ 1 and

(6.1) q−1 ≤ RX ≤ p−1.

(2) Every non-real pole of ζX(u) satisfies the inequality

(6.2)
1
√
q
≤ |u| ≤ 1

√
p
.

In [15] Terras defined the graph theory Riemann Hypothesis (abbr. GRH) by the
following pole free region of ζX(u),

RX < |u| <
√
RX .

and the weak graph theory Riemann Hypothesis (abbr. wGRH) by the following
pole free region of ζX(u),

RX < |u| < 1
√
q
.

In our previous paper [9] we have already shown that the almost all poles of
Ihara zeta functions of our random graphs defined by p-adic pseudorandom numbers
satisfy wGRH.

In this paper, by calculating the distribution of poles of the Ihara zeta functions
we directly investigate whether these almost Ramanujan graphs satisfy the graph
Riemann Hypothesis. Comparing to the Ramanujan circle, the radius of which is
used as a criteria related to the graph Riemann Hypothesis, we calculate the mean,
denoted by Mz, and the standard deviation, denoted by σz, of the absolute values
of the poles and we estimate the difference and the variation from the Ramanujan
circle. Here we propose the ratio of this mean value to the radius of the Ramanujan
circle, called Ramanujan radius ratio, denoted by RRr (= Mz/

√
RX), and the

deviation of these distributions, called the Ramanujan radius deviation, denoted by
RRd (= σz/

√
RX), as characteristic constants which show levels or some properties

of randomness of these given graphs.
We plot the five circles colored by green, purple, red, brown and blue as follows.

• The green circle is |u| = RX .
• The purple circle is |u| = 1/

√
q.

• The red circle is |u| =
√
RX .

• The brown circle is |u| = Mz.
• The blue circle is |u| = 1/

√
p.

The following inequalities

RX <
1
√
q
<

√
RX < Mz <

1
√
p
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Fig 19. GI : ZetaPolDist. Fig 20. RGI : ZetaPolDist

Fig 21. GII : ZetaPolDist. Fig 22. RGII : ZetaPolDist

hold.

•
√
RX : Ramanujan radius

• Mz: mean of the absolute values of the poles
• RRr := Mz/

√
RX , Ramanujan radius ratio

• σz: standard deviation of the absolute values of the poles
• RRd := σz/

√
RX , Ramanujan radius deviation

Gr \Const |E|
√
RX Mz RRr σz RRd CFE

GI 1117 0.257 0.275 1.069 0.02 0.078 1.893
RGI 1117 0.259 0.274 1.056 0.018 0.068 1.785
GII 1604 0.211 0.228 1.08 0.019 0.091 3.568
RGII 1604 0.216 0.224 1.039 0.015 0.068 2.654

We can see that the values
√
RX ,Mz depend on the numbers of edges and the

larger values RRr and RRd of GII than those of the others show some clustering
and deviating properties in the graph.

While the small worldness coefficients depend on only 3-cycles, RRr and RRd
are derived from the Ihara zeta function, which are defined by using all cycles in
the graph and CFE are directly given from all cycles of the cycle basis. These three
constants, RRr, RRd and CFE, should contain information on not only clustering
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properties but more complex structural properties derived from their cyclic structure
in each graph. The mathematical analysis on the relations between the distribution
of poles of Ihara zeta function and the numbers distribution of k-cycles of cycle basis
will clarify this information and will generate the most fruitful results on structure
and functional connectivity problems of graph networks.

7. Almost Ramanujan graph

In section 3 we construct the adjacency matrices TI , TII for the nonregular graphs
GI,GII, using the sparse matrix CI , CII , respectively. The various types of almost
Ramanujan graphs by using the upper bounds of nontrivial eigenvalues of their
adjacency matrices can be defined (cf. [15]). Corresponding to the regular graph
case we can consider that the trivial eigenvalue in the nonregular case is the one
which has the largest absolute value.

We say that a non-regular graph X is a naive Ramanujan graph if

|µ| ≤ 2
√
σX − 1

for every nontrivial eigenvalue µ : |µ| ≨ σX where σX is the largest absolute value
of eigenvalues of the adjacency matrix A,

σX = max{|µ| : µ ∈ SpectrumA}.
The degree of a vertex vi in the graph X is the number of edges joining vi,∑

vj∈V
aij , ai,j ∈ {0, 1}.

Let dX be the average degree of the vertices of X. We say that a non-regular graph
X is a weak Ramanujan graph if

|µ| ≤ 2

√
dX − 1

for every nontrivial eigenvalue µ : |µ| ≨ σX .
In our numerical experiments, using the maximal degree DX , we say that a non-

regular graph X is a mild Ramanujan graph if the following inequality hold

|µ| ≤ 2
√
DX − 1

for every nontrivial eigenvalue µ : |µ| ≨ σX .
In the histograms showing the distributions of the eigenvalues we plot these upper

bound values colored as follows:
2
√
DX − 1: mild Ramanujan bounds (green diamond marker ♦)

> 2
√
σX − 1: naive Ramanujan bounds (red diamond marker ♦)

> 2
√
dX − 1: weak Ramanujan bounds (blue diamond marker ♦).

According to Random Matrix Theory, Wigner semi-circle law describes the as-
ymptotic behavior of eigenvalue distributions of large symmetric random matrices.
The Wigner semi-circle distribution is the probability distribution supported on the
interval [−R,R] the graph of whose probability density function f(x) defined by

f(x) =
2

πR2

√
R2 − x2
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for −R ≤ x ≤ R and f(x) = 0 if |x| > R.
If the eigenvalue distributions of our adjacency matrices are matching with this

semi-circle, we can see sufficiently high randomness of our pseudorandom data. In
these numerical results the eigenvalues distribution of TII , which is the adjacency
matrix of GII, shows some nonuniform randomness, not matching with the Wigner
semi-circle.

All absolute values of nontrivial eigenvalues are smaller than the upper bound
of the mild Ramanujan bound and almost all nontrivial eigenvalues are also under
the upper bounds of the naive and weak Ramanujan bounds. For the definitions
of almost Ramanujan graphs the weak (blue marker) and the naive (red marker)
Ramanujan bounds are just fitting to the upper bounds of the nontrivial eigenvalues
while the mild Ramanujan bounds given by the green diamond marker are too mild.

All non-real poles in our fourcases satisfy the inequalities 1/
√
q ≤ |u| ≤ 1/

√
p,

given by Kotani-Sunagawa and also satisfy wGRH and approximately satisfy GRH,
the definitions of which were given by Terras.

Fig 23. GI : Eigenval.Dist. Fig 24. RGI : Eigenval.Dist

Fig 25. GII : Eigenval.Dist Fig 26. RGII : Eigenval.Dist

8. Indra’net: Guidance from Taiwan and Wakayama

The most important objects of our random graphs in this paper are the spanning
trees, which are the fundamental tools to obtain cycle-basis. When we prepare and
plot these tree-graphs, we find the following two similar graphs drawn by Bunzo
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Hayata (Fig.27 in [5] ) and Kumagusu Minakata (Fig. 28 referred in [8]). Bunzo
Hayata was a famous botanist, especially, for his taxonomic work in Taiwan. About
his image graph in [5] he described that

· · · . The universe is like a boundless net with innumerable millions of
crystalline beads, each on a mesh of a different colour, each reflecting
the images of other beads, and each consequently presenting different
hues, according to the position of the observer. The beads present
different hues, according as they are observed from this point or that.
It is, however, only in their phenomena that they are different; in
their real entities, they are all and ever the same crystalline beads.
· · · I have been influenced by a suggestion from the Indra - nets, an
allegory found in one of the Buddhist scriptures, which is called the
Mahavai- pulyabuddhaganda vyūha-sūtra (Kegonkyô) · · ·

A great scientist Kumagusu Minakata was born in Wakayama, 1883. He is well-
known all over the world as a biologist, naturalist, ethnologist, folklorist, environ-
mentalist, philosopher... . In 1903 he explained Figure 28 of the mandala system
in his letter to Dogi Horyu (cf. [8]).

Curiously enough, this universe is composed of innumerable lines of
logic and causality coming from all the directions as in this model
(although this model could not be drawn but on a plane surface, it
actually should be supposed as three dimensional with depth besides
length and width). As Confucians say, the heaven’s way is logic (logic
means causality here). It is therefore possible to reach to everywhere
and do everything starting from any point if you make a complete
pursuit of it.

The common keyword of their description on the complex networks is Indra’s net
in “Kegonkyo”. About Indra’s net was also described in a short story with the same
title by Kenji Miyazawa [6].

· · ·
The heavenly children jumped up and down in rapture, running

over the silica sand of the pure-blue lake of True Enlightenment.
Then suddenly one of the children bumped into me, and jumping
back, screamed out while pointing up to the sky.
“ Look, look, look at Indra’s net!”
I looked up at the sky. The zenith was now azure blue, and from

it to the four corners of the pale edges of the sky, Indra’s spectral net
vibrated radiantly as if burning, its fibers more fine than a spider’s
web, its construction more elaborate than that of hypha, all blending
together transparently, purely, in a billion intermingled arts.

· · ·
Kenji also described Indra’net as a fractal net in his other short story by showing

the infinite numbers of knots of precious stones which have the fractal property such
that each precious stone contains and reflects the whole net-world. This fractal net
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must be the main mathematical object in our forthcoming papers where we can
more essentially use the theory of p-adic numbers, the set of which contains the
fractal properties.

Professor Wataru Takahashi made his greatest contribution to the mathematical
society in not only Japan but especially in Taiwan and all over the world.

Professor Naoki Shioji, who was born in Wakayama, also made his greatest con-
tribution to the mathematical society, especially to the PDE society all over the
world.

We shall never forget your greatest achievements in mathematics and also, your
kindness and guidance showing us what to study in future.

Fig 27. by B.Hayata Fig 28. by K.Minakata

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986), 83–96.

[2] H. Bass, The Ihara-Selberg zeta function of a tree lattice, International. J. Math. 3 (1992),

717–797.

[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1994.

[4] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random

walks. Trans. Amer. Math. Soc. 284 (1984), 787–794.

[5] B. Hayata, Icones Plantarum Formosanarum, Government of Formosa, Taihoku, Taiwan 1921.

[6] R. Pulvers, M. Kenji and J. M. Law, Indra’s Net: The Spiritual Universe of Miyazawa Kenji,

the Asia-Pacific Journal | Japan Focus 8 2010.

[7] M. Kotani and T. Sunagwa, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000),

7–25.

[8] R. Matsui, Mandala as a synthetic theory of modern sciences -on Minakata Kumagusu’s phi-

losophy in his letters to Dogi Horyu, Ryukoku University Kokusaibunkakenkyu 11 (2007),

29–41.

[9] K. Naito, Ihara zeta function and randomness of nonregular Ramanujan graph generated by

p-adic chaotic systems, to apear in Linear and Nonlinear Analysis

[10] K. Naito, Graph Riemann hypothesis and Ihara zeta function of nonregular Ramanujan graph

generated by p-adic chaos, Linear and Nonlinear Analysis 6 (2020), 143–152.

[11] K. Naito, Pseudorandom number generator by p-adic chaos and Ramanujan expander graphs,

Linear and Nonlinear Analysis 5 (2019), 1–11.



256 KOICHIRO NAITO

[12] K. Naito, Randomness of p-adic discrete dynamical systems and its applications to cryptosys-

tems, in: Proc. 10th International Conference on Nonlinear Anal. Convex Anal. Yokohama

Publishers, Yokohama, 2019, pp. 233–245.

[13] N. P. Smart and C. F. Woodcock, p-adic chaos and random number generation, Experiment.

Math. 7 (1998), 333–342.

[14] X. Yang, R. Itoi and M. Tanaka, Testing randomness by means of random matrix theory,

Progress of Theoretical Physics, Supplement 194 (2012), 73–83.

[15] A. Terras, Zeta Functions of Graphs: A Stroll Through the Garden, Cambridge Studies in

Advanced Mathematics 128, Cambridge University Press, 2011.

[16] D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393

(1998), 440–442.

Manuscript received

revised

Koichiro Naito

Department of Applied Mathematics, Kumamoto University, Chuo-ku, Kurokami, 2-39-1, Ku-

mamoto, Japan

E-mail address : knaito@gpo.kumamoto-u.ac.jp


