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GENERIC CONVERGENCE OF POWERS OF GENERALIZED
NONEXPANSIVE MAPPINGS

SIMEON REICH*" AND ALEXANDER J. ZASLAVSKI

ABSTRACT. In our 2014 work with M. Gabour we introduced a class of gener-
alized nonexpansive self-mappings of a bounded and closed subset of a Banach
space and studied, using the Baire category approach, the convergence of iterates
of a generic mapping in this class to its unique fixed point. In the present paper
we study the generic convergence of powers of generalized nonexpansive mappings
to generalized nonexpansive retractions onto the set of their fixed points.

1. INTRODUCTION

For nearly sixty years now, there has been a lot of research activity regarding
the fixed point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for
example, [2, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 28, 29] and references
cited therein. This activity stems from Banach’s classical theorem [1] concerning
the existence of a unique fixed point for a strict contraction. It also concerns the
convergence of (inexact) iterates of a nonexpansive mapping to one of its fixed
points. Since that seminal result, many developments have taken place in this field
including, in particular, studies of feasibility, common fixed point problems and
variational inequalities, which find important applications in engineering, medical
and the natural sciences [4, 8, 9, 26, 27, 28, 29].

In [7] we considered the following class of nonlinear mappings.

Let (X,| -||) be a Banach space and let K be a bounded, closed and convex
subset of X. Let f: X — [0,00) be a continuous function such that f(0) = 0, the
set f(K — K) is bounded, and the following three properties hold:

(P1) for each € > 0, there exists § > 0 such that if z,y € K satisfy f(x —y) <6,
then ||z —y|| <€

(P2) for each A € (0,1), there is ¢(\) € (0,1) such that

fA & =) < 6N f(z —y) for all 2,y € K;

(P3) the function (z,y) — f(z—y), x,y € K, is uniformly continuous on K x K.
Denote by A the set of all continuous mappings A : K — K such that

(1.1) f(Az — Ay) < f(x —y) for all z,y € K.
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Set
(1.2) diam(K) := sup{|lz —y|| : =,y € K}.

We denote the identity operator by A" for every mapping A € A.
For each A, B € A, set

d(A, B) :=sup{||Az — Bz|| : z € K}.

It is clear that (\A,d) is a complete metric space.

In [7] we established the existence of a set F, which is a countable intersection of
open and everywhere dense subsets of A, such that each C' € F has a unique fixed
point and all its iterates converge uniformly to this fixed point.

Note that the classical result of De Blasi and Myjak [5] is a particular case of
this result where f = | - ||. As a matter of fact, the mappings defined above
can be considered generalized nonexpansive mappings with respect to f. Such an
approach, where in some problems of functional analysis the norm is replaced by a
general function, was used in [20, 21] in the study of generalized best approximation
problems.

These generalized nonexpansive mappings were also studied in [24, 25]. In partic-
ular, in [25] we constructed an example of a generalized nonexpansive self-mapping
of a bounded, closed and convex set in a Hilbert space, which is not nonexpansive
in the classical sense.

2. THE MAIN RESULT

Assume that the function f is convex, F' is a nonempty, closed and convex subset
of K, and that () : K — F is a generalized nonexpansive retraction, namely,

(2.1) Qr=z,zeF
and
(2.2) f(Qx —Qy) < f(x —y) for all z,y € K.

Denote by A the set of all mappings A € A such that
(2.3) Az =z, z € F.

Clearly, AU is a closed subset of the metric space (A,d). We now consider the
complete metric space (A(F ), d) and establish the following result. Note that in the
case where f = || - ||, a prototype of this result was obtained in [17] (see also [23]).

Theorem 2.1. There exists a set F C AF), which is a countable intersection of
open and everywhere dense sets in the complete metric space (A(F),d), such that
for each B € F the following assertions hold:

1. There exists a mapping Py : K — F such that

lim B"z = P.x
n—oo

forallx € K.
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2. For each ¢ > 0, there exist a neighborhood U of B in A¥) and a natural
number N such that for each integer T > N, each Cy € U, t =1,...,T, and each
reK,

HCT PN Clx — P*J}H S €.

3. AUXILIARY RESULTS

For each bounded operator A : K — X, we set

Al = sup{]|Az] : 2 € K.

In the sequel we use the following auxiliary result (Lemma 6.9 of [23]).

Lemma 3.1. Assume that E is a nonempty uniformly equicontinuous set of op-
erators A : K — K, N is a natural number and € is a positive number. Then
there exists a number § > 0 such that for each sequence {At}i\le C E, each sequence
{B}N,, where the (not necessarily continuous) operators By : K — K, t=1,...N,
satisfy
| B — Al <6, =1,...N,
and each x € K, the following inequality holds:
|By...Bix— Ay ... Ayz|| <e.
Property (P1), (1.1) and the continuity of f imply the following result.

Lemma 3.2. The set of operators A is uniformly equicontinuous.

4. PROOF OF THEOREMS 2.1

Let A€ AY) and v € (0,1). Define A, : K — K by

(4.1) Avx:=(1—-7v)Az+9Qx, z€ K.
By (2.1), (2.3) and (4.1),
(4.2) A=z, x€F.

In view of (1.1), (2.1) and (4.1), we have
f(Ayz — Ayy) = (f(1 —v)Az +7Qx — (1 — ) Ay — 1Qy)
= f((1 =) (Az — Ay) +7(Qz — Qy))

(4.3) < (1—9)f(Az — Ay) +7f(Qz — Qy)
< f(z —y).
By (4.2) and (4.3),
A, e AP

In view of (1.2) and (4.1),

(4.4) d(A,, A) = sup{7||Qz — Az| : = € K} < ~ydiam(K).
Lemma 4.1. Let A€ AF) ~ € (0,1) and x € K be given. Then
(4.5) inf{f(Ayx —2): 2€ F} < (1 —v)inf{f(x —2): 2z € F}.
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Proof. Let € > 0 be given. There exists

(4.6) ze € F
such that
(4.7) flx—z) <inf{f(xr—2): 2€ F} +e

Property (P2), (1.1), (2.3), (4.1), (4.6) and (4.7) imply that
inf{f(Ayr —2): z € F} <inf{f((1 —7)Az +7Qr — (7Qz + (1 —7)z))
= J((1 =7)Az — (1 =7)z)
<1 =) f(Ar — 20) < d(1 =) f(x — 2¢)
<ol —y)inf{f(z —2): 2 € F} +¢(1 —)e.

Since € is an arbitrary positive number, inequality(4.5) is indeed true and Lemma
4.1 is proved. O

Let Ae A, ~ € (0,1) and let ¢ > 1 be an integer. Property (P1) implies that
there exists a number A, € (0,1) such that

(4.8) if 2,y € K satisfy f(z —y) < 2)\,, then ||z —y| < (4¢)7".
Choose an integer n(v,q) > 1 such that
(4.9) P(1 — )" D[sup{f(z — 2'): 2,2/ € K} <47\,
Lemma 4.1 and (4.9) imply that for all z € K,

inf{f(A;L(%q)x —z): z€ F}

(4.10) < d(1—A)"0Dinf{f(x —2): z€ F} <471\,

Property (P3) implies that there exists dg € (0,1) such that the following property
holds:
(a) if 21, 29, &1, & € K satisty ||z; — & < do, i = 1,2, then

(21— 22) — f(&1 — &) < 471N,
Lemmas 3.1 and 3.2 imply that there exists an open neighborhood
U(A,7,q)

of A, in AU) such that the following property holds:
(b) for each xz € K and each {Bt}?:ﬁl’q) e U(A,~,q), we have
|A"O D — B, ... Biz|| < .
Properties (a) and (b) imply that for each € K and each
(B0 €U(4,v,9),
we have
(4.11) inf{f(A20 Dz —2): 2 € F}—inf{f(B

n(v,q) ...Bll‘—z) S F}| < 4_1)\(1,
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and in view of (4.10) and (4.8),

(4.12) inf{f(By(y,q ---Biz —2): z€ F} <271,

and

(4.13) inf{||By(y,q -- - Bix — 2| : z€ F} < (4¢)~".

Define

(4.14) Fi=m2 U{U(A,y,q): Ac AP v e (0,1),g=p.p+1,...}.

Evidently, F is a countable intersection of open and everywhere dense subsets of
AP Assume that

(4.15) BeF
and that ¢ > 0. Choose a natural number p such that
(4.16) pl<e

By (4.14) and (4.15), there exist A € AF) 4 € (0,1) and an integer ¢ > p such
that

(4.17) B eU(A,y,q).

Let x € K. In view of (4.12),

(4.18) inf{f(B"O0:Dz — 2): z € F} <271\,
By (4.18), there exists

(4.19) 20 € F

such that

(4.20) (B Dg — 20) < A,

It follows from (1.1), (2.3), (4.17), (4.19) and (4.20) that for each integer T' > n(, q),
(4.21) F(BTx — z) < f(B"0 Dz — z) < A,
and in view of (4.8) and (4.16),

(4.22) |BTx — 2|l < (4¢9)7! < e

Since € is any positive number, (4.22) implies that {B'z}$°, is a Cauchy sequence,
there exists lim;_o, Btz and

. t

. - <e
(4.23) I tlg(r)loB x— 2z <e
Since € is an arbitrary positive number, (4.19) and (4.23) imply that
(4.24) lim B’z € F.

t—o00
Set
(4.25) P,z := lim B'z.
t—r00

Clearly, P, € AU, By (4.22) and (4.25), we have
(4.26) | Pz — 20| < (4¢)7, z € K.
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Assume that z € K, T > n(v, q) is an integer, and that
(4.27) CrelU(A,y,q), t=1,...,T.
Properties (a) and (b), and (4.27) imply that

|F(ATO Dz — 20) — f(Criyg) - -- C17 — 20)] < 471N,

and

(4.28) |F(B"0 g — z) — (AT Dz — 20)] < 471,
By (4.20) and (4.28),

(4.29) f(Cry,g) - Crz — 20) < 2.

It now follows from (1.1), (2.3), (4.19) and (4.29) that

f(CT N Cll‘ — ZO) S 2)\q.

When combined with (4.8), this implies that

|C7...Crz — 20| < (49)7 1.

Combining this inequality with (4.16) and (4.26), we arrive at the inequality

|Cr...Cix — Pux| < (29) 7' < e

This completes the proof of Theorem 2.1.
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