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Set

(1.2) diam(K) := sup{‖x− y‖ : x, y ∈ K}.

We denote the identity operator by A0 for every mapping A ∈ A.
For each A,B ∈ A, set

d(A,B) := sup{‖Ax−Bx‖ : x ∈ K}.

It is clear that (A, d) is a complete metric space.
In [7] we established the existence of a set F , which is a countable intersection of

open and everywhere dense subsets of A, such that each C ∈ F has a unique fixed
point and all its iterates converge uniformly to this fixed point.

Note that the classical result of De Blasi and Myjak [5] is a particular case of
this result where f = ‖ · ‖. As a matter of fact, the mappings defined above
can be considered generalized nonexpansive mappings with respect to f . Such an
approach, where in some problems of functional analysis the norm is replaced by a
general function, was used in [20, 21] in the study of generalized best approximation
problems.

These generalized nonexpansive mappings were also studied in [24, 25]. In partic-
ular, in [25] we constructed an example of a generalized nonexpansive self-mapping
of a bounded, closed and convex set in a Hilbert space, which is not nonexpansive
in the classical sense.

2. The main result

Assume that the function f is convex, F is a nonempty, closed and convex subset
of K, and that Q : K → F is a generalized nonexpansive retraction, namely,

(2.1) Qx = x, x ∈ F

and

(2.2) f(Qx−Qy) ≤ f(x− y) for all x, y ∈ K.

Denote by A(F ) the set of all mappings A ∈ A such that

(2.3) Ax = x, x ∈ F.

Clearly, A(F ) is a closed subset of the metric space (A, d). We now consider the

complete metric space (A(F ), d) and establish the following result. Note that in the
case where f = ‖ · ‖, a prototype of this result was obtained in [17] (see also [23]).

Theorem 2.1. There exists a set F ⊂ A(F ), which is a countable intersection of
open and everywhere dense sets in the complete metric space (A(F ), d), such that
for each B ∈ F the following assertions hold:

1. There exists a mapping P∗ : K → F such that

lim
n→∞

Bnx = P∗x

for all x ∈ K.
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2. For each ϵ > 0, there exist a neighborhood U of B in A(F ) and a natural
number N such that for each integer T ≥ N , each Ct ∈ U , t = 1, . . . , T , and each
x ∈ K,

‖CT . . . C1x− P∗x‖ ≤ ϵ.

3. Auxiliary results

For each bounded operator A : K → X, we set

‖A‖ := sup{‖Ax‖ : x ∈ K}.
In the sequel we use the following auxiliary result (Lemma 6.9 of [23]).

Lemma 3.1. Assume that E is a nonempty uniformly equicontinuous set of op-
erators A : K → K, N is a natural number and ϵ is a positive number. Then
there exists a number δ > 0 such that for each sequence {At}Nt=1 ⊂ E, each sequence
{Bt}Nt=1, where the (not necessarily continuous) operators Bt : K → K, t = 1, . . . N ,
satisfy

‖Bt −At‖ ≤ δ, t = 1, . . . N,

and each x ∈ K, the following inequality holds:

‖BN . . . Ḃ1x−AN . . . A1x‖ ≤ ϵ.

Property (P1), (1.1) and the continuity of f imply the following result.

Lemma 3.2. The set of operators A is uniformly equicontinuous.

4. Proof of Theorems 2.1

Let A ∈ A(F ) and γ ∈ (0, 1). Define Aγ : K → K by

(4.1) Aγx := (1− γ)Ax+ γQx, x ∈ K.

By (2.1), (2.3) and (4.1),

(4.2) Aγx = x, x ∈ F.

In view of (1.1), (2.1) and (4.1), we have

(4.3)

f(Aγx−Aγy) = (f(1− γ)Ax+ γQx− (1− γ)Ay − γQy)

= f((1− γ)(Ax−Ay) + γ(Qx−Qy))

≤ (1− γ)f(Ax−Ay) + γf(Qx−Qy)

≤ f(x− y).

By (4.2) and (4.3),

Aγ ∈ A(F ).

In view of (1.2) and (4.1),

(4.4) d(Aγ , A) = sup{γ‖Qx−Ax‖ : x ∈ K} ≤ γdiam(K).

Lemma 4.1. Let A ∈ A(F ), γ ∈ (0, 1) and x ∈ K be given. Then

(4.5) inf{f(Aγx− z) : z ∈ F} ≤ ϕ(1− γ) inf{f(x− z) : z ∈ F}.
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Proof. Let ϵ > 0 be given. There exists

(4.6) zϵ ∈ F

such that

(4.7) f(x− zϵ) ≤ inf{f(x− z) : z ∈ F}+ ϵ.

Property (P2), (1.1), (2.3), (4.1), (4.6) and (4.7) imply that

inf{f(Aγx− z) : z ∈ F} ≤ inf{f((1− γ)Ax+ γQx− (γQx+ (1− γ)zϵ))

= f((1− γ)Ax− (1− γ)zϵ)

≤ ϕ(1− γ)f(Ax− zϵ) ≤ ϕ(1− γ)f(x− zϵ)

≤ ϕ(1− γ) inf{f(x− z) : z ∈ F}+ ϕ(1− γ)ϵ.

Since ϵ is an arbitrary positive number, inequality(4.5) is indeed true and Lemma
4.1 is proved. □

Let A ∈ A(F ), γ ∈ (0, 1) and let q ≥ 1 be an integer. Property (P1) implies that
there exists a number λq ∈ (0, 1) such that

(4.8) if x, y ∈ K satisfy f(x− y) ≤ 2λq, then ‖x− y‖ ≤ (4q)−1.

Choose an integer n(γ, q) ≥ 1 such that

(4.9) ϕ(1− γ)n(γ,q)[sup{f(z − z′) : z, z′ ∈ K}] < 4−1λq.

Lemma 4.1 and (4.9) imply that for all x ∈ K,

inf{f(An(γ,q)
γ x− z) : z ∈ F}

(4.10) ≤ ϕ(1− γ)n(γ,q) inf{f(x− z) : z ∈ F} < 4−1λq.

Property (P3) implies that there exists δ0 ∈ (0, 1) such that the following property
holds:

(a) if z1, z2, ξ1, ξ2 ∈ K satisfy ‖zi − ξi‖ ≤ δ0, i = 1, 2, then

|f(z1 − z2)− f(ξ1 − ξ2)| ≤ 4−1λq.

Lemmas 3.1 and 3.2 imply that there exists an open neighborhood

U(A, γ, q)

of Aγ in A(F ) such that the following property holds:

(b) for each x ∈ K and each {Bt}n(γ,q)t=1 ∈ U(A, γ, q), we have

‖An(γ,q)
γ x−Bn(γ,q) . . . B1x‖ ≤ δ0.

Properties (a) and (b) imply that for each x ∈ K and each

{Bt}n(γ,q)t=1 ∈ U(A, γ, q),

we have

(4.11) inf{f(An(γ,q)
γ x−z) : z ∈ F}− inf{f(Bn(γ,q) . . . B1x−z) : z ∈ F}| ≤ 4−1λq,
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and in view of (4.10) and (4.8),

(4.12) inf{f(Bn(γ,q) . . . B1x− z) : z ∈ F} ≤ 2−1λq

and

(4.13) inf{‖Bn(γ,q) . . . B1x− z‖ : z ∈ F} ≤ (4q)−1.

Define

(4.14) F := ∩∞
p=1 ∪ {U(A, γ, q) : A ∈ A(F ), γ ∈ (0, 1), q = p, p+ 1, . . . }.

Evidently, F is a countable intersection of open and everywhere dense subsets of
A(F ). Assume that

(4.15) B ∈ F
and that ϵ > 0. Choose a natural number p such that

(4.16) p−1 < ϵ.

By (4.14) and (4.15), there exist A ∈ A(F ), γ ∈ (0, 1) and an integer q ≥ p such
that

(4.17) B ∈ U(A, γ, q).
Let x ∈ K. In view of (4.12),

(4.18) inf{f(Bn(γ,q)x− z) : z ∈ F} ≤ 2−1λq.

By (4.18), there exists

(4.19) z0 ∈ F

such that

(4.20) f(Bn(γ,q)x− z0) ≤ λq.

It follows from (1.1), (2.3), (4.17), (4.19) and (4.20) that for each integer T ≥ n(γ, q),

(4.21) f(BTx− z0) ≤ f(Bn(γ,q)x− z0) ≤ λq,

and in view of (4.8) and (4.16),

(4.22) ‖BTx− z0‖ ≤ (4q)−1 < ϵ.

Since ϵ is any positive number, (4.22) implies that {Btx}∞t=1 is a Cauchy sequence,
there exists limt→∞Btx and

(4.23) ‖ lim
t→∞

Btx− z0‖ ≤ ϵ.

Since ϵ is an arbitrary positive number, (4.19) and (4.23) imply that

(4.24) lim
t→∞

Btx ∈ F.

Set

(4.25) P∗x := lim
t→∞

Btx.

Clearly, P∗ ∈ A(F ). By (4.22) and (4.25), we have

(4.26) ‖P∗x− z0‖ ≤ (4q)−1, x ∈ K.
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Assume that x ∈ K, T ≥ n(γ, q) is an integer, and that

(4.27) Ct ∈ U(A, γ, q), t = 1, . . . , T.

Properties (a) and (b), and (4.27) imply that

|f(An(γ,q)
γ x− z0)− f(Cn(γ,q) . . . C1x− z0)| ≤ 4−1λq

and

(4.28) |f(Bn(γ,q)x− z0)− f(An(γ,q)
γ x− z0)| ≤ 4−1λq.

By (4.20) and (4.28),

(4.29) f(Cn(γ,q) . . . C1x− z0) ≤ 2λq.

It now follows from (1.1), (2.3), (4.19) and (4.29) that

f(CT . . . C1x− z0) ≤ 2λq.

When combined with (4.8), this implies that

‖CT . . . C1x− z0‖ ≤ (4q)−1.

Combining this inequality with (4.16) and (4.26), we arrive at the inequality

‖CT . . . C1x− P∗x‖ ≤ (2q)−1 < ϵ.

This completes the proof of Theorem 2.1.
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