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where in both (1.2) and (1.3), the initial guess x0 is taken from C arbitrarily, the
parameters, λ or λn, are positive real numbers satisfying ceratin conditions, and PC

is the metric projection from H onto C. The convergence of algorithms (1.2) and
(1.3) depends on the behavior of the gradient ∇f . As a matter of fact, it is known
that if ∇f is α-strongly monotone and L-Lipschitzian with constants α, L > 0,
then the operator

(1.4) T := PC(I − λ∇f)

is a contractive mapping; hence the sequence {xn} generated by the algorithm (1.2)
converges in norm to the unique solution of the CMP (1.1). More generally, if the
sequence {λn} is chosen to satisfy

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2α

L2
,

then the sequence {xn} generated by the algorithm (1.3) converges in norm to
the unique minimizer of (1.1). However, if the gradient ∇f fails to be strongly
monotone, the operator T defined by (1.4) would fail to be contractive; consequently,
the sequence {xn} generated by the algorithm (1.2) may fail to converges strongly
(see [25]). In [25], Xu introduced an alternative operator-oriented approach to the
algorithm (1.3); namely, an averaged mapping approach. He gave his averaged
mapping approach to the GPA (1.3) and the relaxed gradient-projection algorithm.
Combining the hybrid iterative method of Yamada [26] based on viscosity iterative
method and the averaged mapping approach to the GPA of Xu [25], Ceng et al. [6]
considered implicit and explicit iterative algorithms for solving the CMP (1.1).

Let B : C → H be a nonlinear mapping, let φ : C → R be a function and let Θ
be a bifunction of C ×C into R, where R is the set of real numbers. The following
generalized mixed equilibrium problem (shortly, GMEP) of finding x ∈ C such that

(1.5) Θ(x, y) + 〈Bx, y − x〉+ φ(y)− φ(x) ≥ 0, ∀y ∈ C

was introduced by Peng and Yao [19] (also see [16, 30]). The set of solutions to the
GMEP(1.5) is denoted by GMEP (Θ, φ,B). The GMEP(1.5) is very general in the
sense that it includes, as special cases, fixed point problems, optimization problems,
variational inequality problems, minmax problems, Nash equilibrium problems in
noncooperative games and others.

If B = 0 in GMEP(1.5), then the GMEP(1.5) reduces the following mixed equi-
librium problem (shortly, MEP) of finding x ∈ C such that

(1.6) Θ(x, y) + φ(y)− φ(x) ≥ 0, ∀y ∈ C.

which was studied by Ceng and Yao [8] (see also [27]).
A fixed point problem (shortly, FPP) is to find a fixed point z of a nonlinear

mapping T with property:

(1.7) z ∈ C, Tz = z.

Fixed point theory is one of the most powerful and important tools of modern
mathematics and may be considered a core subject of nonlinear analysis.
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As we all know, the convex feasibility problem (shortly, CFP) is the problem of
finding a point in the (nonempty) intersection C = ∩m

i=1Ci of a finite number of
closed convex sets Ci (i = 1, · · · ,m).

Recently, many authors considered iterative methods for finding a common el-
ement in solution sets of the CMP (1.1), the GMEP(1.5), the MEP(1.6) and the
FPP(1.7) for nonlinear mappings as special cases of the CFP. For instance, we can
refer to [8, 11, 12, 28] and the references therein for the MEP(1.6) and the FPP(1.7)
for nonlinear mappings. And we can refer to Peng and Yao [19] for the GMEP(1.5)
related to an inverse-strongly monotone mapping B and the FPP(1.7) for a nonex-
pansive mapping T , refer to Jung [13, 15] for the GMEP(1.5) related to a continuous
monotone mapping B and the FPP(1.7) for a continuous pseudocontractive map-
ping T and refer to Ceng et al. [7] for the GMEP(1.5) related to an inverse strongly
monotone mapping B and the set of fixed points of a finite family of nonexpansive
mappings {Ti}Ni=1. In particular, Jung [14] considered implicit and explicit iterative
algorithms for solving the CMP(1.1) for a convex function f and the MEP(1.6).

In this paper, in order to study the CMP(1.1) combined with the GMEP(1.5)
and the FPP(1.7), we introduce implicit and explicit iterative algorithms for finding
a common element of the set of solutions to the CMP(1.1) for f , the set of solutions
to the GMEP(1.5) related to B and the set of fixed points of T , where f : C → R
is a real-valued convex function, B : C → H is a continuous monotone mapping
and T : C → H is a continuous pseudocontractive mapping. Then we establish
strong convergence of the sequence generated by the proposed iterative algorithms
to a common element of three sets, which is a solution of a certain variational
inequality. As a direct consequence, we find the unique solution to the minimum-
norm problem:

‖x∗‖ = min{‖x‖ : x ∈ Ω},

where Ω := S ∩ GMEP (Θ, φ,B) ∩ Fix(T ). The results in this paper develop,
improve upon and complement of the recent results announced by several authors
in this direction.

2. Preliminaries and Lemmas

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. In the following, we write xn ⇀ x to indicate that the sequence {xn} converges
weakly to x. xn → x implies that {xn} converges strongly to x.

We recall that

(i) a mapping V : C → H is said to be l-Lipschitzian if there exists a constant
l ≥ 0 such that

‖V x− V y‖ ≤ l‖x− y‖, ∀ x, y ∈ C;

(ii) a mapping T : C → H is said to be pseudocontractive if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ C;
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(iii) a mapping T : C → H is said to be k-strictly pseudocontractive ([4]) if there
exists a constant k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2, ∀ x, y ∈ C;

(iv) a mapping T : C → H is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀ x, y ∈ C

where I is the identity mapping.

Clearly, the class of pseudocontractive mappings includes the class of strictly pseudo-
contractive mappings and the class of nonexpansive mappings as a subclass. More-
over, this inclusion is strict (see Example 5.7.1 and Example 5.7.2 in [1]).

Recall ([1, 10]) that the mapping T : H → H is called firmly nonexpansive if
2T − I is nonexpansive, or equivalently,

〈x− y, Tx− Ty〉 ≥ ‖Tx− Ty‖2, ∀x, y ∈ H.

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =
1

2
(I + S),

where S : H → H is nonexpansive.
A mapping T : H → H is said to be an averaged mapping if it can be written as

the average of the identity I and a nonexpansive mapping; that is,

(2.1) T = (1− α)I + αS,

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when (2.1) holds,
we say that T is α-averaged. ([5, 9, 26])

Clearly, a firmly nonexpansive mapping is an 1
2 -averaged mapping.

Proposition 2.1. ([5, 9, 26]) For given mappings S, T, V : H → H:

(a) If T = (1 − α)S + αV for some α ∈ (0, 1) and if S is averaged and V is
nonexpansive, then T is averaged.

(b) T is firmly nonexpansive if and only if the complement I − T is firmly
nonexpansive.

(c) If T = (1 − α)S + αV for some α ∈ (0, 1), and if S is firmly nonexpansive
and V is nonexpansive, then T is averaged.

(d) The composite of finitely many averaged mapping is averaged. That is, if
each of the mappings {Ti}Ni=1 is averaged, then so is the composite T1 · · ·TN .
In particular, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈
(0, 1), then the composite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

We recall ([10]) that a nonlinear mapping T whose domainD(T ) ⊆ H and R(T ) ⊆
H is said to be:

(a) monotone if

〈x− y, Tx− Ty〉 ≥ 0, ∀x, y ∈ D(T ),
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(b) β-strongly monotone if there exists β > 0 such that

〈x− y, Tx− Ty〉 ≥ β‖x− y‖2, ∀x, y ∈ D(T ),

(c) ν-inverse strongly monotone (shortly, ν-ism) if there exists ν > 0 such that

〈x− y, Tx− Ty〉 ≥ ν‖Tx− Ty‖2, ∀x, y ∈ D(T ).

It can be easily seen that (i) if T is nonexpansive, then I − T is monotone; (ii)
the projection mapping PC is a 1-ism.

Proposition 2.2. ([5]) Let T : H → H be a mapping from H to itself.

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(b) If T is ν-ism, then for γ > 0, γT is ν
γ -ism.

(c) T is averaged if and only if the complement I − T is ν-ism for some ν > 1
2 .

Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α -ism.

We note that if F is an α-inverse strongly monotone mapping of C into H, then
it is obvious that F is 1

α -Lipschitz continuous, that is, ‖Fx − Fy‖ ≤ 1
α‖x − y‖

for all x, y ∈ C. Clearly, the class of monotone mappings includes the class of
α-inverse-strongly monotone mappings.

In a real Hilbert space H, the following equality holds:

(2.2) ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉
for all x, y ∈ H.

The following lemma is easily proven by property of inner product.

Lemma 2.3. In a Hilbert space, there holds the inequality

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ H.

Recall that metric (or nearest point) projection from H onto C is the mapping
PC : H → C which assigns to each point x ∈ H the unique point PCx ∈ C satisfying
the property

‖x− PCx‖ = inf
y∈C

‖x− y‖ := d(x,C).

Lemma 2.4. ([23]) For given x ∈ H:

(a) z = PCx if and only if 〈x− z, y − z〉 ≤ 0, ∀y ∈ C.
(b) z = PCx if and only if ‖x− z‖2 ≤ ‖x− y‖2 − ‖y − z‖2, ∀y ∈ C.
(c) 〈PCx − PCy, x − y〉 ≥ ‖PCx − PCy‖2, ∀x, y ∈ H. Consequently, PC is

nonexpansive and monotone.

In general, a projection mapping is firmly nonexpansive.
For solving the GMEP(1.5) for a bifunction Θ : C × C → R, let us assume that

Θ satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C,

lim sup
t↓0

Θ(tz + (1− t)x, y) ≤ Θ(x, y);
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(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semicontinuous.

We can prove the following lemma by using the same method as in [16, 30], and
so we omit its proof.

Lemma 2.5. Let C be a nonempty closed convex subset of H. Let Θ be a bifunction
form C × C to R satisfies (A1)–(A4) and φ : C → R be a proper lower semicon-
tinuous and convex function. Let B : C → H be a continuous monotone mapping.
Then, for ν > 0 and x ∈ H, there exists u ∈ C such that

Θ(u, y) + 〈Bu, y − u〉+ φ(y)− φ(u) +
1

ν
〈y − u, u− x〉 ≥ 0, ∀y ∈ C.

Define a mapping Kν : H → C as follows:

Kνx =

{
u ∈ C : Θ(u, y)+ 〈Bu, y−u〉+φ(y)−φ(u)+

1

ν
〈y−u, u−x〉 ≥ 0, ∀y ∈ C

}
for all x ∈ H and ν > 0. Then, the following hold:

(1) For each x ∈ H, Kνx 6= ∅;
(2) Kν is single-valued;
(3) Kν is firmly nonexpansive, that is, for any x, y ∈ H,

‖Kνx−Kνy‖2 ≤ 〈Kνx−Kνy, x− y〉;
(4) Fix(Kν) = GMEP (Θ, φ,B);
(5) GMEP (Θ, φ,B) is a closed convex subset of C.

We need the following lemmas for the proof of our main results.

Lemma 2.6. ([29]) Let C be a closed convex subset of a real Hilbert space H. Let
T : C → H be a continuous pseudocontractive mapping. Then, for r > 0 and x ∈ H,
there exists z ∈ C such that

〈Tz, y − z〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C.

For r > 0 and x ∈ H, define Tr : H → C by

Trx =

{
z ∈ C : 〈Tz, y − z〉 − 1

r
〈y − z, (1 + r)z − x〉 ≤ 0, ∀y ∈ C

}
.

Then the following hold:

(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, that is,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉, ∀x, y ∈ H;

(iii) Fix(Tr) = Fix(T );
(iv) Fix(T ) is a closed convex subset of C.

Lemma 2.7. ([24]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− ξn)sn + ξnδn, ∀n ≥ 1,

where {ξ} and {δn} satisfy the following conditions:

(i) {ξn} ⊂ [0, 1] and
∑∞

n=1 ξn = ∞;
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(ii) lim supn→∞ δn ≤ 0 or
∑∞

n=1 ξn|δn| < ∞.

Then limn→∞ sn = 0.

Lemma 2.8. ([21]) Let {xn} and {yn} be bounded sequences in a Banach space E
and {γn} be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that xn+1 = γnxn + (1− γn)yn for all n ≥ 1 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.9. Let V : H → H be an l-Lipschitzian mapping with constant l ≥ 0, and
G : H → H be a κ-Lipschitzian and η-strongly monotone mapping with constants κ
and η > 0. Then for 0 ≤ γl < µη,

〈(µG− γV )x− (µG− γV )y, x− y〉 ≥ (µη − γl)‖x− y‖2, ∀x, y ∈ C.

That is, µG− γV is strongly monotone with constant µη − γl.

We also need the following lemma (see [26] for the proof).

Lemma 2.10. Let G : H → H be a κ-Lipschizian and η-strongly monotone mapping
with constants κ > 0 and η > 0. Let 0 < µ < 2η

κ2 and 0 < t ≤ 1. Then I−tµG : H →
H is a contraction with contractive constant 1−tτ , where τ = 1−

√
1− µ(2η − µκ2).

Lemma 2.11. ([1])(Demiclosedness principle) Let H be a real Hilbert space, let C
be a closed convex subset of H, and let T : C → C be a nonexpansive mapping.
Then I − T is demiclosed, that is,

{xn} ⊂ C, xn ⇀ x ∈ C and (I − T )xn → y implies that (I − T )x = y.

The following lemma is a variant of a Minty lemma (see [18]).

Lemma 2.12. Let C be a nonempty closed convex subset of a real Hilbert space
H. Assume that the mapping G : C → H is monotone and weakly continuous
along segments, that is, G(x + ty) → G(x) weakly as t → 0. Then the variational
inequality

x̃ ∈ C, 〈Gx̃, p− x̃〉 ≥ 0, ∀p ∈ C,

is equivalent to the dual variational inequality

x̃ ∈ C, 〈Gp, p− x̃〉 ≥ 0, ∀p ∈ C.
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3. Main results

LetH be a real Hilbert space, and let C be a nonempty closed convex subset of H.
Assume that f : C → R is a real valued convex (Fréchet) differentiable function, and
that the gradient ∇f is an L-Lipschitzian mapping with L ≥ 0. Note that ∇f being
L-Lipschitzian implies that the gradient ∇f is (1/L)-ism ([2]), which then implies
that λ∇f is (1/λL)-ism. So, by Proposition 2.2, I − λ∇f is (λL/2)-averaged. Now
since the projection PC is (1/2)-averaged, we see from Proposition 2.1 that the
composite PC(I − λ∇f) is ((2 + λL)/4)-averaged for 0 < λ < 2/L. Hence we have
that, for each n, PC(I − λn∇f) is ((2 + λnL)/4)-averaged. Therefore, we can write

PC(I − λn∇f) =
2− λnL

4
I +

2 + λnL

4
Sn = αnI + (1− αn)Sn,

where Sn is nonexpansive and αn := αn(λn) =
2−λnL

4 ∈ (0, 12) for each λn ∈ (0, 2
L).

It is easy to see that λn → 2
L ⇐⇒ αn → 0.

From now, we always assume the following:

• H is a real Hilbert space;
• C is a nonempty closed subset of H;
• f : C → R is a real-valued convex (Fréchet) differentiable function such that
the gradient ∇f is an L-Lipschitzian mapping with L ≥ 0;

• The CMP (1.1) is consistent (that is, the CMP (1.1) is solvable) and S :=
argminC f is the solution set of the CMP (1.1) on C;

• PC(I − λn∇f) = 2−λnL
4 I + 2+λnL

4 Sn = αnI + (1 − αn)Sn, where Sn is

nonexpansive and αn := αn(λn) =
2−λnL

4 ∈ (0, 12) for each λn ∈ (0, 2
L).

• Θ is a bifunction from C × C → R satisfying (A1)–(A4);
• φ : C → R be a proper lower semicontinuous and convex function;
• B : C → H is a continuous monotone mapping;
• Kνn : H → C is a mapping defined by

Kνnx =

{
u ∈ C :Θ(u, y) + 〈Bu, y − u〉

+ φ(y)− φ(u) +
1

νn
〈y − u, u− x〉 ≥ 0, ∀y ∈ C

}
for all x ∈ H and for νn ∈ (0,∞) and lim infn→∞ νn > 0;

• GMEP (Θ, φ,B) is the set of solutions to the GMEP (1.5);
• T : C → H is a continuous pseudocontractive mapping with Fix(T ) 6= ∅;
• Trn : H → C is a mapping defined by

Trnx =

{
z ∈ C : 〈y − z, Tz〉 − 1

rn
〈y − z, (1 + rn)z − x〉 ≤ 0, ∀y ∈ C

}
for rn ∈ (0,∞) and lim infn→∞ rn > 0;

• V : H → H is l-Lipschitzian mapping with constant l ∈ [0,∞);
• G : H → H is a ρ-Lipschitzian and η-strongly monotone mapping with
constants ρ > 0 and η > 0;
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• Constants µ, l, τ , and γ satisfy 0 < µ < 2η
ρ2

and 0 ≤ γl < τ , where

τ = 1−
√
1− µ(2η − µρ2);

• Ω := S ∩GMEP (Θ, φ,B) ∩ Fix(T ) 6= ∅.
By Lemma 2.5 and Lemma 2.6, Kνn and Trn are nonexpansive andGMEP (Θ, φ,B) =
Fix(Kνn) and Fix(T ) = Fix(Trn).

First, we introduce the following iterative algorithm which generates a sequence
{xn} in an implicit way:

(3.1)


Θ(un, y) + 〈Bun, y − un〉+ φ(y)− φ(un)

+
1

νn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn = αnγV xn + (I − αnµG)(βnxn + (1− βn)Snwn), ∀n ≥ 1,

where αn = 2−λnL
4 ∈ (0, 12) for each λn ∈ (0, 2

L); {βn} ⊂ (0, 1); {νn}, {rn} ⊂ (0,∞);
x1 ∈ C is an arbitrary initial guess; un = Kνnxn; and wn = Trnun = TrnKνnxn.

Consider the following mapping Qn on H defined by

Qnx = αnγV x+ (I − αnµG)(βnx+ (1− βn)SnTrnKνnx), ∀ x ∈ H, n ≥ 1.

Let Rnx = βnx+(1−βn)SnTrnKνnx. Since SnTrnKνn is nonexpansive, we have for
x, y ∈ H,

‖Rnx−Rny‖ ≤ βn‖x− y‖+ (1− βn)‖SnTrnKνnx− SnTrnKνny‖
≤ βn‖x− y‖+ (1− βn)‖x− y‖ = ‖x− y‖.

Then by Lemma 2.5, Lemma 2.6 and Lemma 2.10, we derive for x, y ∈ H,

‖Qnx−Qny‖ ≤ αnγ‖V x− V y‖+ ‖(I − αnµG)Rnx− (I − αnµG)Rny‖
≤ αnγl‖x− y‖+ (1− αnτ)‖Rnx−Rny‖
≤ αnγl‖x− y‖+ (1− αnτ)‖x− y‖
= (1− αn(τ − γl)‖x− y‖.

Since 0 < 1−αn(τ−γl) < 1, Qn is a contractive mapping. Therefor, by the Banach
contraction principle, Qn has a unique fixed point xn ∈ H, which uniquely solves
the fixed point equation

xn = αnγV xn + (I − αnµG)(βnxn + (1− βn)SnTrnKνnxn)

= αnγV xn + (I − αnµG)(βnxn + (1− βn)Snwn).

Now we prove strong convergence of the sequence {xn} and show the existence
of q ∈ Ω, which solves the variational inequality

(3.2) 〈(µG− γV )q, p− q〉 ≥ 0, ∀ p ∈ Ω.

Equivalently, q = PΩ(I − µF + γV )q (by Lemma 2.4 (a))

Theorem 3.1. Let {xn} be a sequence defined by (3.1). Let {αn}, {βn}, {νn} and
{rn} be satisfy the following condition:

(i) αn ∈ (0, 12) for each λn ∈ (0, 2
L),

limn→∞ αn = 0 (⇐⇒ limn→∞ λn = 2
L);
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(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) 0 < ν ≤ νn < ∞;
(iv) 0 < r ≤ rn < ∞.

Then {xn} converges strongly as λn → 2
L (⇐⇒ limn→∞ αn = 0) to a point q ∈ Ω,

which is the unique solution of the variational inequality (3.2).

Proof. Note that from the condition (i), without loss of generality, we assume that
αnτ < 1 for n ≥ 1.

First, we can show easily the uniqueness of a solution of the variational inequality
(3.2). In fact, noting that 0 ≤ γl < τ and µη ≥ τ ⇐⇒ κ ≥ η, it follows from Lemma
2.9 that

〈(µG− γV )x− (µG− γV )y, x− y〉 ≥ (µη − γl)‖x− y‖2.
That is, µG − γV is strongly monotone for 0 ≤ γl < τ ≤ µη. So the variational
inequality (3.2) has only one solution. Below we use q ∈ Ω to denote the unique
solution of the variational inequality (3.2).

Now, take p ∈ Ω and let un = Kνnxn and wn = Trnun = TrnKνnxn. Then, it
follows from Lemma 2.5(4) and Lemma 2.6 (iii) that p = Kνnp and p = Trnp. Since
un = Kνnxn, wn = Trnun, and Kνn and Trn are nonexpansive, we have

(3.3) ‖wn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖, ∀n ≥ 1,

Since

p = PC(I − λn∇f)p = αnp+ (1− αn)Snp, ∀λn ∈ (0,
2

L
),

where αn := αn(λn) =
2−λnL

4 ∈ (0, 12), it is clear that Snp = p for each λn ∈ (0, 2
L).

From now, put yn = βnxn + (1 − βn)SnTrnKνnxn = βnxn + (1 − βn)SnTrnun =
βnxn + (1− βn)Snwn. We divide the proof into several steps.

Step 1. We show that {xn} is bounded. To this end, let p ∈ Ω. Then from (3.3),
it follows that

(3.4)

‖yn − p‖ ≤ βn‖xn − p‖+ (1− βn)‖wn − p‖
≤ βn‖xn − p‖+ (1− βn)‖wn − Snp‖
≤ βn‖xn − p‖+ (1− βn)‖xn − p‖ = ‖xn − p‖.

Therefore, by (3.4) and Lemma 2.10, we derive

‖xn − p‖ = ‖αnγV xn + (I − αnµG)yn − p‖
= ‖αn(γV xn − γV p) + (I − αnµG)yn − (I − αnµG)p+ αn(γV p− µGp)‖
≤ αnγl‖xn − p‖+ (1− αnτ)‖yn − p‖+ αn‖γV p− µGp‖
≤ αnγl‖xn − p‖+ (1− αnτ)‖xn − p‖+ αn(γ‖V p‖+ µ‖Gp‖).

and so

‖xn − p‖ ≤ γ‖V p‖+ µ‖Gp‖
τ − γl

.

Hence {xn} is bounded. Also, by (3.3), {un}, {wn}, {Snwn}, {V xn} and {GSnwn}
are bounded.
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Step 2. We show that limn→∞ ‖xn − Snwn‖ = 0. Indeed, observing that

‖xn − Snwn‖ = ‖αnγV xn + (I − αnµG)yn − Snwn‖
≤ αn‖γV xn − µGyn‖+ ‖yn − Snwn‖
= αn‖γV xn − µGyn‖+ ‖βnxn + (1− βn)Snwn − Snwn‖
= αn‖γV xn − µGyn‖+ βn‖xn − Snwn‖,

by conditions (i) and (ii), we obtain

‖xn − Snwn‖ ≤ αn

1− βn
‖γV xn − µGyn‖ → 0 as n → ∞.

Step 3. We show that limn→∞ ‖un − xn‖ = limn→∞ ‖Kνnxn − xn‖ = 0. Indeed.
using Lemma 2.5(c) and (2.2), we have

‖un − p‖2 = ‖Kνnxn −Kνnp‖2

≤ 〈xn − p, un − p〉

=
1

2
(‖xn − p‖2 + ‖un − p‖2 − ‖xn − un‖2),

and so

(3.5) ‖un − p‖2 ≤ ‖xn − p‖2 − ‖xn − un‖2 (≤ ‖xn − p‖2).

Noting that yn = βnxn + (1 − βn)Snwn and xn = αnγV xn + (I − αnµG)yn, by
(3.3) and (3.5), we induce that
(3.6)

‖xn − p‖2 = ‖αnγV xn + (I − αnµG)yn − p‖2

= ‖αn(γV xn − µGyn) + (yn − p)‖2

= ‖αn(γV xn − µGyn) + βn(xn − Snwn) + (Snwn − p)‖2

≤ [(‖αn(γV xn − µGyn)‖+ ‖wn − p‖) + βn‖xn − Snwn‖]2

≤ [(‖αn(γV xn − µGyn)‖+ ‖un − p‖) + βn‖xn − Snwn‖]2

= α2
n‖γV xn − µGyn‖2 + 2αn‖γV xn − µGyn‖‖un − p‖+ ‖un − p‖2

+ βn‖xn − Snwn‖2(αn‖γV xn − µGyn‖+ ‖un − p‖)
+ β2

n‖xn − Snwn‖2

≤ αn‖γV xn − µGyn‖2 + ‖un − p‖2 +Mn

≤ αn‖γV xn − µGyn‖2 + ‖xn − p‖2 − ‖un − xn‖2 +Mn,

where
(3.7)

Mn = 2αn‖γV xn − µGyn‖‖un − p‖
+ βn‖xn − Snwn‖2(αn‖γV xn − µGyn‖+ ‖un − p‖) + β2

n‖xn − Snwn‖2.

From (3.6), we obtain

‖un − xn‖2 ≤ αn‖γV xn − µGyn‖2 +Mn.
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Since Mn → 0 as n → ∞ by condition (i) and Step 2, we get

lim
n→∞

‖un − xn‖ = lim
n→∞

‖Kνnxn − xn‖ = 0.

Step 4. We show that limn→∞ ‖wn − un‖ = limn→∞ ‖Trnun − un‖ = 0. Again, by
Lemma 2.6(ii) and (2.2), we obtain

‖wn − p‖2 = ‖Trnun − Trnp‖2

≤ 〈un − p, wn − p〉

=
1

2
(‖un − p‖2 + ‖wn − p‖2 − ‖un − wn‖2),

and so

(3.8)
‖wn − p‖2 ≤ ‖un − p‖2 − ‖un − wn‖2

≤ ‖xn − p‖ − ‖un − wn‖2 (by (3.3))

Then, from (3.6) and (3.8), we derive

‖xn − p‖2 ≤ αn‖γV xn − µGyn‖2 + ‖un − p‖2 +Mn

≤ αn‖γV xn − µGyn‖2 + ‖xn − p‖2 − ‖un − wn‖2 +Mn,

where Mn is of (3.7), and so

‖un − wn‖2 ≤ αn‖γV xn − µGyn‖2 +Mn.

From limn→∞Mn = 0 and condition (i), we obtain

lim
n→∞

‖un − wn‖ = lim
n→∞

‖Trnun − un‖ = 0.

Step 5. We show that limn→∞ ‖xn − wn‖ = 0. In fact, by Step 3 and Step 4,

‖xn − wn‖ ≤ ‖xn − un‖+ ‖un − wn‖ → 0 as n → ∞.

Step 6. We show that limn→∞ ‖wn − Snwn‖ = 0. From Step 2 and Step 5, it
follows that

‖wn − Snwn‖ ≤ ‖wn − xn‖+ ‖xn − Snwn‖ → 0 as n → ∞.

Step 7. We show that {xn} converges strongly to q ∈ Ω as n → ∞, where q is the
unique solution of variational inequality (3.2). To this end, first, observe that

‖PC(I − λn∇f)wn − wn‖ = ‖Snwn − (1− αn)Snwn − wn‖
= (1− αn)‖Snwn − wn‖
≤ ‖Snwn − wn‖,
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where αn = 2−λnL
4 ∈ (0, 12) for each λn ∈ (0, 2

L). Hence, we have∥∥∥∥PC

(
I − 2

L
∇f

)
wn − wn

∥∥∥∥
≤

∥∥∥∥PC

(
I − 2

L
∇f

)
wn − PC

(
I − λn∇f

)
wn

∥∥∥∥+

∥∥∥∥PC

(
I − λn∇f

)
wn − wn

∥∥∥∥
≤

∥∥∥∥(I − 2

L
∇f

)
wn −

(
I − λn∇f

)
wn

∥∥∥∥+

∥∥∥∥PC

(
I − λn∇f

)
wn − wn

∥∥∥∥
≤

(
2

L
− λn

)
‖∇f(wn)‖+ ‖Snwn − wn‖.

From the boundedness of {wn}, αn → 0 (⇐⇒ λn → 2
L) and ‖wn − Snwn‖ → 0 (by

Step 6), we conclude that

lim
n→∞

∥∥∥∥wn − PC

(
I − 2

L
∇f

)
wn

∥∥∥∥ = 0.

Consider a subsequence {wni} of {wn}. Since {wn} is bounded, there exists a sub-
sequence {wnij

} of {wni} which converges weakly to q. Without loss of generality,

we can assume that wni ⇀ q. Since C is closed and convex, C is weakly closed. So,
we have q ∈ C. Then, by the same argument as in proofs of Theorem 3.1 in [14, 15],
we can show that q ∈ Ω. For the sake of completeness, we include its proof, which
was divided into three steps.

(i) We prove that q ∈ S. In fact, by Lemma 2.11, we obtain

q = PC

(
I − 2

L
∇f

)
q.

This means that q ∈ S.

(ii) We prove that q ∈ GMEP (Θ, φ,B). Since un = Kνnxn, by Lemma 2.5, we
know that

Θ(un, y) + 〈Bun, y − un〉+ φ(y)− φ(un) +
1

νn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

Then, it follows from (A2) (the monotonicity of Θ) that

(3.9) 〈Bun, y − un〉+ φ(y)− φ(un) +
1

νn
〈y − un, un − xn〉 ≥ Θ(y, un), ∀y ∈ C.

For ϵ with 0 < ϵ ≤ 1 and v ∈ C, let vϵ = ϵv+(1− ϵ)q. Then vϵ ∈ C. So, from (3.9),
we obtain

〈Bvϵ, vϵ − un〉 ≥ 〈Bvϵ, vϵ − un〉 − φ(vϵ) + φ(un)

− 〈Bun, vϵ − un〉 − 〈vϵ − un,
un − zn

νn
〉+Θ(vϵ, un)

= 〈Bvϵ −Bun, vϵ − un〉 − φ(vϵ) + φ(un)

− 〈vϵ − un,
un − xn

νn
〉+Θ(vϵ, un).
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By Step 3 and condition (iii), we get ∥un−xn∥
νn

≤ ∥un−xn∥
ν → 0 as n → ∞, and by

replacing n by ni and letting i → ∞ along with Step 4, it follows that uni ⇀ q.
Moreover, from the monotonicity of B, we have 〈Bvϵ −Bun, vϵ − un〉 ≥ 0. So, from
(A4) and the weak lower semicontinuity of φ, if follows that

(3.10) 〈Bvϵ, vϵ − q〉 ≥ −φ(vϵ) + φ(q) + Θ(vϵ, q) as i → ∞.

By (A1), (A4) and (3.10), we also obtain

0 = Θ(vϵ, vϵ) + φ(vϵ)− φ(vϵ)

≤ ϵΘ(vϵ, v) + (1− ϵ)Θ(vϵ, q) + ϵφ(v) + (1− ϵ)φ(q)− φ(vϵ)

≤ ϵ[Θ(vϵ, v) + φ(v)− φ(vϵ)] + (1− ϵ)〈Bvϵ, vϵ − q〉
= ϵ[Θ(vϵ, v) + φ(v)− φ(vϵ)] + (1− ϵ)ϵ〈Bvϵ, v − q〉,

and hence

(3.11) 0 ≤ Θ(vϵ, v) + φ(v)− φ(vϵ) + (1− ϵ)〈Bvϵ, v − q〉.

Letting ϵ → 0 in (3.11), we have for each v ∈ C

Θ(q, v) + 〈Bq, v − q〉+ φ(v)− φ(q) ≥ 0.

This implies that q ∈ GMEP (Θ, φ,B).

(iii) We prove that q ∈ Fix(T ). In fact, noting wn = Trnun, by Lemma 2.6, we
induce

(3.12) 〈y − wn, Twn〉 −
1

rn
〈y − wn, (1 + rn)wn − un〉 ≤ 0, ∀y ∈ C.

Put vϵ = ϵv + (1− ϵ)q for 0 < ϵ ≤ 1 and v ∈ C. Then vϵ ∈ C, and from (3.12) and
pseudocontractivity of T , it follows that

(3.13)

〈wn − vϵ, T vϵ〉 ≥ 〈wn − vϵ, T vϵ〉+ 〈vϵ − wn, Twn〉

− 1

rn
〈vϵ − wn, (1 + rn)wn − un〉

= − 〈vϵ − wn, T vϵ − Twn〉 −
1

rn
〈vϵ − wn, wn − un〉

− 〈vϵ − wn, wn〉

≥ − ‖vϵ − wn‖2 −
1

rn
〈vϵ − wn, wn − un〉

− 〈vϵ − wn, wn〉

= − 〈vϵ − wn, vϵ〉 − 〈vϵ − wn,
wn − un

rn
〉.

Also, by Step 4 and condition (iv), we induce ∥wn−un∥
rn

≤ ∥wn−un∥
r → 0 as n → ∞.

Since wni ⇀ q as i → ∞, replacing n by ni and letting i → ∞, we derive from
(3.13) that

〈q − vϵ, T vϵ〉 ≥ 〈q − vϵ, vϵ〉
and

−〈v − q, Tvϵ〉 ≥ −〈v − q, vϵ〉, ∀v ∈ C.
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Letting ϵ → 0 and using the fact that T is continuous, we obtain

(3.14) −〈v − q, T q〉 ≥ −〈v − q, q〉, ∀v ∈ C.

Let v = Tq in (3.14). Then we have q = Tq, that is, q ∈ Fix(T ). This along with
(i), (ii) and (iii) obtains q ∈ Ω.

On the other hand, by (3.1) and Lemma 2.10, we derive for p ∈ Ω

(3.15)

‖xn − p‖2

= ‖αnγV xn + (I − αnµG)yn − p‖2

= ‖(I − αnµG)yn − (I − αnµG)p− αn(µG− γV )p+ αnγ(V xn − V p)‖2

= ‖(I − µG)yn − (I − µG)p‖2

− 2αn[〈(µG− γV )p, yn − p〉 − αn〈(µG− γV )p, µGyn − µGp〉]
+ 2αnγ[〈V xn − V p, yn − p〉 − αn〈V xn − V p, µGyn − µGp〉]
− 2α2

nγ〈(µG− γV )p, V xn − V p〉
+ α2

n‖(µG− γV )p‖2 + α2
nγ

2‖V xn − V p‖2

≤ (1− αnτ)
2‖yn − p‖2 − 2αn〈(µG− γV )p, yn − p〉

+ 2αnγl‖xn − p‖‖yn − p‖+ 2α2
n‖(µG− γV )p‖(µ‖Gyn‖+ µ‖Gp‖)

+ 2α2
nγl‖xn − p‖((µ‖Gyn‖+ µ‖Gp‖) + 2α2

nγl‖(µG− γV )p‖‖xn − p‖
+ α2

n‖(µG− γV )p‖2 + α2
nγ

2l2‖xn − p‖2

= (1− 2αnτ + α2
nτ

2)‖yn − p‖2 − 2αn〈(µG− γV )p, yn − p〉
+ 2αnγl‖xn − p‖‖yn − p‖+ 2α2

n‖(µG− γV )p‖(µ‖Gyn‖+ µ‖Gp‖)
+ 2α2

nγl‖xn − p‖(µ‖Gyn‖+ µ‖Gp‖) + 2α2
nγl‖(µG− γV )p‖‖xn − p‖

+ α2
n(‖(µG− γV )p‖2 + γ2l2‖xn − p‖2)

≤ (1− 2αnτ)‖yn − p‖2 + 2αn〈(µG− γV )p, p− yn〉
+ αnτ l(‖xn − p‖2 + ‖yn − p‖2) + α2

nM,

where

M = sup{τ2‖yn − p‖2 + 2(‖(µG− γV )p‖+ γl‖xn − p‖)(µ‖Gyn‖+ µ‖Gp‖)
+ 2γl‖(µG− γV )p‖‖xn − p‖+ ‖(µG− γV )p‖2 + γ2l2‖xn − p‖2 : n ≥ 1}.
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Hence by (3.4) and (3.15), we obtain

(3.16)

‖xn − p‖2 ≤ 1− 2αnτ + αnγl

1− αnγl
‖yn − p‖2 + 2αn

1− αnγl
〈(µG− γV )p, p− yn〉

+
α2
n

1− αnγl
M

≤ 1− 2αnτ + αnγl

1− αnγl
‖xn − p‖2 + 2αn

1− αnγl
〈(µG− γV )p, p− yn〉

+
α2
n

1− αnγl
M.

Observe that
(3.17)
〈(µG− γV )p, p− yn〉 = 〈(µG− γV )p, p− (βnxn + (1− βn)Snwn)〉

= 〈(µG− γV )p, p− Snwn〉+ βn〈(µG− γV )p, Snwn − xn〉
= 〈(µG− γV )p, p− wn〉+ 〈(µG− γV )p, wn − Snwn〉

+ βn〈(µG− γV )p, Snwn − xn〉
≤ 〈(µG− γV )p, p− wn〉+ ‖(µG− γV )p‖‖wn − Snwn‖

+ βn‖(µG− γV )p‖‖Snwn − xn‖
≤ 〈(µG− γV )p, p− wn〉+ Ln,

where Ln = ‖(µG − γV )p‖‖wn − Snwn‖ + βn‖(µG − γV )p‖‖Snwn − xn‖. Then,
from (3.16) and (3.17), we derive

(3.18) ‖xn − p‖2 ≤ 1

τ − γl
〈µG− γV p, p− wn〉+

αnM

2(τ − γl)
+

Ln

τ − γl
.

Now, replacing n by ni, we substitute q for p in (3.18) to obtain

(3.19) ‖xni − q‖2 ≤ 1

τ − γl
〈µG− γV q, q − wni〉+

αniM

2(τ − γl)
+

Lni

τ − γl
.

Note that wni ⇀ q as i → ∞ and limn→∞ Ln = 0 by Step 2 and Step 6. This fact
and the inequality (3.19) along with condition (i) imply that xni → q strongly as
i → ∞.

Next, we show that q solves the the variational inequality (3.2). Indeed, taking
the limit in (3.18) as i → ∞, we get

‖q − p‖2 ≤ 1

τ − γl
〈(µG− γV )p, p− q〉, ∀p ∈ Ω.

In particular, q solves the following variational inequality

q ∈ Ω 〈(µG− γV )p, p− q〉 ≥ 0, p ∈ Ω,

or the equivalent dual variational inequality(Lemma 2.12).

(3.20) q ∈ Ω 〈(µG− γV )q, p− q〉 ≥ 0, p ∈ Ω.
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Finally we show that the sequence {xn} converges strongly to q. Indeed, let {xnk
}

be another subsequence of {xn} and assume xnk
→ q̂. By the same method as the

proof above, we have q̂ ∈ Ω. Moreover, it follows from (3.20) that

(3.21) 〈(µG− γV )q, q − q̂〉 ≤ 0.

Interchanging q and q̂, we obtain

(3.22) 〈(µG− γV )q̂, q̂ − q〉 ≤ 0.

Lemma 2.9 and adding these two inequalities (3.21) and (3.22) yields

(µη − γl)‖q − q̂‖2 ≤ 〈(µG− γV )q − (µG− γV )q̂, q − q̂〉 ≤ 0.

Hence q = q̂. Therefore we conclude that xn → q as n → ∞.
The variational inequality (3.2) can be rewritten as

〈(I − µG+ γV )q − q, q − p〉 ≥ 0, ∀p ∈ Ω.

By Lemma 2.4(a), this is equivalent to the fixed point equation

PΩ(I − µG+ γV )q = q.

□

From Theorem 3.1, we deduce the following result.

Corollary 3.2. Let {xn} be a sequence generated by
Θ(un, y) + 〈Bun, y − un〉+ φ(y)− φ(un)

+
1

νn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn = (1− αn)(βnxn + (1− βn)SnTrnKνnxn), ∀n ≥ 1,

Let {αn} {βn}, {νn} and {rn} be sequences satisfying conditions (i), (ii), (iii) and
(iv) in Theorem 3.1. Then {xn} converges strongly as λn → 2

L (⇐⇒ limn→∞ αn =
0) to a point q ∈ Ω, which solves the following minimum-norm problem: find x∗ ∈ Ω
such that

(3.23) ‖x∗‖ = min{‖x‖ : x ∈ Ω}.

Proof. Take G = I, µ = 1, τ = 1, V = 0 and l = 0 in Theorem 3.1. Then the
variational inequality (3.2) is reduced to the inequality

〈q, p− q〉 ≥ 0, ∀p ∈ Ω.

This is equivalent to ‖q‖2 ≤ 〈p, q〉‖p‖‖q‖ for all p ∈ Ω. It turns out that ‖q‖ ≤ ‖p‖
for all p ∈ Ω and q is the minimum-norm point of Ω. □

Now, we propose the following iterative algorithm which generates a sequence
{xn} in an explicit way:

(3.24)


Θ(un, y) + 〈Bun, y − un〉+ φ(y)− φ(un)

+
1

νn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnγV xn + (I − αnµG)(βnxn + (1− βn)Snwn), ∀n ≥ 1,
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where αn = 2−λnL
4 ∈ (0, 12) for each λn ∈ (0, 2

L); {βn} ⊂ (0, 1); {νn}, {rn} ⊂ (0,∞);
x1 ∈ C is an arbitrary initial guess; un = Kνnxn; and wn = Trnun = TrnKνnxn.

Theorem 3.3. Let the sequence {xn} be generated iteratively by the explicit algo-
rithm (3.24). Let {αn}, {βn} ⊂ (0, 1) and {rn}, {νn} ⊂ (0,∞) satisfy the following
conditions:

(C1) αn ∈ (0, 12) for each λn ∈ (0, 2
L),

limn→∞ αn = 0 (⇐⇒ limn→∞ λn = 2
L);

(C2)
∑∞

n=0 αn = ∞;
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) 0 < ν ≤ νn < ∞ and limn→∞ |νn+1 − νn| = 0.
(C5) 0 < r ≤ rn < ∞ and limn→∞ |rn+1 − rn| = 0;

Then {xn} converges strongly as λn → 2
L (⇐⇒ limn→∞ αn = 0) to a point q ∈ Ω,

which is the unique solution of the variational inequality (3.2).

Proof. Note that from condition (C1), without loss of generality, we assume that
αn(τ − γl) < 1 for n ≥ 1. From now, we put un = Kνnxn, wn = Trnun and
yn = βnxn + (1− βn)SnTrnKνnxn = βnxn + (1− βn)Snwn for n ≥ 1.

Now, we divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Ω. Then, by Lemma
2.5 (4) and Lemma 2.6 (iii), we see that p = Kνnp and p = Trnp. Also, from the
proof of Theorem 3.1, we have p = Snp. From un = Kνnxn and the fact that Kνn

is nonexpansive, it follows that

(3.25) ‖un − p‖ = ‖Kνnxn − p‖ ≤ ‖xn − p‖, ∀n ≥ 1.

Then, by (3.25), we obtain that

(3.26)

‖yn − p‖ = ‖βnxn + (I − βn)SnTrnKνnxn − p‖
≤ βn‖xn − p‖+ ‖(I − βn)SnTrnKνnxn − (I − βn)SnTrnKνnp‖
≤ βn‖xn − p‖+ (1− βn)‖TrnKνnxn − TrnKνnp‖
≤ βn‖xn − p‖+ (1− βn)‖Trnun − Trnp‖
≤ βn‖xn − p‖+ (1− βn)‖un − p‖
≤ βn‖xn − p‖+ (1− βn)‖xn − p‖
= ‖xn − p‖, ∀n ≥ 1.

Thus, noting Lemma 2.10 and (3.26), we have

(3.27)

‖xn+1 − p‖ ≤ αn‖γV xn − γV p‖+ ‖(I − αnµG)yn − (I − αnµG)p‖
+ αn‖γV p− µGp‖

≤ αnγl‖xn − p‖+ (1− αnτ)‖yn − p‖+ αn‖γV p− µGp‖
≤ αnγl‖xn − p‖+ (1− αnτ)‖xn − p‖+ αn‖γV p− µGp‖
= (1− (τ − γl)αn)‖xn − p‖+ αn‖γV p− µGp‖
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By induction, it follows from (3.27) that

‖xn − p‖ ≤ max

{
‖x1 − p‖, ‖γV p− µGp‖

τ − γl

}
, ∀n ≥ 1.

Therefore {xn} is bounded, and so {yn}, {un} = {Kνnxn}, {V xn}, {Gyn} and
{Snwn} are bounded. Moreover, since ‖Trnun − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖, {wn}
= {Trnun} is bounded.
Step 2. We show that limn→∞ ‖xn+1 − xn‖ = 0. To this end, let wn = Trnun.
Since ∇f is 1

L -ism, PC(I −λn∇f) is nonexpansive. So, it follows that for any given
p ∈ S,

‖PC(I − λn+1∇f)wn‖ ≤ ‖PC(I − λn+1∇f)wn − p‖+ ‖p‖
≤ ‖PC(I − λn+1∇f)wn − PC(I − λn+1∇f)p‖+ ‖p‖
≤ ‖wn − p‖+ ‖p‖
≤ ‖wn‖+ 2‖p‖.

This together with the boundedness of {wn} implies that {PC(I − λn+1∇f)wn} is
bounded. Also, observe that

‖Sn+1wn − Snwn‖ =

∥∥∥∥4PC(I − λn+1∇f)− (2− λn+1L)I

2 + λn+1L
wn

− 4PC(I − λn∇f)− (2− λnL)I

2 + λnL
wn

∥∥∥∥
≤

∥∥∥∥4PC(I − λn+1∇f)

2 + λn+1L
wn − 4PC(I − λn∇f)

2 + λnL
wn

∥∥∥∥
+

∥∥∥∥2− λnL

2 + λnL
wn − 2− λn+1L

2 + λn+1L
wn

∥∥∥∥
=

∥∥∥∥4(2 + λnL)PC(I − λn+1∇f)wn

(2 + λn+1L)(2 + λnL)

− 4(2 + λn+1L)PC(I − λn∇f)wn

(2 + λn+1L)(2 + λnL)

∥∥∥∥
+

4L|λn+1 − λn|
(2 + λn+1L)(2 + λnL)

‖wn‖

=

∥∥∥∥4L(λn − λn+1)PC(I − λn+1∇f)wn

(2 + λn+1L)(2 + λnL)
(3.28)

+
4(2 + λn+1L)(PC(I − λn+1∇f)wn − PC(I − λn∇f)wn)

(2 + λn+1L)(2 + λnL)

∥∥∥∥
+

4L|λn+1 − λn|
(2 + λn+1L)(2 + λnL)

‖wn‖

≤ 4L|λn − λn+1|‖PC(I − λn+1∇f)wn‖
(2 + λn+1L)(2 + λnL)

+
4(2 + λn+1L)‖PC(I − λn+1∇f)wn − PC(I − λn∇f)wn‖

(2 + λn+1L)(2 + λnL)
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+
4L|λn+1 − λn|

(2 + λn+1L)(2 + λnL)
‖wn‖

≤ |λn+1 − λn|[L‖PC(I − λn+1∇f)wn‖+ 4‖∇f(wn)‖+ L‖wn‖]
≤ M1|λn+1 − λn|,

where some constant M1 > 0 such that

M1 ≥ L‖PC(I − λn+1∇f)wn‖+ 4‖∇f(wn)‖+ L‖wn‖, ∀n ≥ 1.

So, by (3.28), we have that

(3.29)

‖Sn+1wn+1 − Snwn‖ ≤ ‖Sn+1wn+1 − Sn+1wn‖+ ‖Sn+1wn − Snwn‖
≤ ‖wn+1 − wn‖+M1|λn+1 − λn|

≤ ‖wn+1 − wn‖+
4M1

L
(αn+1 + αn).

On the other hand, from un = Kνnxn and un+1 = Kνn+1xn+1, it follows that

(3.30)

Θ(un, y) + 〈Bun, y − un〉+ φ(y)− φ(un)

+
1

νn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

and
(3.31)
Θ(un+1, y) + 〈Bun+1, y − un+1〉+ φ(y)− φ(un+1)

+
1

νn+1
〈y − un+1, un+1 − xn+1〉 ≥ 0, ∀y ∈ C.

Substituting y = un+1 into (3.30) and y = un into (3.31), we obtain

Θ(un, un+1) + 〈Bun, un+1 − un〉+ φ(un+1)− φ(un)

+
1

νn
〈un+1 − un, un − xn〉 ≥ 0

and
Θ(un+1, un) + 〈Bun+1, un − un+1〉+ φ(un)− φ(un+1)

+
1

νn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

By (A2), we have

〈un+1 − un, Bun −Bun+1 +
un − xn

νn
− un+1 − xn+1

νn+1
〉 ≥ 0,

and then

〈un+1 − un, νn(Bun −Bun+1) + un − xn − νn
νn+1

(un − xn)〉 ≥ 0.

So, it follows that

(3.32)

〈un+1 − un, un − un+1〉+ νn〈un+1 − un, Bun −Bun+1〉

+ 〈un+1 − un, xn+1 − xn〉+
(
1− νn

νn+1

)
〈un+1 − un, un+1 − xn+1〉 ≥ 0.
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Then, from (3.32), condition (C4) and the fact that 〈un+1−un, Bun−Bun+1〉 ≤ 0,
we have

‖un+1 − un‖2 ≤ 〈un+1 − un, xn+1 − xn〉+
(
1− νn

νn+1

)
〈un+1 − un, un+1 − xn+1〉

≤ ‖un+1 − un‖
[
‖xn+1 − xn‖+

∣∣∣∣1− νn
νn+1

∣∣∣∣‖un+1 − xn+1‖
]
,

which implies that

(3.33)

‖un+1 − un‖ ≤ ‖xn+1 − xn‖+
1

νn+1
|νn+1 − νn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖+
1

ν
|νn+1 − νn|M2,

where M2 = sup{‖un − xn‖ : n ≥ 1}.
On another hand, let wn+1 = Trn+1un+1 and wn = Trnun. Then we get

(3.34) 〈y − wn, Twn〉 −
1

rn
〈y − wn, (1 + rn)wn − un〉 ≤ 0, ∀y ∈ C,

and

(3.35) 〈y−wn+1, Twn+1〉−
1

rn+1
〈y−wn+1, (1+ rn+1)wn+1−un+1〉 ≤ 0, ∀y ∈ C.

Putting y = wn+1 in (3.33) and y = wn in (3.34), we obtain

(3.36) 〈wn+1 − wn, Twn〉 −
1

rn
〈wn+1 − wn, (1 + rn)wn − un〉 ≤ 0,

and

(3.37) 〈wn − wn+1, Twn+1〉 −
1

rn+1
〈wn − wn+1, (1 + rn+1)wn+1 − un+1〉 ≤ 0.

Adding up (3.36) and (3.37), we have

〈wn+1 − wn, Twn − Twn+1〉

− 〈wn+1 − wn,
(1 + rn)wn − un

rn
− (1 + rn+1)wn+1 − un+1

rn+1
〉 ≤ 0,

which implies that

〈wn+1 − wn, (wn+1 − Twn+1)− (wn − Twn)〉

− 〈wn+1 − wn,
wn − un

rn
− wn+1 − un+1

rn+1
〉 ≤ 0.

Now, using the fact that T is pseudocontractive, we induce

〈wn+1 − wn,
wn − un

rn
− wn+1 − un+1

rn+1
〉 ≥ 0,

and hence

(3.38) 〈wn+1 − wn, wn − wn+1 + wn+1 − un − rn
rn+1

(wn+1 − un+1)〉 ≥ 0.
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By (3.38) and condition (C5), we have

‖wn+1 − wn‖2 ≤ 〈wn+1 − wn, un+1 − un +

(
1− rn

rn+1

)
(wn+1 − un+1)〉

≤ ‖wn+1 − wn‖
[
‖un+1 − un‖+

1

rn+1
|rn+1 − rn|‖wn+1 − un+1‖

]
,

which implies

(3.39) ‖wn+1 − wn‖ ≤ ‖un+1 − un‖+
1

r
|rn+1 − rn|M3,

where M3 = sup{‖wn − un‖ : n ≥ 1}. From (3.33) and (3.39), it follows that

(3.40)

‖wn+1 − wn‖ = ‖Trn+1un+1 − Trnun‖

≤ ‖un+1 − un‖+
1

r
|rn+1 − rn|M3

≤‖xn+1 − xn‖+
1

ν
|νn+1 − νn|M2 +

1

r
|rn+1 − rn|M3.

Now, define

xn+1 = βnxn + (1− βn)kn, ∀n ≥ 1.

Then, from the definition of kn, we obtain

kn+1 − kn

=
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1γV xn+1 + (I − αn+1µG)yn+1 − βn+1xn+1

1− βn+1

− αnγV xn + (I − αnG)yn − βnxn
1− βn

=
αn+1γV xn+1

1− βn+1
− αnγV xn

1− βn
− (I − αnµG)(βnxn + (1− βn)Snwn)− βnxn

1− βnxn

+
(I − αn+1µG)(βn+1xn+1 + (1− βn+1)Sn+1wn+1)− βn+1xn+1

1− βn+1xn+1

=
αn+1γV xn+1

1− βn+1
− αnγV xn

1− βn
− βnxn + (1− βn)Snwn − βnxn

1− βn
+

αnµGyn
1− βn

+
βn+1xn+1 + (1− βn+1)Sn+1wn+1 − βn+1xn+1

1− βn+1
− αn+1µG)yn+1

1− βn+1

=
αn+1

1− βn+1
(γV xn+1 − µGyn+1)−

αn

1− βn
(γV xn − µGyn)

+ Sn+1wn+1 − Snwn
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So, it follows from (3.29) and (3.40)that

‖kn+1 − kn‖ ≤ αn+1

1− βn+1
(γ‖V xn+1‖+ µ‖Gyn+1‖)

+
αn

1− βn
(γ‖V xn‖+ µ‖Gyn‖) + ‖Sn+1wn+1 − Snwn‖

≤ αn+1

1− βn+1
(γ‖V xn+1‖+ µ‖Gyn+1‖)

+
αn

1− βn
(γ‖V xn‖+ µ‖Gyn‖) + ‖wn+1 − wn‖

+
4M1

L
(αn+1 + αn)

≤ αn+1

1− βn+1
(γ‖V xn+1‖+ µ‖Gyn+1‖)

+
αn

1− βn
(γ‖V xn‖+ µ‖Gyn‖)

+ ‖xn+1 − xn‖+
4M1

L
(αn+1 + αn)

+
1

ν
|νn+1 − νn|M2 +

1

r
|rn+1 − rn|M3

≤
(

αn+1

1− βn+1
+

αn

1− βn

)
M4 + ‖xn+1 − xn‖

+
4M1

L
(αn+1 + αn)

+
1

ν
|νn+1 − νn|M2 +

1

r
|rn+1 − rn|M3.

where M4 = sup{γ‖V xn‖+ µ‖Gyn‖ : n ≥ 1}. This implies that

(3.41)

‖kn+1 − kn‖ − ‖xn+1 − xn‖

≤
(

αn+1

1− βn+1
+

αn

1− βn

)
M4 ++

4M1

L
(αn+1 + αn)

+
1

ν
|νn+1 − νn|M2 +

1

r
|rn+1 − rn|M3.

Thus, by conditions (C1), (C3), (C4) and (C5), from (3.41) we induce

lim sup
n→∞

(‖kn+1 − kn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence, by Lemma 2.8,

lim
n→∞

‖kn − xn‖ = 0.

Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖kn − xn‖ = 0.
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Step 3. We show that limn→∞ ‖xn − Snwn‖ = 0. Noting that xn+1 = αnγV xn +
(I − αnµG)yn and yn = βnxn + (1− βn)Snwn, we have

‖xn − Snwn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Snwn‖
≤ ‖xn − xn+1‖+ αn‖γV xn − µGyn‖

+ ‖yn − Snwn‖
= ‖xn − xn+1‖+ αn‖γV xn − µGyn‖

+ ‖βnxn + (1− βn)Snwn − Snwn‖
= ‖xn − xn+1‖+ αn‖γV xn − µGyn‖

+ βn‖xn − Snwn‖,
that is,

‖xn − Snwn‖ ≤ 1

1− βn
‖xn − xn+1‖+

αn

1− βn
‖γV xn − µGyn‖.

From the conditions (C1), (C3) and Step 2, it follows that

lim
n→∞

‖xn − Snwn‖ = 0.

Step 4. We show that limn→∞ ‖xn − un‖ = limn→∞ ‖xn − Kνnxn‖ = 0. To this
end, let p ∈ Ω. Using un = Kνnxn, Kνnp = p and firmly nonexpansivity of Kνn

(Lemma 2.5 (3), (4)), we derive from (2.2) that

‖un − p‖2 = ‖Kνnxn − p‖2

≤ 〈Kνnxn −Kνnp, xn − p〉
= 〈un − p, xn − p〉

=
1

2
(‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2).

This implies

(3.42) ‖un − p‖2 ≤ ‖xn − p‖2 − ‖vn − xn‖2.
Again, noting that xn+1 = αnγV xn+(I−αnµG)yn, yn = βnxn+(1−βn)Snwn and
wn = Trnun, from (3.42) we induce that
(3.43)
‖xn+1 − p‖2 = ‖αn(γV xn − µGyn) + (yn − p)‖2

= ‖αn(γV xn − µGyn) + βn(xn − Snwn) + (Snwn − p)‖2

≤ [(‖αn(γV xn − µGyn)‖+ ‖wn − p‖) + βn‖xn − Snwn‖]2

= α2
n‖γV xn − µGyn‖2 + 2αn‖γV xn − µGyn‖‖wn − p‖+ ‖wn − p‖2

+ βn‖xn − Snwn‖2(αn‖γV xn − µGyn‖+ ‖wn − p‖)
+ β2

n‖xn − Snwn‖2

≤ αn‖γV xn − µGyn‖2 + ‖wn − p‖2 +Mn

≤ αn‖γV xn − µGyn‖2 + ‖un − p‖2 +Mn

≤ αn‖γV xn − µGyn‖2 + (‖xn − p‖2 − ‖xn − un‖2) +Mn
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where

(3.44)
Mn = βn‖xn − Snwn‖2(αn‖γV xn − µGyn‖+ ‖wn − p‖)

+ β2
n‖xn − Snwn‖2 + 2αn‖γV xn − µGyn‖‖wn − p‖.

Thus, by (3.43), we obtain
(3.45)
‖un − xn‖2 ≤ αn‖γV xn − µGyn‖2 + (‖xn − p‖2 − ‖xn+1 − p‖2) +Mn

≤ αn‖γV xn − µGyn‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖) +Mn.

Noting limn→∞Mn = 0 by condition (C1) and Step 3, we derive from (3.45), con-
dition (C1) and Step 2 that

lim
n→∞

‖un − xn‖ = lim
n→∞

‖Kνnxn − xn‖ = 0.

Step 5. We show that limn→∞ ‖wn − un‖ = limn→∞ ‖Trnun − un‖ = 0. Indeed,
using wn = Trnun , p = Trnp for p ∈ Ω and firmly nonexpansivity of Trn (Lemma
2.6 (ii), (iii)), we observe that

‖wn − p‖2 = ‖Trnun − Trnp‖2

≤ 〈Trnun − Trnp, un − p〉
= 〈wn − p, un − p〉

=
1

2
(‖wn − p‖2 + ‖un − p‖2 − ‖un − wn‖2).

This implies that

(3.46) ‖wn − p‖2 ≤ ‖un − p‖2 − ‖un − wn‖2 ≤ ‖xn − p‖2 − ‖un − wn‖2.

Again, from (3.43) and (3.46), we compute

(3.47)
‖xn+1 − p‖2 ≤ αn‖γV xn − µGyn‖2 + ‖wn − p‖2 +Mn

≤ αn‖γV xn − µGyn‖2 + (‖xn − p‖2 − ‖un − wn‖2) +Mn,

where Mn is of (3.44). So, we get
(3.48)
‖un − wn‖2 ≤ αn‖γV xn − µGyn‖2 + (‖xn − p‖2 − ‖xn+1 − p‖2) +Mn

≤ αn‖γV xn − µGyn‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖) +Mn.

From condition (C1), Step 2, limn→∞Mn = 0 and (3.48), we obtain

lim
n→∞

‖un − wn‖ = lim
n→∞

‖un − Trnun‖ = 0.

Step 6. We show that limn→∞ ‖xn − wn‖ = 0. Indeed, from Step 4 and Step 5, it
follows that

‖xn − wn‖ ≤ ‖xn − un‖+ ‖un − wn‖ → 0 as n → ∞.

Step 7. We show that limn→∞ ‖wn − Snwn‖ = 0. In fact, by Step 3 and Step 6,
we obtain

‖wn − Snwn‖ ≤ ‖wn − xn‖+ ‖xn − Snwn‖ → 0 as n → ∞.
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Step 8. We show that lim supn→∞〈(γV − µG)q, xn − q〉 ≤ 0, where q is the unique
solution of the variational inequality (3.2). To this end, first we prove that

lim sup
n→∞

〈(γV − µG)q, wn − q〉 ≤ 0.

Since {wn} is bounded, we can choose a subsequence {wni} of {wn} such that

(3.49) lim sup
n→∞

〈(γV − µG)q, wn − q〉 = lim
i→∞

〈(γV − µG)q, wni − q〉.

Without loss of generality, we may assume that {wni} converges weakly to z ∈ C.
Then, by the same argument as in (i), (ii) and (iii) in proof of Theorem 3.1 along
with Step 5, Step 6 and Step 7, we obtain z ∈ Ω, Hence, from (3.49), we obtain

(3.50)
lim sup
n→∞

〈(γV − µG)q, wn − q〉 = lim
i→∞

〈(γV − µG)q, wni − q〉

= 〈(γV − µG)q, z − q〉 ≤ 0.

Since limn→∞ ‖xn − wn‖ = 0 by Step 6, from (3.50), we conclude that

lim sup
n→∞

〈(γV − µG)q, xn − q〉

≤ lim sup
n→∞

〈(γV − µG)q, xn − wn〉+ lim sup
n→∞

〈(γV − µG)q, wn − q〉

≤ lim sup
n→∞

‖(γV − µG)q‖‖xn − wn‖+ lim sup
n→∞

〈(γV − µG)q, wn − q〉 ≤ 0.

Step 9. We show that limn→∞ ‖xn − q‖ = 0, where q is the unique solution of the
variational inequality (3.2). Indeed, from (3.24), Lemma 2.3 and Lemma 2.8, we
have

(3.51)

‖xn+1 − q‖2

= ‖αnγV xn + (I − αnµG)yn − p‖2

= ‖αn(γV xn − γV q) + (I − αnµG)yn − (I − αnµG)q + αn(γV q − µGq)‖2

≤ [αnγl‖xn − q‖+ (1− αnτ)‖yn − q‖]2 + 2αn〈(γV − µG)q, xn+1 − q〉
≤ [αnγl‖xn − q‖+ (1− αnτ)(βn‖xn − q‖+ (1− βn)‖Snwn − q‖)]2

+ 2αn〈(γV − µG)q, xn+1 − q〉
≤ [αnγl‖xn − q‖+ (1− αnτ)(βn‖xn − q‖+ (1− βn)‖wn − q‖)]2

+ 2αn〈(γV − µG)q, xn+1 − q〉
≤ [αnγl‖xn − q‖+ (1− αnτ)‖xn − q‖]2 + 2αn〈(γV − µG)q, xn+1 − q〉
≤ (1− (τ − γl)αn)‖xn − q‖2 + 2αn〈(γV − µG)q, xn+1 − q〉

= (1− (τ − γl)αn)‖xn − q‖2 + 2αn(τ − γl)
〈(γV − µG)q, xn+1 − q〉

τ − γl

= (1− ξn)‖xn − q‖2 + ξnδn

where ξn = (τ−γl)αn and δn = 2αn⟨(γV−µG)q,xn+1−q⟩
τ−γl . From the conditions (C1) and

(C2), and Step 9, it is easily seen that ξn → 0,
∑∞

n=1 ξn = ∞, and lim supn→∞ δn ≤
0. Hence, by applying Lemma 2.7 to (3.51), we conclude xn → q as n → ∞.
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In addition, from Step 4, and Step 6, we derive that un → q, and wn → q as
n → ∞. This completes the proof. □

Taking G = I, µ = 1 τ = 1, V = 0, and l = 0 in Theorem 3.3, we obtain
immediately the following result.

Corollary 3.4. Let {xn} be a sequence generated by
Θ(un, y) + 〈Bun, y − un〉+ φ(y)− φ(un)

+
1

νn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = (1− αn)(βnxn + (1− βn)Snwn), ∀n ≥ 1,

where αn = 2−λnL
4 ∈ (0, 12) for each λn ∈ (0, 2

L); {βn} ⊂ (0, 1); {νn}, {rn} ⊂ (0,∞);
x1 ∈ C is an arbitrary initial guess; un = Kνnxn; and wn = Trnun = TrnKνnxn.
Let {αn}, {βn}, {νn} and {rn} be sequences satisfying conditions (C1), (C2), (C3),
(C4) and (C5) in Theorem 3.3. Then {xn} converges strongly to a point q ∈ Ω,
which solves the minimum-norm problem (3.23).

Remark 3.5. Here some special cases of the the GMEP(1.5) are stated as follows:

1) If φ = 0, then the GMEP(1.5) reduces the following generalized equilibrium
problem (shortly, GEP) of finding x ∈ C such that

(3.52) Θ(x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C,

which was studied by Takahashi and Takahashi [22].
2) If Θ = 0 and φ = 0, then the GMEP(1.5) reduces the following variational

inequality problem (shortly, VIP) of finding x ∈ C such that

(3.53) 〈Bx, y − x〉 ≥ 0, ∀y ∈ C,

which was studied by Stampacchia [17, 20].
3) If B = 0 and φ = 0 then the GMEP(1.5) reduces the following equilibrium

problem (shortly, EP) of finding x ∈ C such that

(3.54) Θ(x, y) ≥ 0, ∀y ∈ C,

which was studied by Blum and Oettli [3].

Applying Theorem 3.1, Theorem 3.3, Corollary 3.2 and Corollary 3.4, we can also
establish new corresponding results for the CMP(1.1) combined with the GEP(3.52)
and the FPP(1.7), or VIP(3.53) and the FPP(1.7), or the EP(3.54) and the FPP(1.7).

Remark 3.6. 1) As new results for solving constrained convex minimization
problem combined with the GMEP(1.5) related to a continuous monotone
mapping B and The FPP (1.7) for a continuous pseudocontractive map-
ping T , Theorem 3.1 and Theorem 3.3 improve, develop and complement
the corresponding results, which were obtained by several authors in refer-
ences. In particular, Theorem 3.1 and Theorem 3.3 improve and develop
the corresponding results in [6, 14, 25] in following aspect:
(a) The MEP (1.6) in [14] is extended to the case of the GMEP(1.5).
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(b) The FPP (1.7) for a continuous pseudocontractive mapping T in com-
parison with [14] is considered.

(c) The GMEP (1.5) and the FPP (1.7) for a continuous pseudocontractive
mapping T in comparison with in [6, 25] are studied.

(d) Our conditions in Theorem 3.3 dispense with condition
∑∞

n=1 |αn+1 −
αn| < ∞ or limn→∞ αn+1/αn = 1 in comparison with Theorem 4.2 in
[6].

2) We point out that Corollary 3.2 and Corollary 3.4 for finding the minimum-
norm element of S ∩GMEP (Θ, φ,B) ∩ Fix(T ) are also new results.
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