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ABSTRACT. In this paper, we introduce two iterative algorithms (one implicit and
one explicit) for finding a common element of the set of solutions to a constrained
convex minimization problem for a convex function, the set of solutions to a
generalized mixed equilibrium problem and the set of fixed points of a continuous
pseudocontractive mapping in Hilbert spaces. Under suitable control conditions,
we establish strong convergence of sequence generated by the proposed iterative
algorithms to a common element of three sets, which is a solution of a certain
variational inequality. As a direct consequence, we obtain the unique minimum-
norm common element of three sets.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||.
Let C be a nonempty closed convex subset of H and let T': C' — C be self-mapping
on C. We denote by Fiz(T') the set of fixed points of T'.

The constrained convex minimization problem (shortly, CMP) is one of most
important problems in nonlinear analysis and optimization theory. The CMP is
defined as follows: find x € H such that

(1.1) f(z) = gggf(y),

where f : C — R is a real-valued convex function. We denote the set of solutions
to the CMP (1.1), that is, the set of minimizers of f, by S := arg min¢ f.

It is well known that the gradient-projection algorithm (shortly, GPA) plays
an important role in solving the constrained convex minimization problems. If f is
(Fréchet) differentiable, then the GPA generates a sequence {z, } using the following
recursive formula:

(1.2) Tny1 = Po(zn — AV f(zy)), Yn>1,
or more generally,
(1.3) Tnt1 = Po(zn, — NV f(xy)), VYn>1,
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where in both (1.2) and (1.3), the initial guess z is taken from C arbitrarily, the
parameters, A or \,, are positive real numbers satisfying ceratin conditions, and P¢
is the metric projection from H onto C. The convergence of algorithms (1.2) and
(1.3) depends on the behavior of the gradient V f. As a matter of fact, it is known
that if Vf is a-strongly monotone and L-Lipschitzian with constants a, L > 0,
then the operator

(1.4) T := Pe(I — A\Vf)

is a contractive mapping; hence the sequence {z,} generated by the algorithm (1.2)
converges in norm to the unique solution of the CMP (1.1). More generally, if the
sequence {\,} is chosen to satisfy

2
0 < liminf )\, <limsup A, < %,
n—o0 n—oo L

then the sequence {x,} generated by the algorithm (1.3) converges in norm to
the unique minimizer of (1.1). However, if the gradient V[ fails to be strongly
monotone, the operator 7" defined by (1.4) would fail to be contractive; consequently,
the sequence {z,} generated by the algorithm (1.2) may fail to converges strongly
(see [25]). In [25], Xu introduced an alternative operator-oriented approach to the
algorithm (1.3); namely, an averaged mapping approach. He gave his averaged
mapping approach to the GPA (1.3) and the relaxed gradient-projection algorithm.
Combining the hybrid iterative method of Yamada [26] based on viscosity iterative
method and the averaged mapping approach to the GPA of Xu [25], Ceng et al. [6]
considered implicit and explicit iterative algorithms for solving the CMP (1.1).
Let B : C' — H be a nonlinear mapping, let ¢ : C' — R be a function and let ©
be a bifunction of C' x C into R, where R is the set of real numbers. The following
generalized mixed equilibrium problem (shortly, GMEP) of finding = € C such that

(1.5) O(z,y) + (Bx,y —x) + o(y) — () 20, VyeCl

was introduced by Peng and Yao [19] (also see [16, 30]). The set of solutions to the
GMEP(1.5) is denoted by GM EP(O, ¢, B). The GMEP(1.5) is very general in the
sense that it includes, as special cases, fixed point problems, optimization problems,
variational inequality problems, minmax problems, Nash equilibrium problems in
noncooperative games and others.

If B=0in GMEP(1.5), then the GMEP(1.5) reduces the following mixed equi-
librium problem (shortly, MEP) of finding = € C such that

(1.6) O(z,y) +o(y) —¢p(x) 20, Vyel.

which was studied by Ceng and Yao [8] (see also [27]).
A fixed point problem (shortly, FPP) is to find a fixed point z of a nonlinear
mapping 1" with property:

(1.7) zeC, Tz =z

Fixed point theory is one of the most powerful and important tools of modern
mathematics and may be considered a core subject of nonlinear analysis.



ITERATIVE ALGORITHMS FOR CONSTRAINED CONVEX MINIMIZATION PROBLEMS 201

As we all know, the convex feasibility problem (shortly, CFP) is the problem of
finding a point in the (nonempty) intersection C' = N*,C; of a finite number of
closed convex sets C; (i =1,--+ ,m).

Recently, many authors considered iterative methods for finding a common el-
ement in solution sets of the CMP (1.1), the GMEP(1.5), the MEP(1.6) and the
FPP(1.7) for nonlinear mappings as special cases of the CFP. For instance, we can
refer to [8, 11, 12, 28] and the references therein for the MEP(1.6) and the FPP(1.7)
for nonlinear mappings. And we can refer to Peng and Yao [19] for the GMEP(1.5)
related to an inverse-strongly monotone mapping B and the FPP(1.7) for a nonex-
pansive mapping 7', refer to Jung [13, 15] for the GMEP(1.5) related to a continuous
monotone mapping B and the FPP(1.7) for a continuous pseudocontractive map-
ping T and refer to Ceng et al. [7] for the GMEP(1.5) related to an inverse strongly
monotone mapping B and the set of fixed points of a finite family of nonexpansive
mappings {7;}}¥,. In particular, Jung [14] considered implicit and explicit iterative
algorithms for solving the CMP(1.1) for a convex function f and the MEP(1.6).

In this paper, in order to study the CMP(1.1) combined with the GMEP(1.5)
and the FPP(1.7), we introduce implicit and explicit iterative algorithms for finding
a common element of the set of solutions to the CMP(1.1) for f, the set of solutions
to the GMEP(1.5) related to B and the set of fixed points of T', where f: C — R
is a real-valued convex function, B : C' — H is a continuous monotone mapping
and T : C — H is a continuous pseudocontractive mapping. Then we establish
strong convergence of the sequence generated by the proposed iterative algorithms
to a common element of three sets, which is a solution of a certain variational
inequality. As a direct consequence, we find the unique solution to the minimum-
norm problem:

|z*[| = min{[|z| : 2 € O},
where Q := SN GMEP(O,p,B) N Fiz(T). The results in this paper develop,

improve upon and complement of the recent results announced by several authors
in this direction.

2. PRELIMINARIES AND LEMMAS

Let H be a real Hilbert space and let C' be a nonempty closed convex subset of
H. In the following, we write z,, — = to indicate that the sequence {z,} converges
weakly to z. x, — x implies that {x,} converges strongly to x.

We recall that

(i) a mapping V : C — H is said to be [-Lipschitzian if there exists a constant
{ > 0 such that

Ve —Vyl| <llz—yl, YVa yedl;
(ii) a mapping T : C' — H is said to be pseudocontractive if

|7 = Ty|2 < llz — y|> + (I = T)e = (I = T)y|l%, Va, yeC:
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(iii) a mapping T : C' — H is said to be k-strictly pseudocontractive ([4]) if there
exists a constant k € [0, 1) such that

1T = Ty|* < |lz —ylI* + k(L = T)z — (I = T)y|?, ¥, yeC;
(iv) a mapping T': C' — H is said to be nonexpansive if
[Tz =Tyl < lz—yl, Va, yeC

where [ is the identity mapping.

Clearly, the class of pseudocontractive mappings includes the class of strictly pseudo-
contractive mappings and the class of nonexpansive mappings as a subclass. More-
over, this inclusion is strict (see Example 5.7.1 and Example 5.7.2 in [1]).

Recall ([1, 10]) that the mapping T' : H — H is called firmly nonexpansive if
2T — I is nonexpansive, or equivalently,

(x —y, Tz —Ty) > |Tx — Ty|?>, Vaz, y € H.

Alternatively, T" is firmly nonexpansive if and only if T' can be expressed as

T:%u+a,

where S : H — H is nonexpansive.
A mapping T : H — H is said to be an averaged mapping if it can be written as
the average of the identity I and a nonexpansive mapping; that is,

(2.1) T=(1-a)l+as,

where a € (0,1) and S : H — H is nonexpansive. More precisely, when (2.1) holds,
we say that T' is a-averaged. ([5, 9, 26])
Clearly, a firmly nonexpansive mapping is an %—averaged mapping.

Proposition 2.1. ([5, 9, 26]) For given mappings S, T, V : H — H:

(@) If T = (1 — a)S + aV for some a € (0,1) and if S is averaged and V is
nonexpansive, then T is averaged.

(b) T is firmly nonexpansive if and only if the complement I — T is firmly
NONETPANSIVE.

(¢c) If T =(1—«a)S+aV for some a € (0,1), and if S is firmly nonexpansive
and V' is nonexpansive, then T is averaged.

(d) The composite of finitely many averaged mapping is averaged. That is, if
each of the mappings {ﬂ}fil is averaged, then so is the composite Ty - - Tl .
In particular, if T is ai-averaged and T is ag-averaged, where oy, ag €
(0,1), then the composite Ty Ty is a-averaged, where a = a1 + ag — aaa.

We recall ([10]) that a nonlinear mapping 7" whose domain D(7") C H and R(T') C
H is said to be:

(a) monotone if

(x—y,Tx —Ty) >0, Vo, yc D(T),
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(b) B-strongly monotone if there exists § > 0 such that
(@ —y,Tx —Ty) = Ble —yl*, Vz, y € D(T),
(¢) v-inverse strongly monotone (shortly, v-ism) if there exists v > 0 such that
(x —y,Te = Ty) > v||Tzx — Ty|*, Yz, y € D(T).
It can be easily seen that (i) if 7" is nonexpansive, then I — 7' is monotone; (ii)
the projection mapping Po is a 1-ism.
Proposition 2.2. ([5]) Let T : H — H be a mapping from H to itself.
(a) T is nonexpansive if and only if the complement I — T is %—ism.
(b) If T is v-ism, then for v > 0, vT is %—ism.
(¢) T is averaged if and only if the complement I — T is v-ism for some v > %
Indeed, for a € (0,1), T is a-averaged if and only if I —T is %—ism.

We note that if F'is an a-inverse strongly monotone mapping of C into H, then
it is obvious that F is 1-Lipschitz continuous, that is, [|[Fz — Fy| < 1|z — y||
for all x,y € C. Clearly, the class of monotone mappings includes the class of
a-inverse-strongly monotone mappings.

In a real Hilbert space H, the following equality holds:

(22) lz = ylI* = ll2® + lylI* - 2(z, y)
for all z,y € H.
The following lemma is easily proven by property of inner product.

Lemma 2.3. In a Hilbert space, there holds the inequality
|z +yl* <zl + 2(y,x +y), V=, y€H.

Recall that metric (or nearest point) projection from H onto C' is the mapping
Po : H — C which assigns to each point « € H the unique point Pox € C satisfying
the property

|z — Poz|| = inf [la — y|| := d(z, O).
yeC

Lemma 2.4. ([23]) For given x € H:
(a) z= Pox if and only if (x —z,y — 2) <0, VyeC.
(b) z = Pcw if and only if |z — z|* < [l — y|* — |y — 2]?, Wy e C.
(c) (Pox — Poy,x —y) > ||[Pox — Poyl|?, Vo, y € H. Consequently, Pc is
nonezxpansive and monotone.

In general, a projection mapping is firmly nonexpansive.

For solving the GMEP(1.5) for a bifunction © : C x C' — R, let us assume that
O satisfies the following conditions:

(A1) ©(z,z) =0 for all z € C}

(A2) © is monotone, that is, O(z,y) + O(y,z) < 0 for all z, y € C;

(A3) for each z,y,z € C,

limsup O(tz + (1 — t)z,y) < O(z,y);
T
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(A4) for each z € C,y — ©O(x,y) is convex and lower semicontinuous.
We can prove the following lemma by using the same method as in [16, 30], and
S0 we omit its proof.

Lemma 2.5. Let C be a nonempty closed convex subset of H. Let © be a bifunction
form C x C to R satisfies (A1)—(A4) and ¢ : C — R be a proper lower semicon-
tinuous and convex function. Let B : C — H be a continuous monotone mapping.
Then, for v >0 and x € H, there exists u € C such that

1
O(u,y) + (Bu,y —u) +¢(y) —pu) + ~(y —w,u—2) 20, VyeC.
Define a mapping K, : H — C as follows:

1
K,z = {u eC: @(u,y)+<Bu,y—u>+g0(y)—<p(u)+;<y—u,u—x> >0, Yy € C}
for allx € H and v > 0. Then, the following hold:
(1) For each x € H, K,x # 0;
(2) K, is single-valued;
(3) K, is firmly nonexpansive, that is, for any x, y € H,
| Ky — KV?UHZ < (Kyr — Kyy,z — y);
(4) Fiz(K,) = GMEP(©, ¢, B);
(5) GMEP(O©, ¢, B) is a closed convex subset of C'.
We need the following lemmas for the proof of our main results.

Lemma 2.6. ([29]) Let C be a closed convex subset of a real Hilbert space H. Let
T :C — H be a continuous pseudocontractive mapping. Then, forr >0 andx € H,
there exists z € C' such that

1
<TZ,y—Z>—*<y—Z,(1+T)Z—JZ‘>SO, VyEC
r
Forr >0 and x € H, defineT,. : H— C by

Trm:{zeC:<Tz,y—z>—1<y—z,(1+r)z—a:)§0, VyEC}.
r

Then the following hold:
(i) T, is single-valued;
(ii) T, is firmly nonexpansive, that is,

| Tva = Tyl? < (Trx — Thy,x —y), Ve, y € H;
(ifi) Fiz(T}) = Fiz(T);
(iv) Fiz(T) is a closed convexr subset of C.
Lemma 2.7. ([24]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sn1 < (L=&n)sn + &ndn, VR 21,
where {&} and {6,} satisfy the following conditions:
() {&n} € [0,1] and 3 72, & = oo;
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(i) Hmsup,, .0 0p <0 or > 07 &0 < c0.

Then lim,,_ys0 S, = 0.

Lemma 2.8. ([21]) Let {z,,} and {yn} be bounded sequences in a Banach space E
and {yn} be a sequence in [0, 1] which satisfies the following condition:

0 < liminf~, <limsup~y, < 1.
n—oo

n—o0

Suppose that T, 11 = YTy + (1 — yn)yn for allmn > 1 and
limsup(||yn+1 = ynll = [[2n+1 — zal]) < 0.
n—oo

Then limy, o0 |yn — x|l = 0.
The following lemma can be easily proven, and therefore, we omit the proof.

Lemma 2.9. LetV : H — H be an l-Lipschitzian mapping with constant ! > 0, and
G : H — H be a k-Lipschitzian and n-strongly monotone mapping with constants x
and n > 0. Then for 0 < ~l < un,

(G =AWV )z — (uG =WV )y, z —y) > (un — )|z —y|*, Vz, yeC.
That is, uG — vV is strongly monotone with constant un — ~vl.
We also need the following lemma (see [26] for the proof).

Lemma 2.10. Let G : H — H be a k-Lipschizian and n-strongly monotone mapping
with constants k > 0 andn > 0. Let 0 < p < 2 and0 <t <1. Then I —tuG : H —

K2
H is a contraction with contractive constant 1 —t1, where T = 1— \/1 — n(2n — pK?).

Lemma 2.11. ([1])(Demiclosedness principle) Let H be a real Hilbert space, let C
be a closed convex subset of H, and let T : C — C be a nonexpansive mapping.
Then I — T 1is demiclosed, that is,

{zpn}CCy, =2z €Cand (I —T)x, — y implies that (I —T)x = y.
The following lemma is a variant of a Minty lemma (see [18]).

Lemma 2.12. Let C be a nonempty closed convex subset of a real Hilbert space
H. Assume that the mapping G : C — H is monotone and weakly continuous
along segments, that is, G(x + ty) — G(x) weakly as t — 0. Then the variational
inequality

zeC, (Gx,p—1x)>0, VpeCl,

1s equivalent to the dual variational inequality

zeC, (Gp,p—2)>0, VpeC.
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3. MAIN RESULTS

Let H be a real Hilbert space, and let C' be a nonempty closed convex subset of H.
Assume that f : C'— R is areal valued convex (Fréchet) differentiable function, and
that the gradient V f is an L-Lipschitzian mapping with L > 0. Note that V f being
L-Lipschitzian implies that the gradient V f is (1/L)-ism ([2]), which then implies
that AV f is (1/AL)-ism. So, by Proposition 2.2, I — AV f is (AL/2)-averaged. Now
since the projection Po is (1/2)-averaged, we see from Proposition 2.1 that the
composite Po(I — AV f) is ((2+4 AL)/4)-averaged for 0 < A < 2/L. Hence we have
that, for each n, Po(I — A,V f) is ((2+ A\, L)/4)-averaged. Therefore, we can write

2— L 24+ M\ L
Po(I =M\ Vf) = 4” I+ 4" Sp = an + (1 — ay)Sn,
where S, is nonexpansive and a, 1= a,(\,) = % € (0, 3) for each A, € (0, 2).

It is easy to see that \,, — % <~ a, — 0.
From now, we always assume the following:

e H is a real Hilbert space;

e (' is a nonempty closed subset of H;

e [ :C — Risareal-valued convex (Fréchet) differentiable function such that
the gradient V f is an L-Lipschitzian mapping with L > 0;

e The CMP (1.1) is consistent (that is, the CMP (1.1) is solvable) and S :=
argming f is the solution set of the CMP (1.1) on C;

o Po(I — \,Vf) = 272‘"LI + 2+jl\"LSn = anl + (1 — ay)Sy, where S, is

nonexpansive and a,, := ap(A\,) = % € (0, %) for each A, € (0, %)

© is a bifunction from C x C' — R satisfying (A1)-(A4);

¢ : C — R be a proper lower semicontinuous and convex function;

B :C — H is a continuous monotone mapping;

K,, : H— C is a mapping defined by

K, r= {u € C:09(u,y) + (Bu,y —u)

1
F )~ pla) + oty wu—2) 20, Wy e )
n
for all x € H and for v, € (0,00) and liminf,,_, v, > 0;
e GMEP(O, ¢, B) is the set of solutions to the GMEP (1.5);
e T:C — H is a continuous pseudocontractive mapping with Fixz(T) # 0;
e T, : H — (C is a mapping defined by

Tn

Trnx:{zeC:@—z,Tz)—1<y—z,(1+7’n)z—m)§0, VyeC}

for r,, € (0,00) and liminf,,_, 7, > 0;

e V: H — H is [-Lipschitzian mapping with constant [ € [0, 00);

e G : H — H is a p-Lipschitzian and n-strongly monotone mapping with
constants p > 0 and n > 0;
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e Constants u, [, 7, and v satisfy 0 < p < i—g and 0 < vl < 7, where

7=1—/1—pu(2n— pp?);
e O:=SNGMEP(O,¢,B)N Fiz(T) # 0.
By Lemma 2.5 and Lemma 2.6, K,,, and T}, are nonexpansive and GM EP(0O, ¢, B) =
Fiz(K,,) and Fiz(T) = Fiz(T,,).
First, we introduce the following iterative algorithm which generates a sequence
{z,} in an implicit way:
O(tn, y) + (Bun,y — un) + ¢(y) — ¢(un)
1

(3.1) —|—l/—(y—un,un—xn> >0, YyeC,
n

Tn = ap YV, + (I — anuG)(Bpey + (1 — Br)Spwy), Vn > 1,
where a,, = 2=3nL € (0, 1) for each A, € (0, 2); {8} C (0,1); {vn}, {r} C (0,00);

21 € C is an arbitrary initial guess; u, = K,, z,; and w, = T u, =T, K,, ©n.

Consider the following mapping @),, on H defined by

Qnr = ap YV + (I — apuG)(Bux + (1 — By)Sy Ty, Ky x), VaxeH, n>1.
Let Ryx = Brax+ (1 —B,)Sn Ty, Ky, x. Since S, T, K,, is nonexpansive, we have for
z, y € H,

[Rnz — Ruyll < Bulle —yll + (1 = Bu)1Sn Ty, Ko w — Sp T, Koy
< Bullz =yl + 1 = B)llz -yl = [z —yl|.
Then by Lemma 2.5, Lemma 2.6 and Lemma 2.10, we derive for z,y € H,
1@ — Quyll < an Ve = Vyll + (I — anpG) Ruz — (I — anpG) Ry
< anylllz =yl + (1 — an7)[[Rnz — Ruy|

< apylllz =yl + (1 = an7)llz — 9

= (L= an(r =)z —yl|

Since 0 < 1 —ay, (T —91) < 1, @y, is a contractive mapping. Therefor, by the Banach
contraction principle, @), has a unique fixed point z,, € H, which uniquely solves
the fixed point equation

Ty = anYVn + (I — anuG)(Bnen + (1 — 5n) STy, Ky, xn)
= anYVan + (I — anpuG)(Brxn + (1 — Bn)Sphwy).

Now we prove strong convergence of the sequence {z,} and show the existence
of g € 1, which solves the variational inequality

(3-2) (WG =V)g,p—q) 20, VpeQ
Equivalently, ¢ = Po(I — pF +~V)q (by Lemma 2.4 (a))
Theorem 3.1. Let {z,} be a sequence defined by (3.1). Let {a}, {Bn}, {vn} and
{rn} be satisfy the following condition:
(i) ay € (0, %) for each A\, € (0, %),

limy, 500 y = 0 (<= limy, 00 A\, =

);

S
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(il) 0 < liminf, o fn < limsup,, . Bn < 1;

(iii) 0 < v < vy < o0;

(iv) 0 <r <ry < o0.
Then {z,} converges strongly as A, — % (<= lim, 00 ay = 0) to a point q € 2,
which is the unique solution of the variational inequality (3.2).

Proof. Note that from the condition (i), without loss of generality, we assume that
an,T < 1forn>1.

First, we can show easily the uniqueness of a solution of the variational inequality
(3.2). In fact, noting that 0 < vl < 7 and un > 7 <= k > n, it follows from Lemma
2.9 that

((nG = V)2 — (WG =V )y, & —y) = () — )|z — yl|*.
That is, uG — vV is strongly monotone for 0 < vl < 7 < un. So the variational
inequality (3.2) has only one solution. Below we use g € € to denote the unique
solution of the variational inequality (3.2).
Now, take p € © and let u, = K,, x, and w, = T}, u, = T, K,, ©,. Then, it
follows from Lemma 2.5(4) and Lemma 2.6 (iii) that p = K, p and p = T}, ,p. Since
up = Ky, Tn, wy =T, un, and K, and 7T, are nonexpansive, we have

(3-3) lwn = pll < llun = pll < llzn —pll, ¥Yn=>1,

Since 5
p= PC(I - )\nvf)p =app + (1 - an)Snp7 Vn € (Oa Z)a
where a,, 1= a,(A\y) = % € (0, %), it is clear that S,p = p for each A, € (0, %)
From now, put y, = Byzn + (1 - Bn)SnTrnKunxn = BnTn + (]- - /Bn)SnTrnun =
Brnxn + (1 — By)Spwy. We divide the proof into several steps.

Step 1. We show that {z,} is bounded. To this end, let p € 2. Then from (3.3),
it follows that

lyn = pll < Bullzn —pl + (1 = Bp) lwn — p
(3.4) < Bullzn = pll + (1 = Bn)llwn — Snpll
< Ballzn = pll + (1 = Bo)llwn — pll = llzn — p|-
Therefore, by (3.4) and Lemma 2.10, we derive
|20 = pll = l[anyVay + (I = anpG)y, — pl|
lan(YVan — VD) + (I — anpG)yn — (I — anpuG)p + an(vVp — pGp)||

< apYlf|zn — pll + (1 = an7)llyn — pll + anllvVp — pGp||
< apYlf|zn = pl| + (1 = an7)l|zn — p|| + an(y[[VP[ + pl|Gpl).
and so
lon — pll < vlleTlJr;Llllel_

Hence {z,} is bounded. Also, by (3.3), {un}, {wn}, {Snwn}, {Vz,} and {GS,wy}
are bounded.
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Step 2. We show that lim,,_, ||z, — Spwy,|| = 0. Indeed, observing that
[z = Spwal| = [[anyVEn + (I — anpG)yn — Spwy|

A

< anllVVan — uGyn |l + |yn — Snwn|
= an|YVan — uGyn| + ||Bnxn + (1 — Bn)Spwn — Spwy||
= anl[YVzy — pGynll + Bullzn — Spwall,
by conditions (i) and (ii), we obtain
an
— Bn

Step 3. We show that lim, o ||un — zp| = limp 00 || Ky, Tn — x| = 0. Indeed.
using Lemma 2.5(c) and (2.2), we have

|zn — Spwn,l| < 1 WV, — uGynl = 0 asn — oco.

||un - p”2 = HKzznfUn - KVnp||2

1

= 5 (lzn =PI + un = pl* = [l2n = un®),

and so
(3.5) [un = plI* < llzn — plI* = 20 — unl®* (< [lzn — p)?).
Noting that y, = Bpzn + (1 — Bn)Spwy, and z, = ap YV, + (I — anpuG)yn, by
(3.3) and (3.5), we induce that
(3.6)
(B2 _pH2 = lanyVan + (I — anpG)yn _pH2
= |lan(YVWan — pGyn) + (yn — p)||>
= lan(YWVan — uGyn) + Bu(xn — Spwn) + (Spwn — p)H2
< [(lan(YWVan = pGyn)ll + llwn — pll) + Ballzn — Snwall]®
< [(lan(WVan — pGyn) || + |un — pll) + Ballzn — Snwn||]2
= 2 |VVan — uGyn|* + 200V Van — nGynll|un — pll + [lun — p||?
+ Bullzn — Snwnll2(an||VV zn — pGyn|l + [[un — pll)
< anlyVan — uGyall® + llun — pll* + My,
< anlyVa, - NGyN‘|2 + [|n _pH2 — [lun — xn”Q + My,

where
(3.7)
My, = 200 ||[vVxn — pGyn||||wn — pl|

+ Bllzn — Snwn|2(an||YVrn — pGynl| + |lun — pl|) + B%Hxn - SnwnHZ-
From (3.6), we obtain

[un — 20l|? < anl|VVan — pGyn|? + M.
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Since M,, — 0 as n — oo by condition (i) and Step 2, we get

lim ||u, — || = lim || K, 2z, — 24| = 0.
n—oo n—oo

Step 4. We show that lim,,_c ||wyn — up|| = limy e || 17, un — upn|| = 0. Again, by
Lemma 2.6(ii) and (2.2), we obtain

(| — pH2 = ||T5, un — Tran2
< <un_pawn_p>
1
= 5 (llun — plI* + llwn — plI* = llun — wnl?),

and so

lwn = plI* < un = plI* = [un — wal]?

(3.8) 0
< lzn = pll = llun —wnl[®  (by (3.3))
Then, from (3.6) and (3.8), we derive

|zn — pH2 < anlyVa, — NGynHQ + [Jun — pH2 + M,
< anlyVa, — ,UGynH2 + |lzn — p||2 — [Jun — wn”2 + My,

where M, is of (3.7), and so
[t — wall* < anl[VVan — uGynl|* + M.
From lim,,_,o, M,, = 0 and condition (i), we obtain

lim ||u, — wy| = lim ||T,, u, — uy|| = 0.
n—oo n—oo

Step 5. We show that lim,,_,~ ||z, — wy|| = 0. In fact, by Step 3 and Step 4,
lxn — wpl|| < [|zn — upl|| + [|Jun — wy|| = 0 as n — oo.

Step 6. We show that lim, , |[|w, — Sp,wy| = 0. From Step 2 and Step 5, it
follows that

l|wn — Spwy|| < ||lwp — xu|| + |20 — Spwn|| — 0 as n — oco.

Step 7. We show that {x,} converges strongly to ¢ € Q as n — oo, where q is the
unique solution of variational inequality (3.2). To this end, first, observe that
|Pc(I — ANV flwy, — wy|| = ||Spwpn, — (1 — ay) Spw,, — wy||
= (1 — ay)[|Snwn — wy|

< HSnwn - wnH7
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where a,, = % € (0,1) for each A, € (0, 2). Hence, we have

PC<I— 2Vf>wn — Wy,

L
< PC<I—in>wn—PC<I—)\an>wn +’PC<I—)\an>wn—wn
< <I—in>wn—<I—Aan)wn —I-‘PC(I—)\,LVf)wn—wn
2
< (20 ) IV Sl + 1800~ ]

From the boundedness of {wy}, an, — 0 (< A, — 2) and ||w, — Spwy|| — 0 (by
Step 6), we conclude that

2
lim Hwn — P <I — LVf)wn =0.

n—oo

Consider a subsequence {wy, } of {w,}. Since {wy} is bounded, there exists a sub-
sequence {wnij_} of {wy,} which converges weakly to g. Without loss of generality,
we can assume that w,, — ¢. Since C' is closed and convex, C' is weakly closed. So,
we have ¢ € C. Then, by the same argument as in proofs of Theorem 3.1 in [14, 15],
we can show that ¢ € €). For the sake of completeness, we include its proof, which
was divided into three steps.

(i) We prove that g € S. In fact, by Lemma 2.11, we obtain
_po(1-2vy
¢=Po(I-7Vf)a

This means that g € S.

(ii) We prove that ¢ € GMEP(O, ¢, B). Since u, = K,, x,, by Lemma 2.5, we
know that

1
O(un,y) + (Bun,y — un) + ©(y) — o(un) + — Yy — up,up — ) >0, Vy € C.

Un
Then, it follows from (A2) (the monotonicity of ©) that
1
(3.9)  (Bun,y — un) +0(y) — o(un) + 7(3/ — Un, Un — Tn) > O(y,un), Yy e C.

For e with 0 < e <1and v € C, let v. = ev+ (1 —€)g. Then v, € C. So, from (3.9),
we obtain

<BUE7 Ve — un> Z <BU67 Ve — Un> - QO(’Ue) + QO(’LLn)

Up — 2n

) + O (ve, un)

- <Bunave - Un) - <U€ — Unp,
n

= (Bve — Bun, ve — tn) — ¢(ve) + ©(un)
) + O(ve, up).

Up — Tn

- <U5 — Unp,
n
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lun=2n]
v

By Step 3 and condition (iii), we get ”u"u_x”” < — 0 as n — oo, and by
replacing n by n; and letting i — oo aIOI{Lg with Step 4, it follows that u,, — q.
Moreover, from the monotonicity of B, we have (Bve — Buy,, ve — u,) > 0. So, from
(A4) and the weak lower semicontinuity of ¢, if follows that

(3.10) (Bve,ve — q) > —p(ve) + ¢(q) + O(ve, q) as i — oo.
By (A1), (A4) and (3.10), we also obtain
0 = O(ve, ve) + p(ve) — p(ve)
< €O(ve,v) + (1 = €)O(ve, ¢) + ep(v) + (1 — €)p(q) — p(ve)
< €[O(ve, v) + ¢(v) = p(ve)] + (1 = €)(Bue, ve = q)
€[0(ve, v) + ¢(v) = (ve)] + (1 — €)e(Bve, v — q),

and hence
(3.11) 0 < O(ve,v) + p(v) — p(ve) + (1 — €)(Bue, v — q).
Letting € — 0 in (3.11), we have for each v € C
©(q,v) + (Bq,v — q) + ¢(v) — ¢(q) = 0.
This implies that ¢ € GMEP(O, ¢, B).
(iii) We prove that ¢ € Fiz(T). In fact, noting w,, = T, up, by Lemma 2.6, we

induce

1
(3.12) (y — wp, Twy,) — T—(y —wp, (L+ 1w, —uy) <0, VyeC.

n

Put ve =ev+ (1 —€)gfor 0 < e <1 and v € C. Then v, € C, and from (3.12) and
pseudocontractivity of T', it follows that

<wn — Ve, TU5> 2 <wn — Ve, TU5> + <Ue — Wn, Twn>

1
- 7<U6 — Wnp, (1 + Tn)wn - Un>
Tn
= — (Ve — Wy, Tve — Twy) — T—(vE — W, Wy, — Up)
n
(3.13) - <Ue — Wn, wn>

1
— |lve — wn|* - — (Ve = W, wp = )
n

v

- <'U€ — Wn, wn>

Wy, — Un >
Also, by Step 4 and condition (iv), we induce ”w”;""H < ”w”;“"H —0asn — oo.
Since wy,, — ¢ as i — oo, replacing n by n; and letting ¢« — oo, we derive from
(3.13) that

= - <Ue - wnyve> - <ve — Wn,
n

(q — ve, Tve) > (g — Ve, ve)
and
_<U—Q>TU6>Z—<U—q,UE>, Yo e C.
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Letting ¢ — 0 and using the fact that T is continuous, we obtain

(3.14) —(v—q,T¢) > —(v—q,q), YveC.

Let v = Tq in (3.14). Then we have ¢ = T'q, that is, ¢ € Fiz(T'). This along with
(i), (ii) and (iii) obtains ¢ € €.

On the other hand, by (3.1) and Lemma 2.10, we derive for p € Q

[ _pH2
= lenyVan + (I = anpG)yn — pl?
= (I = anpG)yn — (I — anpG)p — an(pG =YV )p + any(Van — Vp)|?
= (I = pG)yn — (I — pG)p|)?
=20, [{((0G = AV)p,yn — p) — an{(0G — YV )p, nGyn — pGp)]
+ 20,y [(Van = Vp,yn — p) — an(Vay — Vp, uGyn — pGp)|
— 200 7((uG = yV)p, Va, — Vp)
+ oz |[(pG = WV)pl? + ap P Ve, — V|2
< (1= an7)?(lyn — plI* = 200 (LG = YV)p, yn — P)

G19  2amlllzn = plllgn — ol + 26201 (4G — V)l (|Gl + Gl
+ 20|20 — pll (| Gynll + 1llGpll) + 2027 (LG = AV)plll|lzn — p
+ apll(G = AV)pl? + apy* || zn — pl)?
= (1 =207 + a3 7°)|lyn — Pl = 20 (4G = YV)p, Y — D)
+ 200920 — pllllyn — pll + 200 [|(1G — AV)pll(ul| Gyl + 1l Gpll)
+ 2007z — pll (1| Gynll + 1 Gpll) + 20571 (LG — AV )pll |20 — p
+ ap(l(uG = yV)pl* + ¥ 8|0 — pl?)
< (1= 2an7)lyn = plI* + 200 (G = AV )p, P = yn)
+ an7l(|lzn — plI* + llyn — pII*) + ap M,
where

M = sup{7?||yn — p|I* + 2(|(uG — YV)p|| + ||z, — p|) (1|Gynll + plGp|)
+ 29| (uG — AV)p||zn — pll + |(1G — AV)p|1? + ¥*C||zn — || : n > 1}
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Hence by (3.4) and (3.15), we obtain

1 — 20,7+ apyl o
_ 2< n n . 2 40 G—~V B
|27 — plI < T ol lyn — plI” + 1_awl<(u YV)Psp = Yn)
2
+ _ %%
(3.16) 1= anyl
' 1 — 20,7+ apyl 9 200,
< — 2 G — AV Y —
S 1o Il (G =V p =)
2
an
— M.
+ 1— apyl

Observe that
(3.17)
(LG = AV)p,p = yn) = (UG —AV)p,p — (BnTn + (1 — Bn)Snwn))

( _
(WG = AV)p,p — Spwn) + B (WG — YV )p, Snwn — 2n)
= ((uG = AV)p, p — wn) + (LG = YV )p, wy — Spwy)
+ Bn{(nG — YV )p, Spwn, — )
<A(0G =AV)p,p — wy) + [[(0G — YV )pll[|wn — Spwy|
+ 5n”(NG - 'YV)pH ”Snwn - an
< A(G =V )p,p — wn) + L,

whete Ly = (4G — 1V)pllwn — Swtwonll + Ball (4G — 1V)pl|Suton — wall. Then,
from (3.16) and (3.17), we derive

oM n L, .
T—7l) T—7l

(318) e —pl® <

Now, replacing n by n;, we substitute ¢ for p in (3.18) to obtain

o, M L,.
G—vVq,q— wy, d L,

;G =V, g —wn) + ST R—

Note that w,, — q as ¢ = oo and lim,_,, L, = 0 by Step 2 and Step 6. This fact
and the inequality (3.19) along with condition (i) imply that z,, — ¢ strongly as
7 — 0.

(3819)  faw, —al® <

Next, we show that ¢ solves the the variational inequality (3.2). Indeed, taking
the limit in (3.18) as i — oo, we get

1
lg —pl*> < W((MG —vV)p,p—q), Ype Q.

In particular, g solves the following variational inequality

q€Q ((uG—V)p,p—q) 20, pe,
or the equivalent dual variational inequality(Lemma 2.12).

(3.20) e (uG—-~V)g,p—q) >0, peq.
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Finally we show that the sequence {z,} converges strongly to ¢. Indeed, let {zy, }
be another subsequence of {z,} and assume z,, — ¢. By the same method as the
proof above, we have g € Q. Moreover, it follows from (3.20) that

(3.21) (WG =vV)g,q — @) < 0.
Interchanging ¢ and ¢, we obtain
(3.22) (WG =V)q,q4—q) < 0.

Lemma 2.9 and adding these two inequalities (3.21) and (3.22) yields
(= Wllg = al* < (WG = V)g — (G = V)q.q — ) < 0.

Hence g = ¢. Therefore we conclude that x,, — g as n — oo.
The variational inequality (3.2) can be rewritten as
(I =pG+9V)g—q,q—p) 20, VpeQ.
By Lemma 2.4(a), this is equivalent to the fixed point equation
Po(I = pG+vV)q=q.

From Theorem 3.1, we deduce the following result.

Corollary 3.2. Let {z,,} be a sequence generated by

O(un, y) + (Bun,y — un) + ©(y) — ¢(un)

1
+ —(y — up,up —xy) >0, Vyel,
v

n

Tn = (1 —an)(Bpzn + (1 = Bn)SnTy, Ky, xy), Vn >1,

Let {an} {Bn}, {vn} and {r,} be sequences satisfying conditions (i), (ii), (iii) and
(iv) in Theorem 3.1. Then {x,} converges strongly as A, — % (<= limy 00 ap, =
0) to a point q € 2, which solves the following minimum-norm problem: find z* € Q
such that

(3.23) ¥ = min{|z] : 2 € Q}.

Proof. Take G =1, p =1, 7 =1,V =0 and | = 0 in Theorem 3.1. Then the
variational inequality (3.2) is reduced to the inequality

(g,p—q) >0, ¥YpeQ.

This is equivalent to ||¢||> < (p,q)||p||||q|| for all p € Q. It turns out that |q|| < ||p||
for all p € Q and ¢ is the minimum-norm point of €. O

Now, we propose the following iterative algorithm which generates a sequence
{z,} in an explicit way:

O(un,y) + (Bun,y — un) + 0(y) — @(un)

1
(3.24) + —(y — un,un — ) >0, Vy€C,

Un

Tnt1 = ap YV, + (I — anpuG)(Brxn + (1 — Bn)Spwy), Yn > 1,



216 JONG SOO JUNG

where a,, = 292E € (0, 1) for each A, € (0, 2); {8,} C (0,1); {vn}, {rn} C (0,00);
x1 € C is an arbitrary initial guess; u, = K, zn; and wy, = 15, u, = T, K, Tn.

Theorem 3.3. Let the sequence {x,} be generated iteratively by the explicit algo-
rithm (3.24). Let {an}, {Bn} C (0,1) and {r,}, {vn} C (0,00) satisfy the following
conditions:
(C1) ay, € (0, %) for each A\, € (0, ),
lirnn_>C>Q an =0 (<= limn_mo An
(C3) 0< hmmf,Hoo Br, < limsup,,_, fBn < 1;
(C4) 0 <v <y, <oo and limy, 00 [Vpt1 — I/n| = 0
(C5) 0 <r <ry<oo andlimy, oo [Tnt1 — Tn| =

);

h\w

Then {x,} converges strongly as A, — % (<= lim, 00 ay = 0) to a point q € (2,
which is the unique solution of the variational inequality (3.2).

Proof. Note that from condition (C1), without loss of generality, we assume that
an(t —9l) < 1 for n > 1. From now, we put u, = K, xn, w, = T, u, and
Yn = Bnxn + (1 = Bn)SnTy, Ky, xn = Bnn + (1 — By)Spwy, for n > 1.

Now, we divide the proof into several steps.
Step 1. We show that {x,} is bounded. To this end, let p € Q. Then, by Lemma
2.5 (4) and Lemma 2.6 (iii), we see that p = K,,,p and p = T, p. Also, from the

n

proof of Theorem 3.1, we have p = S,p. From u,, = K, x,, and the fact that K,,
is nonexpansive, it follows that

(3.25) [un = pll = Ko 2n = pll < llzn —pll, Yn>1.
Then, by (3.25), we obtain that

lyn = pll = 1Bnzn + (I = Bn) SnTr, Ky xn — p
< Bullwn = pll + 1T = Bn) ST, Ko 2n — (I = B1) STy, Ko, 1|
< Bullzn = pll + (1 = Bu)| D0, Koy 2n — 17, Ko, |
(3.26) < Ballen = pll + (1 = B) | Tr un — Tr,p|
< Bullzn = pll + (1 = Bn)lun — pll
< Ballzn = pll + (1 = Bn)llzn — pll
= ||zn —pll, ¥n>1.

Thus, noting Lemma 2.10 and (3.26), we have

[2n+1 — Pl < anllyVan =Vl + (1 — anpG)yn — (I — anpuG)p||

+ an|[vVp — uGol|
(3.27) < apYlllzn —pll + (1 — anT)llyn — pl| + anllvVp — pGp||
< apylllzn —pll+ (1 — anT)l|zn — pll + anl[yVp — pGp|

= (L= (7 =2Dan)||zn = pll + an|[vVp — G|
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By induction, it follows from (3.27) that

Vp —uGp
||asn—p||§max{||x1 " M} —

vl
Therefore {x,} is bounded, and so {y.}, {un} = {Ky,zn}, {Van}, {Gy,} and
{Spwy,} are bounded. Moreover, since || T, un — pl| < ||un — pl| < ||zn — pl|, {wn}
= {T), u,} is bounded.
Step 2. We show that lim,, o ||[zpn+1 — 2| = 0. To this end, let w, = T, uy.
Since V f is %—ism, Po(I — M\, Vf) is nonexpansive. So, it follows that for any given
peSs,
IPAT = AtV Fwnll < IPe(l = Asa ¥ Fuwn — pll + o]
<|[Pc(I = A1V flwyn — Po(I = A1V )pll + Ipll
< llwn = pll + (7]
< [Jwall + 2[p]-
This together with the boundedness of {wy,} implies that {Po(I — Ay 1V f)wy} is
bounded. Also, observe that
4PC(I - )‘n—&-lvf) - (2 — )\n—HL)Iw
2+ AL
AP =MV~ (2= MDIT
2+ M\, L "
H4PC(I_)‘n+1vf) 4PC’(I_>\an)
< Wn — Wn,
24+ )\n+1L 24+ AL
2— AL 2 i1l
H St AL " 2t AL "
(2 4 ML) Po(I — Api1Vfwn
H 2+ A1 L)(2 + ML)
42+ M1 L) Pe(I — MV fwn
(24+ A1 L)(2+ A\, L)
AL| A g1 — An
(24+ A1 L)(2+ A\ L)
H AL(Mp — Apt1) Po(I — Api1 V f)wn
(24+ A1 L)(2+ A\ L)
4(2 + )‘n+1L)(PC(I - )‘n+1vf)wn — PC(I - )‘nvf)wn)
2+ A1 L)(2+ M\ L)
AL i1 — Al
24+ A1 L)(2+ A\ L)
< ALAn = Apt|[[[Pe(L = A1 V) wn||
- (2+ A1 L)(2+ M\ L)
4@ + Ar D) PelI = A1V F)wn — Po(l = AV fun
(24+ A1 L)(2+ A\ L)

||Sn+1wn - SnwnH = n

[l

(3.28) =

[[wnl




218 JONG SOO JUNG

AL At — Al

2+ M1 L)(2+ N\ L)
< A1 = ML Pe(I = AV )wal| + 4]V f(wn) || + Lljwy][]
< My A1 — Aal,

[

where some constant M7 > 0 such that
My = L|[Pe(I = Apa Vf)wn| + 4V f(wn)[| + Llwall, Vn>1.
So, by (3.28), we have that

|Snr1wni1 — Snwn|| < [|Snr1wni1 — Sng1wall + [[Snr1wn — Spwy||

(3.29) < Jwng1 — wall + Mi|[Ang1 — A
4M,
< Hwn-i-l - wn” + T(Oén_H + Ozn),

On the other hand, from u,, = K,, z, and u,11 = K,,

wi1Tntl, it follows that
@(una y) + <Buna Yy — Un> + go(y) — @(un)

3.30 1
( ) + —(y —up,up —xy) >0, VyeCl,
and
(3.31)
O(unt1,y) + (Buny1,y — Uny1) + @(y) — @(unt1)

1

VUn+1

+

<y — Un+1, Un4+1 — $n+1> > 07 Vy e C.

Substituting y = up41 into (3.30) and y = u,, into (3.31), we obtain

@(Uﬂm un+1) + <Bun7 Up4+1 — un> + @(Un—f—l) - QD(’U,n)

1
+ 7<un+1 — Un, Up — $n> >0
120

and
@(Un—l-l’ un) + <Bun+17 Up — un+1> + @(un) - Sp(un-i-l)
1

Un+1

_'_

<Un — Un+1, Un+1 — l‘n+1> > 0.

By (A2), we have

n — Tn  Untl — Tntl

u
<un+1 — Up, Buyp — Bupy1 + > >0,

Un Un+1
and then
120

<Un+1 — Unp, Vn(Bun - Bun+1) + Up — Tp — (un - xn)> > 0.

Un+1
So, it follows that

<Un+1 — Up, Up — Un+1> + Vn<un+1 — Up, Buy, — Bun+1>
(3.32)

Un

+ <un+1 — Unp, Tp+1 — xn> + (1 - ><un+1 — Up, Un+1 — $n+1> > 0.

Un+1
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Then, from (3.32), condition (C4) and the fact that (uy,4+1 — tn, Buy — Bugy1) <0,
we have

Un

Hun—‘rl - un||2 < <Un+1 — Unp, Tn4+1 — xn) + (1 - )<un+1 — Unp, Un4+1 — $n+1>

VUn+1

Un

< s = ol lomen =l + [1= 52 s = |

n+1

which implies that

ltuns1 — un| < ||Tpg1 — 20l + [Vnt1 — vnllluns1 — Total]

(3.33) §n+1
< wpgr — 2nll + ;|Vn+1 — vp|Ma,

where My = sup{||u, — x| : n > 1}.
On another hand, let w,41 =T, unt1 and wy, = T}, u,. Then we get

1
(3.34) (y — wp, Twy) — —(y — wp, (1 + rp)w, —uy) <0, VyeC,

Tn

and

(3.35) (y —wny1, Twni1) —

(Y= Wng1, 1+ Tpp1)Wng1 —unt1) <0, VyeC.
T'n+1

Putting y = wy4+1 in (3.33) and y = w,, in (3.34), we obtain
1

(336) <wn+1 — Wn, Twn> - 7<wn+1 — Wn, (1 + rn)wn - un> <0,
n

and

(3.37)  (wn — wpy1, Twny1) — (W — wny1, (14 1) Wny1 — Uny1) < 0.

Tn+1
Adding up (3.36) and (3.37), we have

(Wpt1 — Wy, Twy, — Twp41)

(1 + 7"n)wn — Unp . (1 + TnJrl)wnJrl - un+1>

Tn T'n+1

- <wn+1 — Wnp, < 07

which implies that

<wn+1 — Wn, (wn—l—l - Twn-‘,—l) - (wn - Twn)>

Wp — Un Wp+1 — Un+1
- <wn+1 — Wn, - > <0.
Tn T'n+1

Now, using the fact that T is pseudocontractive, we induce

>0

- )

Wp — Un Wp4+1 — Un+1
<wn+1 — Wnp, - >
Tn Tn+1
and hence

Tn

(3.38) (Wn41 = Wny Wy, — Wit + Wnpt — Up — (Wny1 — Ung1)) > 0.

Tn+1
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By (3.38) and condition (C5), we have

Tn

> (Wnt1 = Unt1))

Hwn—i—l - wn||2 S <wn+1 — Wp, Up4+1 — Up + <1 -
Tn+1

< g1 — wn [uum 4 — g = ralllwnss — s ll]

Tn41

which implies
1
(3-39) [wn+1 — wn |l < [Juptr — un | + ;|7"n+1 — rp|Ms,

where M3 = sup{||w, — up|| : » > 1}. From (3.33) and (3.39), it follows that
[wns1 = wall = Ty, 1 uns1 — Doy tn|
(3.40) < otmsr = |+ s = ral Ms
Slensr = Tall+ s — valMa + lrnss — | M,
Now, define
Tnt1 = Bntn + (1 — Bn)kn, Vn>1.

Then, from the definition of k,, we obtain

kn—‘rl —kn
_ Tp42 — Br+1Tnt1 _ Tngl — BnTn
B 1- /Bn—l—l 1- /Bn
_ an1YV g1 + (L — a1 0G)Ynt1 — Bat1Tnt1
B 1- IBn+1

anyVap + (L — anG)yn — Bun

1—fn

oYV anVa, (I — anuG)(Bpnzn + (1 — Br)Spwn) — Pnxn
B 1= Bny1 1—Bn 1 — Bnxn

+ (I - O‘n-l—l,UG) (/Bn—l—lxn—‘rl + (1 - Bn—l—l)sn—l—lwn—&—l) - /Bn—l—lxn—s—l
1- Bn—i—lxn-‘rl
an+17vxn+1 . Oén’}/VfL‘n . ann + (1 - Bn)snwn - ﬁnxn anMGyn

1_ﬁn+1 l_ﬁn 1_ﬁn 1_571
4 Brrnin + (1 = Bnt1)Snt1Wnt1 — Bnt1Zng1 1 fG)Yn+1
1= Bn 1= Bns1
Op+1 a
= " (YWangr — pGyni1) — — (YW — pGyy)
1= Bnt1 1— 5,

+ Sn+1wn+l — Spwy,
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So, it follows from (3.29) and (3.40)that

Qn+1
1= Bnt1
Oln,
+
1- Bn
Q41
1= Bnt1
On
+
1- Bn

4My

+ T(OénJrl + ap)

Q41
1= Bnt1
Oln,
_I_
1-— Bn
My

4
+ Hanrl - xn” + T(an+1 + an)

k1 =kl < (IVaneill + #lGynial))

(YIV [l + plGyall) + [[Snt1wn 1 — Snwnll

IN

(IVaneill + | Gynial))

(VIVanll + plGynll) + lwnsr — wall

IN

(IVaneill + #lGynial))

(YIVanl + ullGyal)

1 1
+ ;|Vn+1 — Vn|M2 + ;|Tn+1 — T‘n|M3

Ap4-1 «
( 1 >M4+uaznﬂ—xnn

IN

l_ﬁn—s—l 1_Bn
My
L

(an—l—l + an)
1 1
+ ;|Vn+1 - Vn|M2 + ;|7ﬂn+1 - Tn|M3-

where My = sup{7||Vz,|| + pl|Gyn| : n > 1}. This implies that

[knt1 = Knll = [Tnr1 — znl
Qn+1 Qn 4My
< M Sa——
(3.41) < <15n+1+15n) 1+ +——(an41 +an)

1 1
+ *|Vn+1 - Vn|M2 + 7"’”n+1 - Tn|M3'
v r
Thus, by conditions (C1), (C3), (C4) and (C5), from (3.41) we induce
lim sup([|kp41 = kn|| = [[#n+1 — zn|) < 0.
n—oo

Hence, by Lemma 2.8,
lim |k, — x| = 0.
n—oo

Consequently,

nll_{go [z — zn = nh_{go(l = Bn)llkn — @n|| = 0.
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Step 3. We show that lim,_, |2, — Spwy|| = 0. Noting that x,11 = apyVa, +
(I - anNG)yn and yn, = Bpay + (1 - Bn)Snwm we have

|2 — Spwnll < ll2n — Tns1 |l + ||2n41 — Snwnl|
< lan = 2pga || + anllVVan — pGynl||
+ [|yn — Snwy||
= |lzn — Tpa || + anlly Vi, — pGyy||
+ || Bnzn + (1 = Br)Snwn — Spwy||
= [[2n — Tpy1|l + anllYVan — pGynl|
+ Bullzn — Snwnll,

that is,
2~ Sutonll < T llen — Twsal] + TV — uGyll
| 1— 06y 1— 06,
From the conditions (C1), (C3) and Step 2, it follows that
nh_}ngO |z, — Spwy]|| = 0.
Step 4. We show that limy, o0 ||2n — up|| = imy—e0 || 20 — Ky, 2| = 0. To this

end, let p € Q. Using u, = K, z,, K,,p = p and firmly nonexpansivity of K,,,
(Lemma 2.5 (3), (4)), we derive from (2.2) that
lun = pl* = || K2 — pI?
< <Kunwn - Kl/npa Tn — p>
= <un — P, Tn _p>

1

= 5 (Ilun — pI? + llan = plI* = lun — 2al?).
This implies
(3.42) un = plI* < [lzn — plI* = llon — 2>
Again, noting that x,11 = ap YV, + (I — anptG)yn, Yn = Bnxn + (1 — Br)Spwy, and
wy, = Ty, Uy, from (3.42) we induce that
(3.43)

[zns1 = plI* = lan(YWan — uGyn) + (yn — p)|1?

= llan(YV 20 — 1Gyn) + B (n — Snwn) + (Snwn — p)||>

[(lan(WV iz — uGyn) || + llwn — pll) + Bullzn — Snwnm2
12

IN

A |VVn — pGynl® + 205 |7Vn — pGynllllwn = pl| + [lwn — p|?
+ BnllTn — Snwnl|2(anl[vVEn — pGyall + [[wn — pl|)

+ 5721||xn - Snwn||2

anllyVin — pGyn|® + [lwn — pl* + M,

< o[ VWan — pGyn|? + |un — plI* + My

an|[VVan — pGynl* + (20 — plI* = |20 — uall®) + My

A A

IN
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where

My = Ballzn — Spwpl2(an|[vVEn — uGynll + [lwn — pl|)
+ BZHmn - SnwnH2 + 200V an — pGyl|||wn — pl|-

Thus, by (3.43), we obtain

(3.45)

| wn, — xn”Q < anlyVa, — NGynH2 + ([|on _pH2 — [|7n41 _pH2) + M,
2

(3.44)

< anlVWVan — pGynll” + l2ns1 — zall(l2n = pll + 2041 = pll) + Ma.

Noting lim,,—,oo M,, = 0 by condition (C1) and Step 3, we derive from (3.45), con-
dition (C1) and Step 2 that

lim ||uy, — x,| = lim ||K,, 2, — x| = 0.
n—oo n—oo
Step 5. We show that lim, o [|[wn — up| = limy—eo || 17, un — un|| = 0. Indeed,

using w, = Ty, Uy, , p = Ty, p for p € Q and firmly nonexpansivity of 7). (Lemma
2.6 (ii), (iii)), we observe that

lwn = plI* = 1T, tn — T, pl|>
< <Trnun - Trnpa Up — p>

= <wn_paun_p>
1
= 5 ([[wn —pl? + llun = plI* = lun — wall?).

This implies that
(3.46) lwn =l < llun = plI? = lun — wal® < lzn = pl? — llun —wal*.
Again, from (3.43) and (3.46), we compute
|zn+1 = plI* < anllVVan = pGyall® + wn — p|* + M
< anl[yVan — pGyall? + (lzn = plI* = lun — wall?) + My,

where M,, is of (3.44). So, we get
(3.48)

[un = wnl* < anllyVan — uGyall* + (20 — plI* = 201 — plI?) + My,
I?

(3.47)

< an|YWVan — pGyall” + zn1 — zall(2n — pll + |01 — pll) + M.
From condition (C1), Step 2, lim,,_,o, M,, = 0 and (3.48), we obtain

lim |up, —wy| = lim |Juy — T, un|| = 0.
n—o0 n—oo

Step 6. We show that lim,, ||z, — wy|| = 0. Indeed, from Step 4 and Step 5, it
follows that

|z — wn|| < [|zn — un|| + ||tn — wy|| = 0 as n — oco.

Step 7. We show that lim,,_,« ||w, — Spwy|| = 0. In fact, by Step 3 and Step 6,
we obtain

|wn, — Spwp|| < ||lwp — xp|| + |20 — Shwp|| — 0 as n — oo.
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Step 8. We show that limsup,,_,. ((7V — uG)q, z, — ¢) < 0, where ¢ is the unique
solution of the variational inequality (3.2). To this end, first we prove that

limsup((vV — pG)q, wn — q) < 0.

n—oo

Since {wy,} is bounded, we can choose a subsequence {wy, } of {w,} such that

(3.49) limsup((yV' — pG)g, wp — q) = Hm ((yV — pG)q, wn; — q).

n—oo

Without loss of generality, we may assume that {w,,} converges weakly to z € C.
Then, by the same argument as in (i), (ii) and (iii) in proof of Theorem 3.1 along
with Step 5, Step 6 and Step 7, we obtain z € €2, Hence, from (3.49), we obtain

limsup((YV — pG)q, wn — q) = lim ((vV — pG)q, wn, — q)
(3.50) n—o00 i—bo0
=((W = uG)g,z —q) < 0.
Since limy,— o0 ||y, — wy|| = 0 by Step 6, from (3.50), we conclude that

limsup((YV — pG)q, xn — q)

n—o0

IN

limsup((vV — uG)q, x — wn) + limsup((vV — pG)q, wy, — q)

n—o0 n—o0

< limsup [|(vV — pG)qlll|zn — wp|| + limsup((vV — pG)gq, w, — q) < 0.
n—00 n—00

A

Step 9. We show that lim,, . ||z, — ¢q|| = 0, where ¢ is the unique solution of the
variational inequality (3.2). Indeed, from (3.24), Lemma 2.3 and Lemma 2.8, we
have

Znr1 — qll?
= llan WV, + (I — anpG)yn — pl>
= llan(YWzn — V) + (I = anpsG)yn — (I — anu@)q + an(vVq — nGy)||®
< fomllzn — qll + (1 = an?)llyn — all]? + 200 {(YV — pG)q, Tni1 — q)
< [anll|lzn — gl + (1 = o) (Bullzn — qll + (1 = Ba) |Snwn — ql)]?
+ 200 ((VV = pG)q, Tny1 — q)
(351 < [ ylllzn — gll + (1 — ant) Ballzn — all + (1 = Ba)lwn — al)]?
+ 20, (V= pG)q, Tnt1 — q)
< [anylllzn — gl + (1 = an7) |20 — qll* + 200 (VW — uG)q, 2ni1 — q)
(1= (7 = D) an) |20 = ql* + 200 (VW — puG)q, Tni1 — q)

T —"l

IN

= (1= (1 = yD)an) |0 — qlI* + 2an (T -
= (1 - gn)“xn - QHQ + &n(sn

where &, = (7 —7l)ay, and 0, = 2a"<(7v_f7G7)lq’“"+l_q>. From the conditions (C1) and
(C2), and Step 9, it is easily seen that &, — 0, > 7, &, = 0o, and limsup,,_, §, <

0. Hence, by applying Lemma 2.7 to (3.51), we conclude z,, — ¢ as n — oc.
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In addition, from Step 4, and Step 6, we derive that u, — ¢, and w,, — q as
n — 00. This completes the proof. O

Taking G = I, p =17 =1,V =0, and I = 0 in Theorem 3.3, we obtain
immediately the following result.

Corollary 3.4. Let {z,} be a sequence generated by

O(un,y) + (B, y — tn) + 0(y) — @(un)

1
+ —(y —up,up —xy) >0, VyeC,

Un

Tnt1 = (1 — an)(Bpn + (1 — Bn)Spwy), Yn > 1,

where a, = 2=42L € (0, 3) for each A, € (0,2); {Ba} C (0,1); {vn}, {rn} C (0,00);
x1 € C is an arbitrary initial guess; up, = K, xyn; and w, = T, u, = T, K, xy.
Let {a,}, {Bn}, {vn} and {r,} be sequences satisfying conditions (C1), (C2), (C3),
(C4) and (C5) in Theorem 3.3. Then {z,} converges strongly to a point q € €,
which solves the minimum-norm problem (3.23).

Remark 3.5. Here some special cases of the the GMEP(1.5) are stated as follows:

1) If ¢ = 0, then the GMEP(1.5) reduces the following generalized equilibrium
problem (shortly, GEP) of finding = € C such that

(3.52) O(z,y) + (Bzr,y —z) >0, VyeC,

which was studied by Takahashi and Takahashi [22].
2) If © =0 and ¢ = 0, then the GMEP(1.5) reduces the following variational
inequality problem (shortly, VIP) of finding « € C such that

(3.53) (Bz,y —x) >0, VYyedC,

which was studied by Stampacchia [17, 20].
3) If B =0 and ¢ = 0 then the GMEP(1.5) reduces the following equilibrium
problem (shortly, EP) of finding x € C such that

(3.54) O(x,y) >0, YyeC,
which was studied by Blum and Oettli [3].

Applying Theorem 3.1, Theorem 3.3, Corollary 3.2 and Corollary 3.4, we can also
establish new corresponding results for the CMP(1.1) combined with the GEP(3.52)
and the FPP(1.7), or VIP(3.53) and the FPP(1.7), or the EP(3.54) and the FPP(1.7).

Remark 3.6. 1) As new results for solving constrained convex minimization
problem combined with the GMEP(1.5) related to a continuous monotone
mapping B and The FPP (1.7) for a continuous pseudocontractive map-
ping T, Theorem 3.1 and Theorem 3.3 improve, develop and complement
the corresponding results, which were obtained by several authors in refer-
ences. In particular, Theorem 3.1 and Theorem 3.3 improve and develop
the corresponding results in [6, 14, 25] in following aspect:

(a) The MEP (1.6) in [14] is extended to the case of the GMEP(1.5).
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(b) The FPP (1.7) for a continuous pseudocontractive mapping 7" in com-
parison with [14] is considered.

(¢) The GMEP (1.5) and the FPP (1.7) for a continuous pseudocontractive
mapping 7' in comparison with in [6, 25] are studied.

(d) Our conditions in Theorem 3.3 dispense with condition 7 |ant1 —
ap| < oo or limy, 00 g1/, = 1 in comparison with Theorem 4.2 in

[6].
2) We point out that Corollary 3.2 and Corollary 3.4 for finding the minimum-
norm element of SN GMEP(O,p, B) N Fix(T) are also new results.
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