o,
Livear and Wonliear \)@aﬁeﬁ& S SN 2ieaaier Copyriaht 2021

Volume 7, Number 2, 2021, 185-197

e-SUBDIFFERENTIALS AND RELATED RESULTS FOR
QUASICONVEX PROGRAMMING

SATOSHI SUZUKI

ABSTRACT. In this paper, we study e-subdifferentials and related results for qua-
siconvex programming. We define two e-subdifferentials for quasiconvex func-
tions. We investigate some properties of these subdifferentials. We introduce
optimality conditions for an e-minimizer. We investigate characterizations of the
solution set. Additionally, we show convergence theorems for a global minimizer.

1. INTRODUCTION

In this paper, we consider the following quasiconvex programming problem:

minimize f(x),
{Subject tox € A,
where f is an extended real-valued quasiconvex function on R", and A is a convex
subset of R™. In the research of optimization, many types of optimality conditions
in terms of derivatives have been introduced, see [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12,
13, 14, 16, 18, 19, 20, 23, 25, 26, 28, 29, 30, 31, 32, 33, 34]. In particular, the
subdifferential plays an important role in convex programming. It is well known
that a feasible solution zq is a global minimizer of a convex function f over a closed
convex constraint set A if and only if

0e 8f(.1‘0) + NA(xo),

where Of(z¢) is the subdifferential of f at xg, and Na(xo) is the normal cone of
A at xg. The above condition is one of the most well known optimality condition
in the research of optimization, and have been studied extensively. Additionally, in
convex analysis, the following e-subdifferential have been investigated:

O-f(xg) :={v eR" :Vx € R", f(z) > f(xo) + (v, — x0) — €}.

By using the e-subdifferential, characterizations of an e-solution, duality results, and
convergence theorems have been introduced, see [8, 18, 20] and references therein.

Recently, in quasiconvex programming, the authors show the following necessary
and sufficient optimality condition for quasiconvex programming in [34]: a feasible
solution z( is a global minimizer of an upper semicontinuous (usc) quasiconvex
function f over a convex constraint set A if and only if

0 € OM f(x0) + epidh,
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where OM f(z0) is the Martinez-Legaz subdifferential, and epid’ is the epigraph of
the support function of A. Additionally, the authors show a necessary and suf-
ficient optimality condition for essentially quasiconvex programming in terms of
Greenberg-Pierskalla subdifferential in [33]. However, in quasiconvex analysis, there
are not so many results of e-subdifferentials for quasiconvex functions as far as we
know. It is expected to study e-subdifferentials for quasiconvex functions based on
recent progress of quasiconvex analysis.

In this paper, we study e-subdifferentials and related results for quasiconvex pro-
gramming. We define two e-subdifferentials for quasiconvex functions. We investi-
gate some properties of these subdifferentials. We introduce optimality conditions
for an e-minimizers. We investigate characterizations of the solution set. Addition-
ally, we show convergence theorems for a global minimizer.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries and previous results. In Section 3, we define two e-
subdifferentials, and investigate some properties of these subdifferentials. In Section
4, We introduce optimality conditions for an e-minimizer. We investigate charac-
terizations of the solution set. Additionally, we show convergence theorems for a
global minimizer.

2. PRELIMINARIES

Let (v, z) denote the inner product of two vectors v and z in the n-dimensional
Euclidean space R™. Let A be a subset of R™. The normal cone of A at zg € A is
denoted by

Ny(zg) ={veR":Vzx e A, (v,x —x9) < 0}.
The indicator function §4 of A is defined by

0, x€A,
0a() = {oo, otherwise.
Let f be a function from R" to R, where R := [~00,00]. The epigraph of f is
defined as

epif == {(&,r) R" x R: f(z) < 1},
and f is said to be convex if epif is convex. The Fenchel conjugate of f, f* :

R"™ — R, is defined as
fr() == sup {{v,z) — f(2)}.

The subdifferential of f at xg is deﬁfleeﬂz as
Of(zg) :={veR": Yz e R", f(x) > f(zo) + (v, — o) }.
Define the level sets of f with respect to a binary relation ¢ on R as
lev(f,o,a) :={z e R": f(z)oa}

for any a € R. A function f is said to be quasiconvex if lev(f, <, a) is a convex
set for all & € R. A function f is said to be essentially quasiconvex if f is qua-
siconvex and each local minimizer x of f over R” is a global minimizer of f over
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R™. Clearly, all convex functions are essentially quasiconvex. It is known that a
real-valued continuous quasiconvex function is essentially quasiconvex if and only if
it is semistrictly quasiconvex; see Theorem 3.37 in [1].

In quasiconvex analysis, various types of subdifferentials have been investigated;
Greenberg-Pierskalla subdifferential [6, 26, 33], Martinez-Legaz subdifferential [16,
34], Q-subdifferential with a generator [4, 5, 30, 31, 32], Moreau’s generalized con-
jugation [21], and so on; see [3, 9, 12, 14, 15, 17, 21, 22, 23, 24]. In this paper,
we investigate the following two subdifferentials. In [6], Greenberg and Pierskalla
introduce the Greenberg-Pierskalla subdifferential of f at xg € R™ as follows:

9% f(wo) = {v € R" : inf{f () : (v,2) > (v,20)} > f(o)}.
In [16], Martinez-Legaz introduces the Martinez-Legaz subdifferential of f at xg €
R™ as follows:

OM f(x0) == {(v,t) € R™™ ! sinf{f(z) : (v,2) >t} > f(x0), (v, x0) > t}.

Martinez-Legaz subdifferential is known as a special case of c-subdifferential in
Moreau’s generalized conjugation in [21]. In [33, 34], we study necessary and suf-
ficient optimality conditions for quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential and Martinez-Legaz subdifferential.

3. e-SUBDIFFERENTIAL

In this section, we define two e-subdifferentials, and investigate some properties
of these subdifferentials. In particular, we study the closedness of e-subdifferentials.

At first, we define the following two e-subdifferentials. Let € be a nonnegative
real number. e-Greenberg-Pierskalla subdifferential of f at xg € R™ is defined as
follows:

O f(wo) == {v €R" : inf{f(2) : (v,2) > (v,0)} 2 f(x0) —€}.
e-Martinez-Legaz subdifferential of f at xg € R™ is defined as follows:
0 f(wo) == {(v,t) € R™ sinf{f(x) : (v,2) >t} > f(x0) — &, (v, 20) > 1}.

We define the above e-subdifferentials in the similar way of the subdifferential and
e-subdifferential for convex functions. We can check the following relation between
e-subdifferentials:

0" f(wo) = {v € R™ : (v, {v,20)) € O f(2o)}.

3.1. e-Martinez-Legaz subdifferential. In this section, we study some proper-
ties of e-Martinez-Legaz subdifferential without quasiconvexity of f. At first, we
show the following clear, but important equation without proof:

oM f(wo) = 05" f (x0) = () 92" f (o).
e>0
In the following theorem, we show that 9 f(x) is a convex cone.

Theorem 3.1. Let f be a function from R™ to R, ¢ > 0, and o € R". Then the
following statements hold:
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(i) OM f(xo) is conver,

(ii) for each o > 0 and (v,t) € OM f(x0), a(v,t) € M f(x0).
Proof. (i) Let (v1,t1), (va,t2) € OM f(zo) and a € (0,1). We can check easily that

(1 — a)vy + ave, z9) > (1 — a)ty + ats,

and if ((1 — a)v1 + avy, x) > (1 — @)ty + ate, then (vi,x) > t; or (ve,z) > ta. This
shows that
inf{f(x): (1 — a)vi + ave,z) > (1 — a)t1 + ata}
min{inf{f(ac) s(vr,zy >t} inf{ f(x) : (ve,x) > ta}}

0) —

fx
since (v1,t1), (v2,t2) € 8Mf(x0) Hence OM f(xg) is convex.
(ii) If @ > 0 and (v,t) € OM f(x), then

inf{f(x) : (aw,z) > at} =inf{f(z) : (v,z) >t} > f(x) — ¢,

and (awv, z9) > at. This completes the proof. O

>
>

Next, we show characterizations of the closedness of e-Martinez-Legaz subdiffer-
ential.

Theorem 3.2. Let f be a function from R™ to R, ¢ > 0, and o € R™. Then the
following statements are equivalent:

(1) M f(zo) is closed,

(ii) 9 f(zo) = {(v.1) : (v,20) = t},

(iii) f(zo) — e < infrern f(x).
Proof. Assume that (iii) holds. Then, for each (v,t) € R"*! with (v, z0) > ¢,

inf{f(x)  (v,2) > 1} > inf f(2) > flao) <,
zeR™

that is, (v,t) € OM f(xg). This shows that (ii) holds. It is clear that (ii) implies
(i). Assume that (iii) does not hold. Let (v,t) € M f(2¢). By Theorem 3.1,
L(v,t) € OM f(z0) for each k € N and +(v,t) converges to (0,0). Since (iii) does
not hold,

inf{f(x):(0,z) >0} = xieannf(a:) < f(zo) — &,

that is (0,0) ¢ M f(xg). This shows that (i) does not hold. This completes the
proof. O

By Theorem 3.2, 0M f(x) is closed if and only if f(xg) — ¢ < infyern f(z). In
other words, 8;‘4 f(xo) is not closed in general. However, the following theorem
holds.

Theorem 3.3. Let f be an usc function from R™ to R, {ex} CRy :={t € R: ¢t >
0}, and zo € R™. If e converges to g9 > 0 and (vg,tx) € 0 f(xq) converges to
(vo,to) € R™ 1L such that vo # 0, then (vg,to) € E)é\gf(xo).
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Proof. Let (vy,ty,) € 0 f(xo) be a sequence such that (vy,t)) converges to (v, to)
with vg # 0, and assume that (vo,to) ¢ 02 f(zg). We can check easily that
(vo, xo) > to since (vg,tr) € 8?2’ (o). By the definition of e-Martinez-Legaz subd-
ifferential,

inf{f(z) : (vo,z) > to} < f(x0) — €0
By the above inequality, there exist Z € R™ and « € R such that (vg, Z) > to and
f(@) <a < f(zo) — eo.
By the upper semicontinuity of f, there exists § > 0 such that
f(Z + dvo) < o < f(20) — €o0.

Clearly, (vo,Z + dvg) > to. Since (vg,tx) converges to (v, tp) and € converges to
g0, for sufficiently large k € N, (vx, T + dvg) >t and a < f(zg) — . Hence,

inf{f(x) : (g, ) = ti} < f(Z + dvo) < o < f(z0) — €,
that is, (vg,t,) ¢ 02 f(z0). This is a contradiction. Hence, (vo,to) € 9 f(x0). O
By Theorem 3.3, we show the following corollary.

Corollary 3.4. Let f be an usc function from R™ to R, € > 0, and xo € R™. Then,
OM f(x0) U{(0,t) : t <0} is closed.

Proof. Let (vy,t1) € OM f(x0) be a sequence such that (vg,t) converges to (v, to).
If vg # 0, then (vo,to) € OM f(xg) by Theorem 3.3. If vg = 0, then 0 = (vg, z0) > to
since (vg,xo) > tx. This shows that (vo,to) € {(0,¢) : ¢ < 0}. Additionally, if
(vg, tg) € {(0,¢t) : t < 0} converges to (vg,to), then (vg,t9) € {(0,¢) : ¢ < 0}. This
completes the proof. O

By Corollary 3.4, M f(z0) is not closed in general, but 9 f(zo) U{(0,¢) : t < 0}
is closed for an usc function f. Next, we show the following theorem.

Theorem 3.5. Let f and g be functions from R™ to R, € > 0, and o € R™. Then
the following statements hold:

(i) if 0 < ey < &g, then OM f(mo) C OM f(mo),
(ii) if @ > 0, then OM (af)(wo) = OY f(x0),
(ili) fore1, e2 >0, OM, (f + 9)(wo) D OM f(wo) N M g(wo).
Proof. (i) Let 0 < &1 < ez and (v,t) € 9 f(x¢). Then (v,zo) > t, and
nf(f(2) : (0,2) > 1} > flao) — e1 > f(a0) — .
This shows that (v,t) € 027 f(wo).
(ii) Let @ > 0. Then, we can check that
inf{af(z): (v,z) >t} > af(xg) —¢

if and only if
€

inf{f(z) : (v, 2) 2t} = f(zo) - —.
This shows that (ii) holds.
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(iii) Let €1, e2 > 0, and (v,t) € 0 f(xo) N 02X g(xo). Then, (v,z0) > t, and

inf{f(x) : (v,x) >t} > f(xo) — €1, and inf{g(z) : (v,x) >t} > g(zo) — €.

Hence,
inf{(f +g)(x) : (v,x) 2t} > nf{f(z): (v,2) 2t} +inf{g(z) : (v,2) >t}
> f(zo) + g(z0) — &1 — €2
This shows that (v,t) € M, (f + g)(z0). O

3.2. e-Greenberg-Pierskalla subdifferential. The following theorems are simi-
lar to the above results for e-Martinez-Legaz subdifferential. Hence the proofs will
be omitted.

Theorem 3.6. Let f be a function from R™ to R, ¢ > 0, and xq € R™. Then the
following statements hold:

(1) 09T f(zo) = 0" f(w0) = Moso 05" f (w0),

(ii) 9CF f(xo) is convez,

(iii) for each a >0 and v € 9T f(x0), av € IET f(x),

(iv) if 0 < &1 < &g, then S f(z0) C OGF f(ao),

(v) if a >0, then OST (af)(zo) = OET f(x0),

(Vi) fore1, &2 >0, G, (f + g)(w0) D OGF f(x0) N IGF (o).

e1+e2

Theorem 3.7. Let f be a function from R™ to R, ¢ > 0, and o € R™. Then the
following statements are equivalent:

(1) ST f(xo) is closed,
(i) 95F f(zo) = R",
(iii) f(xzo) —e < infyern f(z).

Theorem 3.8. Let f be an usc function from R™ to R, {e1} C Ry, € > 0, and
xg € R™. Then the following statements hold:

(i) if ex converges to eg > 0 and v, € ST f(xo) converges to vo € R™\ {0},
then vy € ag)Pf(mo),
(ii) 9CT f(x) U {0} is closed.

4. OPTIMALITY CONDITIONS AND CONVERGENCE THEOREMS

In this section, we study optimality conditions and convergence theorems for
quasiconvex programming. We show necessary and sufficient optimality conditions
for an e-minimizer of quasiconvex programming. We investigate characterizations
of the solution set. Additionally, we show convergence theorems in terms of e-
subdifferentials.
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4.1. Optimality conditions. An element xg of A is said to be a global e-minimizer
of f over A if f(zp) —e <infyeca f(x). In the following theorem, we show necessary
and sufficient optimality conditions for an e-minimizer of an unconstrained problem.

Theorem 4.1. Let f be an usc function from R™ to R, € >0, and xo € R™. Then
the following statements are equivalent:

(i) 0 € 9ET f(x0),
(i) (0,0) € 8 f (o),
(iil) f(wo) — e < infpern f(2).

Proof. By Theorem 3.7, (iii) implies (i). Since 05 f(xq) = {v € R™ : (v, (v, 20)) €
OM f(x0)}, (i) implies (ii). By the statement (ii),

nf f(x) = inf{f(z) : (0,2) 2 0} = f(wo) —e.

This completes the proof. O

Next, we investigate a necessary and sufficient optimality condition for an e-
minimizer of constrained quasiconvex programming.

Theorem 4.2. Let f be an usc quasiconvex function from R™ to R, A a convex
subset of R", € > 0, and xqg € A. Then, xg is a global e-minimizer of f over A if
and only if

0 € OM f(x0) + epid}.

Proof. Assume that xo is a global e-minimizer of f over A, that is f(z¢) — e <
infyeq f(z). If f(z0) — e < infuern f(x), then (0,0) € OM f(xg) by Theorem 3.2.
Hence 0 € M f(xo) + epid’y. Assume that f(xo) — e > infyegn f(z). Then, A is
nonempty convex, lev(f, <, f(zp) — €) is nonempty open convex, and A N lev(f, <
, f(zg) — ) is empty. By the separation theorem, there exist v € R™ and ¢ € R such
that for each x € A and y € lev(f, <, f(zo) — €),

(v,z) =t > (v,y).
We can check easily that —(v,t) € epid’y and (v, zo) > t. Additionally,
inf{f(y) : (v,y) 2 t} = f(z0) —e.

This shows that (v,t) € OM f(zo). Hence, 0 € M f(xo) + epid.

Conversely, assume that 0 € M f(zo)+epid. Then, there exists (v,t) € OM f(z0)
such that —(v,t) € epid’. Since —(v,t) € epidy, (v,z) >t for each x € A. Addi-
tionally,

inf f(2) > inf{f(2) : (v,2) 2t} > f(20) — €

since (v,t) € OM f(xg). This completes the proof. O
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4.2. Characterizations of the solution set. In this section, we show character-
izations of the set of e-minimizers in terms of e-Martinez-Legaz subdifferential.

Theorem 4.3. Let f be an usc quasiconvex function from R"™ to R, A a convex
subset of R™, ¢, g9 > 0, zg € A is a eo-minimizer of f over A, and Then, S. C
Cf C C5 C Seyey, where
(i) Se={z e A: f(z) —e <infyea f(y)},
(i) Of = {z € A: M, f(zo) NOM f(x) # 0},
(iii) C5 = {x € A: 3(v,t) € OM f(x) s.t. (v,m0) >},
Additionally, if xo € A is a global minimizer of f over A, then S = C] = C5.

Proof. Let x € S;, then by Theorem 4.2,
0 € M f(x) + epidh,

that is, there exists (v,t) € OM f(x) such that —(v,t) € epid*. Hence, (v,zo) >t
and
inf{f(y) : (v,y) >t} > f(z) —e > f(20) — € — <0,
since zg € S-,. This shows that (v,t) € 92, f(wo) and S. C Cf. Let = € Cf,
then there exists (v,t) € OM f(z) such that (v,t) € 9M,, f(zo). By the definition
of e-Martinez-Legaz subdifferential, (v, x0) > ¢. Hence Cf C C5. Let = € C5, then
there exists (v,t) € OM f(z) such that (v, zo) > t. Therefore,
inf f(y) = flz0) =0 2 nt{f(y) : (v,9) = 1} =20 = f(&) = & — 0,

that is, x € Sc4¢,-

Assume that zg € A is a global minimizer of f over A, that is, z € Sy. By the
similar way in the first half of the proof, we can show that C'§ C S.. This completes
the proof. O

As seen in Theorem 4.3, we can characterize the set of all e-minimizers S, by
only one global-minimizer xy and e-Martinez-Legaz subdifferential.

4.3. Convergence theorem. In this section, we show convergence theorems in
terms of e-subdifferentials. At first, we show the following convergence theorem in
terms of e-Martinez-Legaz subdifferential.

Theorem 4.4. Let f be a continuous quasiconvex function from R™ to R, and A a
convex subset of R™. Assume that infyc4 f(x) > infyern f(x), and for each k € N,

(i) zp € A,

(ii) e > 0,

(iii) (Uk,tk) € aé\ff(l‘k),

(iv) fluell =1,

(v) d((v, tk), —epidy) = inf{[|(vk, tk) — (Wi, sk)|| = (wk, k) € —epidy} < ep.
If x), converges to xg € A and €}, converges to 0, then xq is a global minimizer of f
over A.
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Proof. Since ||vg| = 1 for each k € N, we assume that v, converges to some vy
without loss of generality. By the definition of e-Martinez-Legaz subdifferential,
(vg,xg) > ti for each k € N. Since (vg,xy) converges to (vg,xg), {tx} is bounded
from above. Now, we show that {t;} is bounded from below. If not so, we can
assume that limg_,o tx = —oo. By the assumption, inf,c4 f(x) > infyern f(2),
there exists z € R™ such that

inf f(z) > f(2) > inf f(z).

€A zeR?

Since (vg, z) converges to (vg, z) and limg_,o tx, = —00, (vg, 2) > t; for sufficiently
large k. Additionally,

f(z) 2 inf{f(x) : (vp, ) >t} > flan) —ex > inf f(z) —ep.

This contradicts to e converges to 0. Hence, {t;} is bounded. We assume that
t;, converges to some ty without loss of generality. By the closedness of epid’} and
the assumption (v), (vo,t9) € —epid’. Finally, we show (vo,to) € O™ f(z0). Since
(v, Tk) > t), for each k € N, (v, wg) > to. Assume that (vo,to) ¢ M f(z0), then

inf{f(y) : (vo,y) > to} < f(z0),

and there exists zg € R™ such that (vg,z9) > to and f(z0) < f(xp). Since f is
continuous, (actually we need the upper semicontinuity of f), there exists ro > 0
such that f(zo + rovo) < f(z0). Since (vg, 2o + rove) > to, there exists K € N such
that for each k > K, (vg, 2o + rovo) > tx. This shows that for each k > K

f(wo) > f(z0 +1ovo) > inf{f(y) : (v, y) > tx} > f(zk) — k-

By the continuity of f, (actually we need the lower semicontinuity of f)
f(zo) = lim (f(zx) —ex) < f(20 + rovo) < f(zo)-
k—o00

This is a contradiction. Hence, (vo,tp) € O™ f(x0). By Theorem 4.2, inf e 4 f(x) =
f(zg), that is, x¢ is a global minimizer of f over A. O

Next, we show the following convergence theorem in terms of e-Greenberg-
Pierskalla subdifferential as a corollary of Theorem 4.4.

Corollary 4.5. Let f be a continuous quasiconvex function from R™ to R, and A a
convex subset of R™. Assume that infyc 4 f(x) > infyern f(x), and for each k € N,

(i) =y € A,

(ii) e > 0,

(iii) v € OSF f(a),

(iv) Jloell =1,

(v) d(vg, —Na(zk)) < ek.
If x, converges to xg € A and ) converges to 0, then g is a global minimizer of f
over A.

Proof. We can check easily that a sequence {(vg, (vg, 1))} satisfies the assumptions
in Theorem 4.4. By Theorem 4.4, z¢ is a global minimizer of f over A. n
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5. DI1SCUSSION

In this section, we discuss our results. We compare our results with previous ones
and we show some examples.

5.1. Remark of Theorem 3.5. In Lemma 4.2 of [27], we show the following similar
result of the statement (iii) in Theorem 3.5:

M (f + g)(xo) D M f(x0) NOMg(xq).

In [27], we show a characterization of quasiconvexity of f + g in terms of the above
inclusion. The statement (iii) in Theorem 3.5 is a generalized result of Lemma 4.2
of [27].

5.2. Remark of Theorem 4.2. In [33, 34|, we show necessary and sufficient opti-
mality conditions in terms of subdifferentials. We can prove the following result as
a corollary of Theorem 4.2.

Corollary 5.1 ([34]). Let f be an usc quasiconvex function from R"™ to R, A a
conver subset of R™, and xg € A. Then, the following statements are equivalent:

(i) f(xo) = mingea f(x),
(ii) 0 € OM f(x0) + epid?.

On the other hand, the following condition is not a necessary optimality condition
but a sufficient optimality condition:

0e aEGPf(xo) + NA(mO).
Actually, if 0 € 07 f(x9) + Na(xo), then there exists v € 9T f(zq) such that
—v € Ny(xg). Since —v € Na(zg), (v,z) > (v,x0) for each x € A. Hence,
inf f(x) > inf{f(z) : {0.2) > {v,70)} > flao) <,
BS
that is, g is a global e-minimizer of f over A. However, the condition is not a
necessary optimality condition in general, see the the following example.

Example 1. Let f(z) =2, A=1[0,1],and € = %. Then, f is essentially quasiconvex

and zo = 1 is a global %—minimizer of f over A. However,

1
0 ¢ (0,00) + {0} = 97 f(w0) + Na(wo).
On the other hand,
(0,0) = (1,0) + (—1,0) € M f(zo) + epids.
Hence, we can apply Theorem 4.2.

Hence, we cannot prove the following result in [33] by using Theorem 4.2 and our
result in this paper.

Theorem 5.2 ([33]). Let f be an usc essentially quasiconvex function from R™
to R, A a convex subset of R", and xo € A. Then, the following statements are
equivalent:

(i) f(xo) = mingea f(z),

(i) 0 € 99" f(x0) + Na(wo).
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5.3. Remark of Theorem 4.3. In [34], we show characterizations of the solution
set for quasiconvex programming in terms of Martinez-Legaz subdifferential. We
can prove the following result as a corollary of Theorem 4.3.

Corollary 5.3 ([34]). Let f be an usc quasiconvex function, A a nonempty convex
subset of R™, and xg is a global minimizer of f over A. Then, the following sets
are equal:
(i) S={z e Al f(z) = mingea f(y)},
(ii) Sy = {z € A| M f(zo) NOM f(z) # 0},
(iii) S ={x € A|3(v,t) € M f(x) s.t. (v,z0) > t}.

Proof. Let € = 0, then S = S, = Sy, S5 = Cf, and S§ = C5. This completes the
proof by Theorem 4.3. g

On the other hand, we can not prove characterizations of the solution set in [33]
by our results in the paper for the same reason in Section 5.2.

5.4. Remark of Theorem 4.4. In Theorem 4.4 and Corollary 4.5, we show con-
vergence theorems in terms of e-subdifferentials. In the following example, we show
an application of these results.

Example 2. Let A =[1,2] x [1,5], and f the following function on R?:
f(z1,22) = —z179.

f is known as a Cobb-Douglas type function. Clearly, f is continuous quasiconvex,
but not convex, and inf,ec4 f(x) > inf cgr2 f(x). For each k € N, let

(i) zr = (2,5— 1) € A,

os Vf(x —(zg)2,—(z

(i) vy = pofty = SO € 997 flan),
Then, ), converges to o = (2,5) and d((vk, (vk, xk)), —epid’) converges to 0. Let
e = d((vg, (vg, zx)), —epid?) + %, then vy, € 8gpf(xk) and (vg, (vg, k) € 8é\ff(a?k)

since vy € 0T f(x1). By Theorem 4.4 or Corollary 4.5, zo = (2,5) is a global
minimizer of f over A.

6. CONCLUSION

In this paper, we study e-subdifferentials and related results for quasiconvex pro-
gramming. We define e-Greenberg-Pierskalla subdifferential and e-Martinez-Legaz
subdifferential, and show some properties of these subdifferentials in Section 3. In
particular, 9M f(xq) and 05T f(x¢) are not closed in general, but OM f(x) U {(0,1) :
t <0} and 99T f(xo) U {0} are closed. In Theorem 4.2, we introduce a necessary
and sufficient optimality condition for an e-minimizer in terms of e-Martinez-Legaz
subdifferential. In Theorem 4.3, we show characterizations of the solution set. Ad-
ditionally, in Theorem 4.4 and Corollary 4.5, we show convergence theorems for a
global minimizer in terms of e-subdifferentials.
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