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where ∂Mf(x0) is the Mart́ınez-Legaz subdifferential, and epiδ∗A is the epigraph of
the support function of A. Additionally, the authors show a necessary and suf-
ficient optimality condition for essentially quasiconvex programming in terms of
Greenberg-Pierskalla subdifferential in [33]. However, in quasiconvex analysis, there
are not so many results of ε-subdifferentials for quasiconvex functions as far as we
know. It is expected to study ε-subdifferentials for quasiconvex functions based on
recent progress of quasiconvex analysis.

In this paper, we study ε-subdifferentials and related results for quasiconvex pro-
gramming. We define two ε-subdifferentials for quasiconvex functions. We investi-
gate some properties of these subdifferentials. We introduce optimality conditions
for an ε-minimizers. We investigate characterizations of the solution set. Addition-
ally, we show convergence theorems for a global minimizer.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries and previous results. In Section 3, we define two ε-
subdifferentials, and investigate some properties of these subdifferentials. In Section
4, We introduce optimality conditions for an ε-minimizer. We investigate charac-
terizations of the solution set. Additionally, we show convergence theorems for a
global minimizer.

2. Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Let A be a subset of Rn. The normal cone of A at x0 ∈ A is
denoted by

NA(x0) := {v ∈ Rn : ∀x ∈ A, ⟨v, x− x0⟩ ≤ 0}.
The indicator function δA of A is defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

Let f be a function from Rn to R, where R := [−∞,∞]. The epigraph of f is
defined as

epif := {(x, r) ∈ Rn × R : f(x) ≤ r},
and f is said to be convex if epif is convex. The Fenchel conjugate of f , f∗ :
Rn → R, is defined as

f∗(v) := sup
x∈Rn

{⟨v, x⟩ − f(x)}.

The subdifferential of f at x0 is defined as

∂f(x0) := {v ∈ Rn : ∀x ∈ Rn, f(x) ≥ f(x0) + ⟨v, x− x0⟩}.

Define the level sets of f with respect to a binary relation ⋄ on R as

lev(f, ⋄, α) := {x ∈ Rn : f(x) ⋄ α}

for any α ∈ R. A function f is said to be quasiconvex if lev(f,≤, α) is a convex
set for all α ∈ R. A function f is said to be essentially quasiconvex if f is qua-
siconvex and each local minimizer x of f over Rn is a global minimizer of f over
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Rn. Clearly, all convex functions are essentially quasiconvex. It is known that a
real-valued continuous quasiconvex function is essentially quasiconvex if and only if
it is semistrictly quasiconvex; see Theorem 3.37 in [1].

In quasiconvex analysis, various types of subdifferentials have been investigated;
Greenberg-Pierskalla subdifferential [6, 26, 33], Mart́ınez-Legaz subdifferential [16,
34], Q-subdifferential with a generator [4, 5, 30, 31, 32], Moreau’s generalized con-
jugation [21], and so on; see [3, 9, 12, 14, 15, 17, 21, 22, 23, 24]. In this paper,
we investigate the following two subdifferentials. In [6], Greenberg and Pierskalla
introduce the Greenberg-Pierskalla subdifferential of f at x0 ∈ Rn as follows:

∂GP f(x0) := {v ∈ Rn : inf{f(x) : ⟨v, x⟩ ≥ ⟨v, x0⟩} ≥ f(x0)}.

In [16], Mart́ınez-Legaz introduces the Mart́ınez-Legaz subdifferential of f at x0 ∈
Rn as follows:

∂Mf(x0) := {(v, t) ∈ Rn+1 : inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0), ⟨v, x0⟩ ≥ t}.

Mart́ınez-Legaz subdifferential is known as a special case of c-subdifferential in
Moreau’s generalized conjugation in [21]. In [33, 34], we study necessary and suf-
ficient optimality conditions for quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential and Mart́ınez-Legaz subdifferential.

3. ε-subdifferential

In this section, we define two ε-subdifferentials, and investigate some properties
of these subdifferentials. In particular, we study the closedness of ε-subdifferentials.

At first, we define the following two ε-subdifferentials. Let ε be a nonnegative
real number. ε-Greenberg-Pierskalla subdifferential of f at x0 ∈ Rn is defined as
follows:

∂GP
ε f(x0) := {v ∈ Rn : inf{f(x) : ⟨v, x⟩ ≥ ⟨v, x0⟩} ≥ f(x0)− ε}.

ε-Mart́ınez-Legaz subdifferential of f at x0 ∈ Rn is defined as follows:

∂M
ε f(x0) := {(v, t) ∈ Rn+1 : inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0)− ε, ⟨v, x0⟩ ≥ t}.

We define the above ε-subdifferentials in the similar way of the subdifferential and
ε-subdifferential for convex functions. We can check the following relation between
ε-subdifferentials:

∂GP
ε f(x0) = {v ∈ Rn : (v, ⟨v, x0⟩) ∈ ∂M

ε f(x0)}.

3.1. ε-Mart́ınez-Legaz subdifferential. In this section, we study some proper-
ties of ε-Mart́ınez-Legaz subdifferential without quasiconvexity of f . At first, we
show the following clear, but important equation without proof:

∂Mf(x0) = ∂M
0 f(x0) =

∩
ε>0

∂M
ε f(x0).

In the following theorem, we show that ∂M
ε f(x0) is a convex cone.

Theorem 3.1. Let f be a function from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then the
following statements hold:
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(i) ∂M
ε f(x0) is convex,

(ii) for each α > 0 and (v, t) ∈ ∂M
ε f(x0), α(v, t) ∈ ∂M

ε f(x0).

Proof. (i) Let (v1, t1), (v2, t2) ∈ ∂M
ε f(x0) and α ∈ (0, 1). We can check easily that

⟨(1− α)v1 + αv2, x0⟩ ≥ (1− α)t1 + αt2,

and if ⟨(1− α)v1 + αv2, x⟩ ≥ (1− α)t1 + αt2, then ⟨v1, x⟩ ≥ t1 or ⟨v2, x⟩ ≥ t2. This
shows that

inf{f(x) : ⟨(1− α)v1 + αv2, x⟩ ≥ (1− α)t1 + αt2}
≥ min{inf{f(x) : ⟨v1, x⟩ ≥ t1}, inf{f(x) : ⟨v2, x⟩ ≥ t2}}
≥ f(x0)− ε

since (v1, t1), (v2, t2) ∈ ∂M
ε f(x0). Hence ∂M

ε f(x0) is convex.
(ii) If α > 0 and (v, t) ∈ ∂M

ε f(x0), then

inf{f(x) : ⟨αv, x⟩ ≥ αt} = inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0)− ε,

and ⟨αv, x0⟩ ≥ αt. This completes the proof. □

Next, we show characterizations of the closedness of ε-Mart́ınez-Legaz subdiffer-
ential.

Theorem 3.2. Let f be a function from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then the
following statements are equivalent:

(i) ∂M
ε f(x0) is closed,

(ii) ∂M
ε f(x0) = {(v, t) : ⟨v, x0⟩ ≥ t},

(iii) f(x0)− ε ≤ infx∈Rn f(x).

Proof. Assume that (iii) holds. Then, for each (v, t) ∈ Rn+1 with ⟨v, x0⟩ ≥ t,

inf{f(x) : ⟨v, x⟩ ≥ t} ≥ inf
x∈Rn

f(x) ≥ f(x0)− ε,

that is, (v, t) ∈ ∂M
ε f(x0). This shows that (ii) holds. It is clear that (ii) implies

(i). Assume that (iii) does not hold. Let (v, t) ∈ ∂M
ε f(x0). By Theorem 3.1,

1
k (v, t) ∈ ∂M

ε f(x0) for each k ∈ N and 1
k (v, t) converges to (0, 0). Since (iii) does

not hold,

inf{f(x) : ⟨0, x⟩ ≥ 0} = inf
x∈Rn

f(x) < f(x0)− ε,

that is (0, 0) /∈ ∂M
ε f(x0). This shows that (i) does not hold. This completes the

proof. □

By Theorem 3.2, ∂M
ε f(x0) is closed if and only if f(x0) − ε ≤ infx∈Rn f(x). In

other words, ∂M
ε f(x0) is not closed in general. However, the following theorem

holds.

Theorem 3.3. Let f be an usc function from Rn to R, {εk} ⊂ R+ := {t ∈ R : t ≥
0}, and x0 ∈ Rn. If εk converges to ε0 ≥ 0 and (vk, tk) ∈ ∂M

εk
f(x0) converges to

(v0, t0) ∈ Rn+1 such that v0 ̸= 0, then (v0, t0) ∈ ∂M
ε0 f(x0).
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Proof. Let (vk, tk) ∈ ∂M
εk
f(x0) be a sequence such that (vk, tk) converges to (v0, t0)

with v0 ̸= 0, and assume that (v0, t0) /∈ ∂M
ε0 f(x0). We can check easily that

⟨v0, x0⟩ ≥ t0 since (vk, tk) ∈ ∂M
εk
f(x0). By the definition of ε-Mart́ınez-Legaz subd-

ifferential,

inf{f(x) : ⟨v0, x⟩ ≥ t0} < f(x0)− ε0.

By the above inequality, there exist x̄ ∈ Rn and α ∈ R such that ⟨v0, x̄⟩ ≥ t0 and

f(x̄) < α < f(x0)− ε0.

By the upper semicontinuity of f , there exists δ > 0 such that

f(x̄+ δv0) < α < f(x0)− ε0.

Clearly, ⟨v0, x̄+ δv0⟩ > t0. Since (vk, tk) converges to (v0, t0) and εk converges to
ε0, for sufficiently large k ∈ N, ⟨vk, x̄+ δv0⟩ > tk and α < f(x0)− εk. Hence,

inf{f(x) : ⟨vk, x⟩ ≥ tk} ≤ f(x̄+ δv0) < α < f(x0)− εk,

that is, (vk, tk) /∈ ∂M
εk
f(x0). This is a contradiction. Hence, (v0, t0) ∈ ∂M

ε0 f(x0). □

By Theorem 3.3, we show the following corollary.

Corollary 3.4. Let f be an usc function from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then,
∂M
ε f(x0) ∪ {(0, t) : t ≤ 0} is closed.

Proof. Let (vk, tk) ∈ ∂M
ε f(x0) be a sequence such that (vk, tk) converges to (v0, t0).

If v0 ̸= 0, then (v0, t0) ∈ ∂M
ε f(x0) by Theorem 3.3. If v0 = 0, then 0 = ⟨v0, x0⟩ ≥ t0

since ⟨vk, x0⟩ ≥ tk. This shows that (v0, t0) ∈ {(0, t) : t ≤ 0}. Additionally, if
(vk, tk) ∈ {(0, t) : t ≤ 0} converges to (v0, t0), then (v0, t0) ∈ {(0, t) : t ≤ 0}. This
completes the proof. □

By Corollary 3.4, ∂M
ε f(x0) is not closed in general, but ∂M

ε f(x0)∪{(0, t) : t ≤ 0}
is closed for an usc function f . Next, we show the following theorem.

Theorem 3.5. Let f and g be functions from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then
the following statements hold:

(i) if 0 ≤ ε1 ≤ ε2, then ∂M
ε1 f(x0) ⊂ ∂M

ε2 f(x0),

(ii) if α > 0, then ∂M
ε (αf)(x0) = ∂M

ε
α
f(x0),

(iii) for ε1, ε2 ≥ 0, ∂M
ε1+ε2(f + g)(x0) ⊃ ∂M

ε1 f(x0) ∩ ∂M
ε2 g(x0).

Proof. (i) Let 0 ≤ ε1 ≤ ε2 and (v, t) ∈ ∂M
ε1 f(x0). Then ⟨v, x0⟩ ≥ t, and

inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0)− ε1 ≥ f(x0)− ε2.

This shows that (v, t) ∈ ∂M
ε2 f(x0).

(ii) Let α > 0. Then, we can check that

inf{αf(x) : ⟨v, x⟩ ≥ t} ≥ αf(x0)− ε

if and only if

inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0)−
ε

α
.

This shows that (ii) holds.



190 SATOSHI SUZUKI

(iii) Let ε1, ε2 ≥ 0, and (v, t) ∈ ∂M
ε1 f(x0) ∩ ∂M

ε2 g(x0). Then, ⟨v, x0⟩ ≥ t, and

inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0)− ε1, and inf{g(x) : ⟨v, x⟩ ≥ t} ≥ g(x0)− ε2.

Hence,

inf{(f + g)(x) : ⟨v, x⟩ ≥ t} ≥ inf{f(x) : ⟨v, x⟩ ≥ t}+ inf{g(x) : ⟨v, x⟩ ≥ t}
≥ f(x0) + g(x0)− ε1 − ε2.

This shows that (v, t) ∈ ∂M
ε1+ε2(f + g)(x0). □

3.2. ε-Greenberg-Pierskalla subdifferential. The following theorems are simi-
lar to the above results for ε-Mart́ınez-Legaz subdifferential. Hence the proofs will
be omitted.

Theorem 3.6. Let f be a function from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then the
following statements hold:

(i) ∂GP f(x0) = ∂GP
0 f(x0) =

∩
ε>0 ∂

GP
ε f(x0),

(ii) ∂GP
ε f(x0) is convex,

(iii) for each α > 0 and v ∈ ∂GP
ε f(x0), αv ∈ ∂GP

ε f(x0),
(iv) if 0 ≤ ε1 ≤ ε2, then ∂GP

ε1 f(x0) ⊂ ∂GP
ε2 f(x0),

(v) if α > 0, then ∂GP
ε (αf)(x0) = ∂GP

ε
α

f(x0),

(vi) for ε1, ε2 ≥ 0, ∂GP
ε1+ε2(f + g)(x0) ⊃ ∂GP

ε1 f(x0) ∩ ∂GP
ε2 g(x0).

Theorem 3.7. Let f be a function from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then the
following statements are equivalent:

(i) ∂GP
ε f(x0) is closed,

(ii) ∂GP
ε f(x0) = Rn,

(iii) f(x0)− ε ≤ infx∈Rn f(x).

Theorem 3.8. Let f be an usc function from Rn to R, {εk} ⊂ R+, ε ≥ 0, and
x0 ∈ Rn. Then the following statements hold:

(i) if εk converges to ε0 ≥ 0 and vk ∈ ∂GP
εk

f(x0) converges to v0 ∈ Rn \ {0},
then v0 ∈ ∂GP

ε0 f(x0),

(ii) ∂GP
ε f(x0) ∪ {0} is closed.

4. Optimality conditions and convergence theorems

In this section, we study optimality conditions and convergence theorems for
quasiconvex programming. We show necessary and sufficient optimality conditions
for an ε-minimizer of quasiconvex programming. We investigate characterizations
of the solution set. Additionally, we show convergence theorems in terms of ε-
subdifferentials.



ε-SUBDIFFERENTIALS AND RELATED RESULTS 191

4.1. Optimality conditions. An element x0 of A is said to be a global ε-minimizer
of f over A if f(x0)− ε ≤ infx∈A f(x). In the following theorem, we show necessary
and sufficient optimality conditions for an ε-minimizer of an unconstrained problem.

Theorem 4.1. Let f be an usc function from Rn to R, ε ≥ 0, and x0 ∈ Rn. Then
the following statements are equivalent:

(i) 0 ∈ ∂GP
ε f(x0),

(ii) (0, 0) ∈ ∂M
ε f(x0),

(iii) f(x0)− ε ≤ infx∈Rn f(x).

Proof. By Theorem 3.7, (iii) implies (i). Since ∂GP
ε f(x0) = {v ∈ Rn : (v, ⟨v, x0⟩) ∈

∂M
ε f(x0)}, (i) implies (ii). By the statement (ii),

inf
x∈Rn

f(x) = inf{f(x) : ⟨0, x⟩ ≥ 0} ≥ f(x0)− ε.

This completes the proof. □

Next, we investigate a necessary and sufficient optimality condition for an ε-
minimizer of constrained quasiconvex programming.

Theorem 4.2. Let f be an usc quasiconvex function from Rn to R, A a convex
subset of Rn, ε ≥ 0, and x0 ∈ A. Then, x0 is a global ε-minimizer of f over A if
and only if

0 ∈ ∂M
ε f(x0) + epiδ∗A.

Proof. Assume that x0 is a global ε-minimizer of f over A, that is f(x0) − ε ≤
infx∈A f(x). If f(x0) − ε ≤ infx∈Rn f(x), then (0, 0) ∈ ∂M

ε f(x0) by Theorem 3.2.
Hence 0 ∈ ∂M

ε f(x0) + epiδ∗A. Assume that f(x0) − ε > infx∈Rn f(x). Then, A is
nonempty convex, lev(f,<, f(x0) − ε) is nonempty open convex, and A ∩ lev(f,<
, f(x0)− ε) is empty. By the separation theorem, there exist v ∈ Rn and t ∈ R such
that for each x ∈ A and y ∈ lev(f,<, f(x0)− ε),

⟨v, x⟩ ≥ t > ⟨v, y⟩ .

We can check easily that −(v, t) ∈ epiδ∗A and ⟨v, x0⟩ ≥ t. Additionally,

inf{f(y) : ⟨v, y⟩ ≥ t} ≥ f(x0)− ε.

This shows that (v, t) ∈ ∂M
ε f(x0). Hence, 0 ∈ ∂M

ε f(x0) + epiδ∗A.
Conversely, assume that 0 ∈ ∂M

ε f(x0)+epiδ∗A. Then, there exists (v, t) ∈ ∂M
ε f(x0)

such that −(v, t) ∈ epiδ∗A. Since −(v, t) ∈ epiδ∗A, ⟨v, x⟩ ≥ t for each x ∈ A. Addi-
tionally,

inf
x∈A

f(x) ≥ inf{f(x) : ⟨v, x⟩ ≥ t} ≥ f(x0)− ε

since (v, t) ∈ ∂M
ε f(x0). This completes the proof. □
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4.2. Characterizations of the solution set. In this section, we show character-
izations of the set of ε-minimizers in terms of ε-Mart́ınez-Legaz subdifferential.

Theorem 4.3. Let f be an usc quasiconvex function from Rn to R, A a convex
subset of Rn, ε, ε0 ≥ 0, x0 ∈ A is a ε0-minimizer of f over A, and Then, Sε ⊂
Cε
1 ⊂ Cε

2 ⊂ Sε+ε0, where

(i) Sε = {x ∈ A : f(x)− ε ≤ infy∈A f(y)},
(ii) Cε

1 = {x ∈ A : ∂M
ε+ε0f(x0) ∩ ∂M

ε f(x) ̸= ∅},
(iii) Cε

2 = {x ∈ A : ∃(v, t) ∈ ∂M
ε f(x) s.t. ⟨v, x0⟩ ≥ t},

Additionally, if x0 ∈ A is a global minimizer of f over A, then Sε = Cε
1 = Cε

2.

Proof. Let x ∈ Sε, then by Theorem 4.2,

0 ∈ ∂M
ε f(x) + epiδ∗A,

that is, there exists (v, t) ∈ ∂M
ε f(x) such that −(v, t) ∈ epiδ∗A. Hence, ⟨v, x0⟩ ≥ t

and

inf{f(y) : ⟨v, y⟩ ≥ t} ≥ f(x)− ε ≥ f(x0)− ε− ε0,

since x0 ∈ Sε0 . This shows that (v, t) ∈ ∂M
ε+ε0f(x0) and Sε ⊂ Cε

1 . Let x ∈ Cε
1 ,

then there exists (v, t) ∈ ∂M
ε f(x) such that (v, t) ∈ ∂M

ε+ε0f(x0). By the definition
of ε-Mart́ınez-Legaz subdifferential, ⟨v, x0⟩ ≥ t. Hence Cε

1 ⊂ Cε
2 . Let x ∈ Cε

2 , then
there exists (v, t) ∈ ∂M

ε f(x) such that ⟨v, x0⟩ ≥ t. Therefore,

inf
y∈A

f(y) ≥ f(x0)− ε0 ≥ inf{f(y) : ⟨v, y⟩ ≥ t} − ε0 ≥ f(x)− ε− ε0,

that is, x ∈ Sε+ε0 .
Assume that x0 ∈ A is a global minimizer of f over A, that is, x ∈ S0. By the

similar way in the first half of the proof, we can show that Cε
2 ⊂ Sε. This completes

the proof. □

As seen in Theorem 4.3, we can characterize the set of all ε-minimizers Sε by
only one global-minimizer x0 and ε-Mart́ınez-Legaz subdifferential.

4.3. Convergence theorem. In this section, we show convergence theorems in
terms of ε-subdifferentials. At first, we show the following convergence theorem in
terms of ε-Mart́ınez-Legaz subdifferential.

Theorem 4.4. Let f be a continuous quasiconvex function from Rn to R, and A a
convex subset of Rn. Assume that infx∈A f(x) > infx∈Rn f(x), and for each k ∈ N,

(i) xk ∈ A,
(ii) εk > 0,
(iii) (vk, tk) ∈ ∂M

εk
f(xk),

(iv) ∥vk∥ = 1,
(v) d((vk, tk),−epiδ∗A) := inf{∥(vk, tk)− (wk, sk)∥ : (wk, sk) ∈ −epiδ∗A} < εk.

If xk converges to x0 ∈ A and εk converges to 0, then x0 is a global minimizer of f
over A.
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Proof. Since ∥vk∥ = 1 for each k ∈ N, we assume that vk converges to some v0
without loss of generality. By the definition of ε-Mart́ınez-Legaz subdifferential,
⟨vk, xk⟩ ≥ tk for each k ∈ N. Since (vk, xk) converges to (v0, x0), {tk} is bounded
from above. Now, we show that {tk} is bounded from below. If not so, we can
assume that limk→∞ tk = −∞. By the assumption, infx∈A f(x) > infx∈Rn f(x),
there exists z ∈ Rn such that

inf
x∈A

f(x) > f(z) ≥ inf
x∈Rn

f(x).

Since ⟨vk, z⟩ converges to ⟨v0, z⟩ and limk→∞ tk = −∞, ⟨vk, z⟩ ≥ tk for sufficiently
large k. Additionally,

f(z) ≥ inf{f(x) : ⟨vk, x⟩ ≥ tk} ≥ f(xk)− εk ≥ inf
x∈A

f(x)− εk.

This contradicts to εk converges to 0. Hence, {tk} is bounded. We assume that
tk converges to some t0 without loss of generality. By the closedness of epiδ∗A and
the assumption (v), (v0, t0) ∈ −epiδ∗A. Finally, we show (v0, t0) ∈ ∂Mf(x0). Since
⟨vk, xk⟩ ≥ tk for each k ∈ N, ⟨v0, x0⟩ ≥ t0. Assume that (v0, t0) /∈ ∂Mf(x0), then

inf{f(y) : ⟨v0, y⟩ ≥ t0} < f(x0),

and there exists z0 ∈ Rn such that ⟨v0, z0⟩ ≥ t0 and f(z0) < f(x0). Since f is
continuous, (actually we need the upper semicontinuity of f), there exists r0 > 0
such that f(z0 + r0v0) < f(x0). Since ⟨v0, z0 + r0v0⟩ > t0, there exists K ∈ N such
that for each k ≥ K, ⟨vk, z0 + r0v0⟩ > tk. This shows that for each k ≥ K

f(x0) > f(z0 + r0v0) ≥ inf{f(y) : ⟨vk, y⟩ ≥ tk} ≥ f(xk)− εk.

By the continuity of f , (actually we need the lower semicontinuity of f)

f(x0) = lim
k→∞

(f(xk)− εk) ≤ f(z0 + r0v0) < f(x0).

This is a contradiction. Hence, (v0, t0) ∈ ∂Mf(x0). By Theorem 4.2, infx∈A f(x) =
f(x0), that is, x0 is a global minimizer of f over A. □

Next, we show the following convergence theorem in terms of ε-Greenberg-
Pierskalla subdifferential as a corollary of Theorem 4.4.

Corollary 4.5. Let f be a continuous quasiconvex function from Rn to R, and A a
convex subset of Rn. Assume that infx∈A f(x) > infx∈Rn f(x), and for each k ∈ N,

(i) xk ∈ A,
(ii) εk > 0,
(iii) vk ∈ ∂GP

εk
f(xk),

(iv) ∥vk∥ = 1,
(v) d(vk,−NA(xk)) < εk.

If xk converges to x0 ∈ A and εk converges to 0, then x0 is a global minimizer of f
over A.

Proof. We can check easily that a sequence {(vk, ⟨vk, xk⟩)} satisfies the assumptions
in Theorem 4.4. By Theorem 4.4, x0 is a global minimizer of f over A. □
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5. Discussion

In this section, we discuss our results. We compare our results with previous ones
and we show some examples.

5.1. Remark of Theorem 3.5. In Lemma 4.2 of [27], we show the following similar
result of the statement (iii) in Theorem 3.5:

∂M (f + g)(x0) ⊃ ∂Mf(x0) ∩ ∂Mg(x0).

In [27], we show a characterization of quasiconvexity of f + g in terms of the above
inclusion. The statement (iii) in Theorem 3.5 is a generalized result of Lemma 4.2
of [27].

5.2. Remark of Theorem 4.2. In [33, 34], we show necessary and sufficient opti-
mality conditions in terms of subdifferentials. We can prove the following result as
a corollary of Theorem 4.2.

Corollary 5.1 ([34]). Let f be an usc quasiconvex function from Rn to R, A a
convex subset of Rn, and x0 ∈ A. Then, the following statements are equivalent:

(i) f(x0) = minx∈A f(x),
(ii) 0 ∈ ∂Mf(x0) + epiδ∗A.

On the other hand, the following condition is not a necessary optimality condition
but a sufficient optimality condition:

0 ∈ ∂GP
ε f(x0) +NA(x0).

Actually, if 0 ∈ ∂GP
ε f(x0) + NA(x0), then there exists v ∈ ∂GP

ε f(x0) such that
−v ∈ NA(x0). Since −v ∈ NA(x0), ⟨v, x⟩ ≥ ⟨v, x0⟩ for each x ∈ A. Hence,

inf
x∈A

f(x) ≥ inf{f(x) : ⟨v, x⟩ ≥ ⟨v, x0⟩} ≥ f(x0)− ε,

that is, x0 is a global ε-minimizer of f over A. However, the condition is not a
necessary optimality condition in general, see the the following example.

Example 1. Let f(x) = x, A = [0, 1], and ε = 1
4 . Then, f is essentially quasiconvex

and x0 =
1
4 is a global 1

4 -minimizer of f over A. However,

0 /∈ (0,∞) + {0} = ∂GP
ε f(x0) +NA(x0).

On the other hand,

(0, 0) = (1, 0) + (−1, 0) ∈ ∂M
ε f(x0) + epiδ∗A.

Hence, we can apply Theorem 4.2.

Hence, we cannot prove the following result in [33] by using Theorem 4.2 and our
result in this paper.

Theorem 5.2 ([33]). Let f be an usc essentially quasiconvex function from Rn

to R, A a convex subset of Rn, and x0 ∈ A. Then, the following statements are
equivalent:

(i) f(x0) = minx∈A f(x),
(ii) 0 ∈ ∂GP f(x0) +NA(x0).
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5.3. Remark of Theorem 4.3. In [34], we show characterizations of the solution
set for quasiconvex programming in terms of Mart́ınez-Legaz subdifferential. We
can prove the following result as a corollary of Theorem 4.3.

Corollary 5.3 ([34]). Let f be an usc quasiconvex function, A a nonempty convex
subset of Rn, and x0 is a global minimizer of f over A. Then, the following sets
are equal:

(i) S = {x ∈ A | f(x) = miny∈A f(y)},
(ii) S′

2 = {x ∈ A | ∂Mf(x0) ∩ ∂Mf(x) ̸= ∅},
(iii) S′

6 = {x ∈ A | ∃(v, t) ∈ ∂Mf(x) s.t. ⟨v, x0⟩ ≥ t}.

Proof. Let ε = 0, then S = Sε = S2ε, S
′
2 = Cε

1 , and S′
6 = Cε

2 . This completes the
proof by Theorem 4.3. □

On the other hand, we can not prove characterizations of the solution set in [33]
by our results in the paper for the same reason in Section 5.2.

5.4. Remark of Theorem 4.4. In Theorem 4.4 and Corollary 4.5, we show con-
vergence theorems in terms of ε-subdifferentials. In the following example, we show
an application of these results.

Example 2. Let A = [1, 2]× [1, 5], and f the following function on R2:

f(x1, x2) = −x1x2.

f is known as a Cobb-Douglas type function. Clearly, f is continuous quasiconvex,
but not convex, and infx∈A f(x) > infx∈R2 f(x). For each k ∈ N, let

(i) xk =
(
2, 5− 1

k

)
∈ A,

(ii) vk = ∇f(xk)
∥∇f(xk)∥ = (−(xk)2,−(xk)1)

∥xk∥ ∈ ∂GP f(xk),

Then, xk converges to x0 = (2, 5) and d((vk, ⟨vk, xk⟩),−epiδ∗A) converges to 0. Let

εk = d((vk, ⟨vk, xk⟩),−epiδ∗A)+
1
k , then vk ∈ ∂GP

εk
f(xk) and (vk, ⟨vk, xk⟩) ∈ ∂M

εk
f(xk)

since vk ∈ ∂GP f(xk). By Theorem 4.4 or Corollary 4.5, x0 = (2, 5) is a global
minimizer of f over A.

6. Conclusion

In this paper, we study ε-subdifferentials and related results for quasiconvex pro-
gramming. We define ε-Greenberg-Pierskalla subdifferential and ε-Mart́ınez-Legaz
subdifferential, and show some properties of these subdifferentials in Section 3. In
particular, ∂M

ε f(x0) and ∂GP
ε f(x0) are not closed in general, but ∂M

ε f(x0)∪{(0, t) :
t ≤ 0} and ∂GP

ε f(x0) ∪ {0} are closed. In Theorem 4.2, we introduce a necessary
and sufficient optimality condition for an ε-minimizer in terms of ε-Mart́ınez-Legaz
subdifferential. In Theorem 4.3, we show characterizations of the solution set. Ad-
ditionally, in Theorem 4.4 and Corollary 4.5, we show convergence theorems for a
global minimizer in terms of ε-subdifferentials.



196 SATOSHI SUZUKI

References

[1] M. Avriel, W. E. Diewert, S. Schaible and I. Zang, Generalized Concavity, Math. Concepts

Methods Sci. Engrg. Plenum Press, New York, 1988.

[2] A. Cambini and L. Martein, Generalized Convexity and Optimization Theory and Applications,

Lecture Notes in Economics and Mathematical Systems, Springer, 2009.

[3] A. Daniilidis, N. Hadjisavvas and J. E. Mart́ınez-Legaz, An appropriate subdifferential for

quasiconvex functions, SIAM J. Optim. 12 (2001), 407–420.

[4] S. Dempe, N. Gadhi and K. Hamdaoui, Minimizing the difference of two quasiconvex functions

over a vector-valued quasiconvex system, Optimization 69 (2020), 997–1012.

[5] S. Dempe, N. Gadhi and K. Hamdaoui, Minimizing the difference of two quasiconvex functions,

Optim. Lett. 14 (2020), 1765–1779.

[6] H. J. Greenberg and W. P. Pierskalla, Quasi-conjugate functions and surrogate duality, Cah.

Cent. Étud. Rech. Opér. 15 (1973), 437–448.
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