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y if x ≽ y and not y ≽ x. If in addition, preorder ≽ is antisymmetric (that is
x ≽ y and y ≽ x imply x = y) then it is called an order. A real function f
defined on a subset D of the preordered set X is ≽ −increasing if for any two
points x, y ∈ D such that x ≽ y, we have f(x) ⩾ f(y). Function f is ≽ −strictly
increasing if it is ≽ −increasing and for any two points x, y ∈ D such that x ≻ y,
we have f(x) > f(y). We will say increasing and strictly increasing in cases where
no confusion should arise. Decreasing and strictly decreasing functions are defined
in a dual way. A function is strictly monotone if it is strictly increasing or strictly
decreasing. Throughout the paper we will discuss strictly increasing functions with
the understanding that all the results, assumptions and arguments are modified in
trivial ways for strictly decreasing functions. For two sets D, D′ with D ⊂ D′ and
a function f : D → R function f ′ : D′ → R is called an extension of function f if
f ′(x) = f(x) for all x ∈ D.

Next we define two orders on Rn. For two vectors x = (x1, . . . , xn) and y =
(y1, . . . , yn) in Rn we write x ⩾ y if xk ⩾ yk for all k = 1, . . . , n, x ≥ y if x ⩾ y and
x ̸= y, and x > y if xk > yk for all k = 1, . . . , n. We also write x ⩽ y, x ≤ y, x <
y if y ⩾ x, y ≥ x, y > x, respectively. For x, y ∈ Rn, set x ⩾s y if x = y or xk > yk
for all k = 1, · · · , n. So, the strict part of preorder ⩾s is > . It is easy to see that
this preorder is separable1. Note that a function f : Rn → R is ⩾-strictly increasing
if f(x) > f(y) whenever x ≥ y, and f is ⩾s-strictly increasing if f(x) > f(y) for
x, y ∈ Rn with xk > yk for all k = 1, . . . , n.

A set A in X is decreasing if x ∈ A and x ≽ y imply y ∈ A. An increasing set
is defined dually. A set X equipped with the both topology τ and preorder (order)
≽ is said to be normally preordered (ordered) space if, for any two closed disjoint
subsets F0 and F1 of X, such that F0 is decreasing and F1 is increasing, there exist
disjoint open sets U0 and U1 of X, such that U0 is decreasing and contains F0 and
U1 is increasing and contains F1.

Let X be a set, τ a topology, and ≽ a preorder on X. For a subset A ⊂ X
denote by d(A) = {x ∈ X : y ≽ x, ∃y ∈ A} the decreasing cover of A, and
i(A) = {x ∈ X : x ≽ y, ∃y ∈ A} the increasing cover of A. The decreasing
closure, denoted as D(A), of a set A in X is the smallest decreasing and closed
set containing A. The increasing closure of A is defined dually and denoted as
I(A). Further, we will assume that the preorder ≽ of a normally preordered space
(X, τ,≽) is continuous in the following sense: for every open set V ⊂ X both
the decreasing cover d(V ) and the increasing cover i(V ) are open sets. It is clear
that both of the orders ⩾ and ⩾s are continuous. This type of continuity was
introduced by McCartan (1971). Let (X, τ,≽) be a normally preordered space. For
a ≽ −increasing function f : D → R, where D ⊂ X, and a real α, set

Lf (α) = {x ∈ D : f(x) ⩽ α} and Uf (α) = {x ∈ D : f(x) ⩾ α}.

Now the Nachbin property reads as follows: for each α, α′ ∈ R such that α < α′

(1.1) D(Lf (α)) ∩ I(Uf (α
′)) = ∅.

1For a formal definition of the separable preorder see the next section.
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The author (2010) introduced a condition that is equivalent to the Nachbin property
(1.1). To formulate this condition we need some notations. For x ∈ X denote by
Vxd and Vxi the collections of open decreasing and open increasing sets containing
x, respectively. For a continuous and increasing function f : D → R, where D is an
arbitrary set in X, and point x ∈ X we set

mf (x) = inf
Vd∈Vx

d

sup{f(z) : z ∈ D ∩ Vd} and Mf (x) = sup
Vi∈Vx

i

inf{f(z) : z ∈ D ∩ Vi},

with the agreement that mf (x) = inf{f(z) : z ∈ D} and Mf (x) = sup{f(z) : z ∈
D}, if D ∩ Vd = ∅ for some Vd ∈ Vxd and D ∩ Vi = ∅ for some Vi ∈ Vxi , respectively.
Clearly, in the definitions of functions mf and Mf collections V x

d and V x
i can be

replaced with arbitrary open bases of V x
d and V x

i , respectively. Further we will omit
the subindex f in the notations mf and Mf in cases where it is clear which function
is referred to.

Proposition 1.1. The Nachbin property is equivalent to the following property:

(1.2) mf (x) ⩽ Mf (x) for all x ∈ X.

Proof. Assume that the Nachbin property (1.1) is satisfied, but m(x) > M(x) for
some x ∈ X. Denote ε = 1

4 [m(x) −M(x)]. By Theorem 2 from Nachbin (1976, p.
36) there exists a continuous ≽ −increasing extension, F, of function f. Let V x be
an open neighborhood of x such that

|F (y)− F (x)| < ε for y ∈ V x.

By the continuity of preorder ≽, i(V x) and d(V x) are respectively, decreasing and
increasing open neighborhoods of x. Since function F is ≽ −increasing we have

F (z) > F (x)− ε for z ∈ i(V x) and F (z) < F (x) + ε for z ∈ d(V x).

These inequalities imply that

M(x) ⩾ inf{f(z) : z ∈ D ∩ i(V x)} ⩾ F (x)− ε,

m(x) ⩽ sup{f(z) : z ∈ D ∩ d(V x)} ⩽ F (x) + ε.

So F (x)− ε ⩽ M(x) < m(x) ⩽ F (x) + ε. From this and the definition of ε

4ε = m(x)−M(x) < 2ε,

a contradiction. So the Nachbin property implies (1.2).
Assume that the Nachbin property (1.1) is violated, that is, there exist reals α, α′

with α < α′ such that

D(Lf (α)) ∩ I(Uf (α
′)) ̸= ∅.

Let x belong to this intersection. Then m(x) ⩾ α′ and α ⩾ M(x), which imply
m(x) > M(x). This contradicts property (1.2). □

The equivalence of the properties (1.1) and (1.2) allows us to formulate the fol-
lowing version of Nachbin’s extension theorem:
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Theorem 1.2. Let X be a normally preordered space with a continuous preorder,
and let D ⊂ X be a closed set. Let f : D → R be a continuous and increasing
function. Then f has an extension into X if and only if property (1.2) holds.

Remark. Nachbin’s extension theorem assumes the boundedness of function f.
However, the following simple observation removes this assumption. Since for an
increasing homeomorphism ϕ : R → (0, 1), ϕ ◦mf = mϕ◦f and ϕ ◦Mf = Mϕ◦f ,
condition (1.2) is satisfied if and only if it is satisfied for function ϕ ◦ f. Now if
function F : X → R is an extension of function ϕ ◦ f then obviously function
ϕ−1 ◦ F is an extension of function f.

Now we give some examples illustrating property (1.2) and its strengthening (see
property (2.1) below).

Examples 1-3. Set D+ = {(x1, x2) ∈ R2 | x1x2 = −1, x2 > 0}, D− = −D+, and
D = D+ ∪D−. Define functions fi : D → R as x2

1+x2
on D+ and i− 2 + x2

1−x2
on D−

for i = 1, 2, 3. We consider R2 with the order ⩾ defined above. Obviously each of
functions fi (i = 1, 2, 3) is strictly increasing with respect to order ⩾ .

It is easy to see that function f1 has no increasing extension, f2 has an increasing
extension but not a strictly increasing one, and f3 has a strictly increasing extension
into R2. We have mf1(0) = mf2(0) = mf3(0) = 0 and Mfi(0) = i− 2 for i = 1, 2, 3.
Hence mf1(0) > Mf1(0), mf2(0) = Mf2(0), and mf3(0) < Mf3(0). Thus property
(1.2) is violated for function f1 and satisfied for functions f2 and f3 at point (x, y) =
(0, 0).

2. Extension of strictly increasing functions

Let (X,≽) be a preordered set. For a, b ∈ X such that a ≺ b open order interval
with the endpoints a, b is defined as (a, b) = {z ∈ X : a ≺ z ≺ b}.

A preorder ≽ on a set X is separable if
(a) there is a countable set S in X such that for any pair of points x, y ∈

X with x ≺ y and such that the order interval (x, y) is nonempty there is s ∈ S
such that x ≺ s ≺ y2

(b) there is a finite or countable subset I of the set of all pairs x, y ∈ X with
(x, y) = ∅, such that for each empty interval (x, y) there is (x′, y′) ∈ I with x ∼
x′ and y ∼ y′.

A set S ⊂ X satisfying property (a) is called countable order dense set. The
separability of a preorder defined here is equivalent to each of the Debreu and Jaf-
fray separabilities (see Bridges and Mehta (1995), Definition 1.4.3, Debreu (1964),

2If there is no nonempty interval in (X,≽) then this assumption reduces to X being an infinite

set.
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Jaffray (1975), Herden (1989)). This will be proved in the Appendix. There we will
also bring an example showing that Birkhoff (1948) separability is not equivalent
to the above separabilities. Note that the equivalence of the latter two separability
properties to each other is shown in Proposition 1.4.4 of Bridges and Mehta (1995).

Let (X, τ,≽) be a normally preordered space. For function f : D → R, where
D ⊂ X, define functions

m̄f (x) = sup{f(y) : y ∈ D, x ≽ y} and M̄f (x) = inf{f(y) : y ∈ D, y ≽ x}

on X. If set {y ∈ D : x ≽ y} is empty we assume m̄f (x) = −∞ and if set
{y ∈ D : y ≽ x} is empty we assume M̄f (x) = ∞. Note that like functions
mf and Mf these functions are increasing. As for functions mf and Mf we will
omit the subindex f in the notations m̄f and M̄f in cases where it is clear which
function is referred to.

Obviously M(x) ⩽ M̄(x) and m(x) ⩾ m̄(x) for all x ∈ X. Note that if f is a
≽ −strictly increasing function then

M̄(y) = f(y) > f(x) = m̄(x) for x, y ∈ D, y ≻ x.

Theorem 2.1. Let (X, τ,≽) be a normally preordered space with the separable and
continuous preorder ≽ . Let D ⊂ X be a nonempty, closed set, and f : D → R
a continuous, strictly increasing function. Then, there exists a continuous, strictly
increasing function F : X → R such that F (x) = f(x) for x ∈ D if and only if f
satisfies the following conditions:

(2.1a) m(x) ⩽ M(x) for all x ∈ X,
(2.1b) m̄(x) < M̄(y) for all x ∈ X, y ∈ X with y ≻ x.

Proof. The necessity of condition (2.1a) follows from Theorem 1.2, and the necessity
of condition (2.1b) is obvious. Prove sufficiency. Let f : D → R be a continuous,
strictly increasing function. As in the above Remark, since for an increasing home-
omorphism ϕ : R → (0, 1), ϕ ◦ m̄f = m̄ϕ◦f and ϕ ◦ M̄f = M̄ϕ◦f , conditions (2.1)
are satisfied for function f if and only if it is satisfied for function ϕ ◦ f. Therefore
we may assume that f(D) ⊂ (0, 1).

Further we use the modification of Nachbin’s extension theorem, Theorem 1.2,
to show that for any two points a, b ∈ X such that b ≻ a there exists an increasing
extension fab : D ∪ {a, b} → (0, 1) of function f such that f(a) < f(b). The case
a ∈ D and b ∈ D is obvious. Assume a ∈ D and b /∈ D. Then, by condition (2.1b),

m̄(a) < M̄(b). Set fab(b) =
m̄(b)+M̄(b)

2 . From the definitions of functions m̄ and M̄ it
is easy to see that fab is a strictly increasing function. The case a /∈ D and b ∈ D is
treated similarly. Assume now a /∈ D and b /∈ D. We set fab(a) =

2
3m̄(a) + 1

3M̄(a)

and fab(b) =
1
3m̄(b) + 2

3M̄(b). Since functions m̄ and M̄ are increasing and satisfy
conditions (2.1) we have fab(a) < fab(b) and that function fab is strictly increasing.
It is easy to see that for all the above considered cases function fab satisfies condition
(2.1a). As X is normally preordered and preorder ≽ is continuous, by Theorem 1.2
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there exists an increasing extension of fab into X. We denote this extension also as
fab.

Next, as in Peleg (1970), we use the separability of preorder ≽ to show the
existence of a countable family of increasing functions fk = fakbk as above whose
weighted sum is a continuos, strictly increasing extension of f. Let S be a countable
order dense set in X. It is easily seen that there exists a countable superset S′ of S
such that for any pair of points x, y ∈ X with x ≻ y, either there exists s ∈ S′ with
x ≻ s ≻ y or there exist s1, s2 ∈ S′ with x ∼ s1 and y ∼ s2. Denote N = {1, 2, . . .}
and write set {(s, s′) ∈ S′ × S′ : s′ ≻ s} as a sequence {(ak, bk), k ∈ N0}, where
N0 ⊂ N. As shown above for each k ∈ N0 there exists an increasing extension
fk = fakbk : X → (0, 1) of function f, such that fk(bk) > fk(ak). Define

F =
∑
k∈N0

1

2k
fk.

Clearly, function F is continuous, increasing, and F (x) = f(x) for x ∈ D. It remains
to show that F is strictly increasing. Let a, b ∈ X and b ≻ a. Let (al, bl) ∈ S′ be
such that b ≽ bl ≻ al ≽ a. This implies fl(b) ⩾ fl(bl) > fl(al) ⩾ fl(a). This and
fk(b) ⩾ fk(a) for all k ∈ N0 imply that F (b) > F (a). □

The following example demonstrates the importance of order separability as-
sumption in this theorem.

Example 4. Let X = [0, 1]2 with the lexicographic order ≽ . That is for x =
(x1, x2), y = (y1, y2) in X, x ≽ y iff x1 > y1 or x1 = y1 and x2 > y2. We consider
X with the ≽ −interval topology. Clearly X is a normally ordered space. Since
there are uncountable infinity of pairwise disjoint intervals in X but not in real
with its usual order there is no strictly increasing real-valued function defined on
X. Therefore, for no strictly increasing function defined on a closed subset of X
there exists a strictly increasing extension into X.

Theorem 2.1 implies the existence of a utility function for the separable con-
tinuous preorders on a topological space (X, τ) such that (X, τ,⩾) is a normally
topological space.

Corollary 2.2. Let (X, τ,⩾) be a normally preordered space with a separable con-
tinuous preorder ⩾. Then there exists a continuous, ⩾ −strictly increasing function
(utility) on X.

Proof. Let x0 ∈ X. Set D = {x0} and let f(x0) = 0. Obviously f is a continuous
strictly increasing function on D which satisfies assumptions (2.1) of Theorem 2.1.

□

Corollary 2.2 implies Corollary 4.1.3 of Bridges and Mehta (1995) on the existence
of a utility function that is derived from Peleg’s utility existence theorem. Indeed,
Corollary 4.1.3 assumes the topological space X is equipped with a connected strict
partial order such that the decreasing and increasing closures, (←, x) and (x,→),
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are open for each point x in X. Moreover, it assumes the existence of a countable
Cantor order dense set in X. First, it is easily seen that openness of the decreasing
and increasing closures of points in X implies that the space in Corollary 4.1.3 is a
normally preordered space and that the preorder ≽, which is the reflexive closure
of strict partial order in Corollary 4.1.3, is (McCartan) continuous. Secondly, the
existence of a countable Cantor order dense set in X implies that the preorder ≽ is
separable according to the definition given in this paper.

In Bridges and Mehta (1995) the classical Eilenberg (1941) and Debreu (1964)
theorems are derived from Corollary 4.1.3. Therefore, they are also consequences
of Corollary 2.2.

Note that Peleg Theorem (1970) assumes a stronger separability property than
the one assumed in Theorem 2.1 and Corollary 2.2. However, he does not assume
that the space (X, τ,⩾) is normally preordered.

Classical examples of normally ordered spaces are Euclidean spaces ordered with
a componentwise order, that is with either of the orders ⩾s or ⩾ . It is easily seen
that Rn with either of orders ⩾s and ⩾ is a normally ordered space. Obviously
(Rn,⩾s) is order separable but (Rn,⩾) is not.

Example 5. Function f2 from Example 2 is ⩾ −strictly increasing. As noted in
Example 2 it has no ⩾ −strictly increasing extension. However, conditions (2.1) are
satisfied for f2. So, conditions (2.1) are not sufficient for extendability in the case
of nonseparable orders.

Denote by e the vector in Rn all of whose components are 1, and ek (k = 1, . . . , n)
the vector in Rn whose k-th component is 1 and all other components are 0.

It is easy to see that for both the orders ⩾ and ⩾s sets

V 1
r = {z ∈ Rn : z < x+ re} and V 2

r = {z ∈ Rn : z > x− re} (r > 0)

are the bases of open decreasing and open increasing sets, respectively, that contain
x. So the definitions of functions mf and Mf are simplified as follows

mf (x) = inf
r>0

sup{f(z) : z ∈ D ∩ V 1
r } and Mf (x) = sup

r>0
inf{f(z) : z ∈ D ∩ V 2

r }.

Corollary 2.3. Let D ⊂ Rn be a nonempty, closed set and f : D → R be a con-
tinuous, ⩾s −strictly increasing function. Then there exists a continuous, strictly
⩾s −increasing function F : Rn → R such that F (x) = f(x) for x ∈ D if and only
if

(2.2a) m(x) ⩽ M(x) for all x ∈ Rn,
(2.2b) m̄(x) < M̄(y) for all x, y ∈ Rn with y > x.

Examples 2 and 3 above show that if the preorder is nonseparable, then conditions
(2.2) are not sufficient for the existence of an extension.
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Examples 2 and 3 revisited. As we observed above function f2 from Example
2 has no ⩾ −strictly increasing extension into R2. Note that f2 satisfies the as-
sumption of Corollary 2.2. Therefore, it has a ⩾s −strictly increasing extension.
For example, function F defined on R2 as F (x1, x2) = x2

1+x2
when x2 ≥ 0, and

F (x1, x2) =
x2

1−x2
when x2 < 0 is such an extension.

Clearly, function f1 from Example 3 satisfies assumption (2.2b) of Corollary 2.2.
However, mf1(0) = 0 and Mf1(0) = −1, and so assumption (2.2a), the ‘Nachbin’s
condition’, is violated. So, this example shows that assumption (2.2b) alone is not
sufficient for the existence of a ⩾s −increasing extension.

For some closed domains in Rn the assumptions of Theorem 2.1 are satisfied for
an arbitrary continuous, ⩾s −strictly increasing function.

Corollary 2.4. Let D ⊂ Rn be a nonempty, compact set, and f : D → R a
continuous, ⩾s −strictly increasing function. Then there exists a continuous, ⩾s

−strictly increasing function F : Rn → R such that F (x) = f(x) for x ∈ D.

Proof. As sets

L(x,D) = {z ∈ D : z ⩽ x} and U(x,D) = {z ∈ D : z ⩾ x}
are compact (possibly empty) and function f is continuous it is easy to see that
both conditions in (2.2) are satisfied. Corollary 2.3 applies. □

We conclude this section with the following corollary of Theorem 2.1.

Corollary 2.5. Let Z = {0,±1,±2, · · · }, D ⊂ Zn, and f : D → R be a continuous,
⩾s −strictly increasing function. Then, there exists a continuous, ⩾s −strictly
increasing function F : Rn → R such that F (x) = f(x) for x ∈ D.

Proof. Note that for every point x in Zn set {z ∈ D : z ⩽ x} has a finite number
of maximal elements and that set {z ∈ D : z ⩾ x} has a finite number of minimal
elements. This observation makes it easy to show that the assumptions of Theorem
2.1 are satisfied. □

3. Applications to the extension of strictly increasing preferences

Here we consider the question of extension of ⩾s −strictly monotonic preferences
defined on closed subsets of Rn.

Let ≽1 and ≽2 be two preorders on a subset D of Rn. We say ≽2 is ≽1

−increasing if x ≻1 y implies x ≻2 y. A complete preorder on D is called a prefer-
ence.

Proposition 3.1. Let D be a closed subset of Rn and ≽ a continuous , ⩾s −strictly
increasing preference on D. Then, preference ≽ is extendable into Rn if and only if
≽ satisfies the following condition: for each w, x, y, z ∈ D with w ≽ x, x > y, y ≽ z
we have w ≻ z.
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Proof. Necessity is obvious. Show the sufficiency. Let ≽ be a continuous, ⩾s

−strictly increasing preference on D satisfying the assumption of the proposition.
Let f : D → R be an arbitrary continuous representation of ≽ that exists by the
Debreu Theorem (1964). As ≽ is ⩾s −strictly increasing, function f is ⩾s −strictly
increasing. As noted above Rn with its usual topology and preference ⩾s is a
normally preodered space and ⩾s is continuous and separable. Now it is easy to
check that the assumptions (2.1) of Theorem 2.1 follow from the assumption of the
proposition. Hence by Theorem 2.1 there exists a ⩾s −strictly increasing extension
F of function f. The preference relation represented by function F is the required
one. □

Proposition 3.2. Let D be a compact subset of Rn. Then, every continuous,
⩾s −strictly increasing preference on D is extendable into Rn.

Proof is a direct consequence of Corollary 2.4. □

4. Appendix: Equivalence of separabilities

Following Bridges and Mehta (1996) we bring the definitions of Debreu, Jaffray,
and Birkhoff separabilites of preorders.

Let (X,≽) be a preordered set.
The preorder ≽ is Debreu separable if there exists a countable subset Z of X such

that if x ≻ y, then there exists z ∈ Z with x ≽ z ≽ y.
The preorder ≽ is Jaffray separable if there exists a countable subset Z of X such

that if x ≻ y, then there exist z1, z2 ∈ Z with x ≽ z1 ≻ z2 ≽ y.
The preorder is ≽ is Birkhoff separable if there exists a countable subset Z of X

such that for all x, y in X \ Z with x ≻ y there exists z ∈ Z with x ≻ z ≻ y.

Proposition 4.1. The separability of a preorder as defined in this paper is equiva-
lent to each of the Debreu and Jaffray separabilities.

Proof. As the last two separabilities are equivalent to each other by Bridges and
Mehta (1995, Proposition 1.1.4) it suffices to show that the separability as defined
here is equivalent to Jaffray separability.

Jaffray separability implies that there is a countable subset Z of X such that for
every interval (x, y) in X there are points z1, z2 ∈ Z such that x ∼ z1 and y ∼ z2.
This implies property (b) in the definition given here. Jaffray separability also
implies that for every nonempty interval (x, y) there is a point z ∈ Z such that
z ∈ (x, y). As Z is a countable set this implies property (b) in the definition given
here.

Now let a preorder be separable as defined here. Then setting Z to be the union
of set S in property (a) and of the set of all endpoints of a countable set of intervals
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as in property (b) one can easily check that Z is Jaffray dense in X. □

The following simple example shows that Debreu and Jaffray separabilities are
not equivalent to Birkhoff separability.

Example. Set X0 = {(t, 0) : t ∈ R} and X1 = {(t, 1) : t ∈ R}, and X = X0 ∪X1,
and let preorder ≽ on X be defined as

≽= (X2
0 ∪X2

1 ) ∪ (X1 ×X0).

Obviously x ∼ y for all x, y ∈ X0, for all x, y ∈ X1, and x ≻ y for all x ∈ X1, y ∈ X0.
Now it is easy to see that

Z = {( k

k + 1
, 1) : k = 1, 2, ...} ∪ {(0, 0)}

is a countable Jaffray dense set inX.On the other handX has continuum of different
pairs x, y ∈ X with (x, y) = ∅, which implies that X is not Birkhoff separable.
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