ON STRONG CONVERGENCE FOR A FORWARD-BACKWARD SPLITTING METHOD IN BANACH SPACES

KAZUHIDE NAKAJO

Abstract

We study strong convergence for a sum of a maximal monotone operator and a monotone and Lipschitz continuous mapping in a real Banach space in this paper. We propose a modified forward-backward splitting method and prove a new strong convergence theorem in a 2-uniformly convex and uniformly smooth Banach space. From this result, we also get a new result for variational inequality problems.

1. Introduction

Throughout this paper, let E be a real Banach space with norm $\|\cdot\|, E^{*}$ its dual space, and for $x \in E$ and $x^{*} \in E^{*}$, let $\left\langle x, x^{*}\right\rangle$ be the value of x^{*} at x. And we denote by \mathbb{N} the set of all positive integers. Let A and B be maximal monotone operators in $E \times E^{*}$ such that $A+B$ is maximal and $(A+B)^{-1} 0$ is nonempty. Finding an element of $(A+B)^{-1} 0$ contains a lot of important problems such as convex minimization problems, variational inequality problems, complementary problems and others. Lions and Mercier [17] and Passty [28] proposed the forward-backward splitting method as one of the methods of finding a point of $(A+B)^{-1} 0$ in a real Hilbert space H as follows:

$$
x_{1}=x \in D(B), \quad x_{n+1}=J_{\lambda_{n}}^{A}\left(x_{n}-\lambda_{n} w_{n}\right)
$$

for every $n \in \mathbb{N}$, where $D(B)$ is the domain of $B, D(A) \subset D(B), w_{n} \in B x_{n},\left\{\lambda_{n}\right\} \subset$ $(0, \infty)$ and $J_{\lambda_{n}}^{A}$ is the resolvent of A. After that, Gabay [12], Chen and Rockafellar [9], Moudafi and Thera [21] and Tseng [37] widely researched the splitting method. In a real Hilbert space, Many researchers $[4,10,12,22,26,27,29,33,40]$ studied weak and strong convergence for a forward-backward splitting method and several modified forward-backward splitting methods by a maximal monotone operator A and an inverse-strongly-monotone mapping B, where $B: H \rightarrow H$ is called inverse-strongly-monotone [5, 11] if there exists $\alpha>0$ such that $(x-y, B x-B y) \geq$ $\alpha\|B x-B y\|^{2}$ for all $x, y \in H$; see [18, 42]. In a 2 -uniformly convex and uniformly smooth Banach space, Kimura and the author [15] considered a modified forwardbackward splitting method by the same A and B as above, and they proved strong convergence. Tseng [37] proposed the following forward-backward-forward splitting method by a maximal monotone operator $A \subset H \times H$ and a single valued monotone

[^0]operator $B: H \longrightarrow H$:
\[

\left\{$$
\begin{array}{l}
x_{1}=x \in C \\
y_{n}=J_{\lambda_{n}}^{A}\left(x_{n}-\lambda_{n} B x_{n}\right) \\
x_{n+1}=P_{C}\left(y_{n}-\lambda_{n}\left(B y_{n}-B x_{n}\right)\right)
\end{array}
$$\right.
\]

for all $n \in \mathbb{N}$, where C is nonempty, closed and convex subset of H, P_{C} is the metric projection of H onto $C, A+B$ is maximal monotone and $F=C \cap(A+B)^{-1} 0 \neq \emptyset$. He proved that if B is Lipschitz continuous on $C \cup D(A),\left\{x_{n}\right\}$ converges weakly to a point of F under some conditions. This result is applicable to a monotone and Lipschitz continuous mapping which is more general than an inverse-stronglymonotone operator. Recently, Shehu [34] and the author [25] studied different modified forward-backward-forward splitting methods, respectively and proved strong convergence theorems in a 2-uniformly convex and uniformly smooth Banach space.

Malitsky and Tam [20] introduced the method, which requires only one forward evaluation per iteration instead of two, which is called forward-reflected-backward splitting method. The method for a maximal monotone operator $A \subset H \times H$ and a monotone and Lipschitz continuous mapping B of H into H with a constant $L>0$ such that $(A+B)^{-1} 0 \neq \emptyset$ is described as

$$
\left\{\begin{array}{l}
x_{0}, x_{1} \in H \\
x_{n+1}=J_{\lambda_{n}}^{A}\left(x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)\right)
\end{array}\right.
$$

for all $n \in \mathbb{N}$, where $\left\{\lambda_{n}\right\} \subset(0, \infty)$. When $\left\{\lambda_{n}\right\} \subset[\varepsilon,(1-2 \varepsilon) /(2 L)]$ for some $\varepsilon>0$, they proved $\left\{x_{n}\right\}$ converges weakly to an element of $(A+B)^{-1} 0$.

In this paper, we consider strong convergence for the method of [20] in a real Banach space. We propose a modified forward-reflected-backward splitting method and prove strong convergence in a 2-uniformly convex and uniformly smooth Banach space E. Let C be a nonempty, closed and convex subset of $E, A \subset E \times E^{*}$ a maximal monotone operator and B a monotone and Lipschitz continuous mapping of C into E^{*} with $D(A) \subset C$ and $(A+B)^{-1} 0 \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by

$$
\left\{\begin{array}{l}
x_{1}, x_{2} \in C, \\
x_{n+1}=J_{\lambda_{n}}^{A} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(J x_{n}-J u\right)\right)
\end{array}\right.
$$

for every $n \in \mathbb{N}$ with $n \geq 2$, where $u \in E, J$ is the duality mapping of $E,\left\{\lambda_{n}\right\} \subset$ $(0, \infty)$ and $\left\{\alpha_{n}\right\} \subset(0,1]$ such that $\alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then we prove $\left\{x_{n}\right\}$ converges strongly to $\Pi_{(A+B)^{-1} 0} u$ under some assumptions, where $\Pi_{(A+B)^{-1} 0}$ is the generalized projection of E onto $(A+B)^{-1} 0$. From this result, we obtain new strong convergence for a maximal monotone operator and a monotone Lipschitz continuous mapping and for variational inequality problems in a 2-uniformly convex and uniformly smooth Banach space and a real Hilbert space.

2. Preliminaries

We use $x_{n} \rightarrow x$ to indicate that a sequence $\left\{x_{n}\right\}$ converges strongly to x and $x_{n} \rightharpoonup x$ will symbolize weak convergence. We define the modulus of convexity δ_{E}
of E as follows: δ_{E} is a function of $[0,2]$ into $[0,1]$ such that

$$
\delta_{E}(\varepsilon)=\inf \{1-\|x+y\| / 2: x, y \in E,\|x\|=\|y\|=1,\|x-y\| \geq \varepsilon\}
$$

for every $\varepsilon \in[0,2]$. For $p>1$, we say that E is p-uniformly convex if there exists a constant $c>0$ with $\delta_{E}(\varepsilon) \geq c \varepsilon^{p}$ for all $\varepsilon \in[0,2]$ and it is known that L_{p} space is p-uniformly convex if $p>2$ and 2 -uniformly convex if $1<p \leq 2$, see [39]. E is said to be uniformly convex if $\delta_{E}(\varepsilon)>0$ for each $\varepsilon \in(0,2]$. It is obvious that a p-uniformly convex Banach space is uniformly convex. We say that E is strictly convex if $\|x+y\| / 2<1$ for every $x, y \in E$ with $\|x\|=\|y\|=1$ and $x \neq y$. We know that a uniformly convex Banach space is strictly convex and reflexive. The duality mapping $J: E \rightarrow 2^{E^{*}}$ of E is defined by

$$
J(x)=\left\{y^{*} \in E^{*}:\left\langle x, y^{*}\right\rangle=\|x\|^{2}=\left\|y^{*}\right\|^{2}\right\}
$$

for all $x \in E$. It is known that if E is strictly convex and reflexive, the duality mapping J of E is bijective and $J^{-1}: E^{*} \rightarrow 2^{E}$ is the duality mapping of E^{*}. We say that E is smooth if the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{1}
\end{equation*}
$$

exists for each $x, y \in S(E)$, where $S(E)=\{x \in E:\|x\|=1\} . E$ is said to be uniformly smooth if the limit (1) is attained uniformly for (x, y) in $S(E) \times S(E)$. We know that E is smooth if and only if the duality mapping J of E is single valued and if J is single valued, J is norm to weak* continuous. It is known that if E is uniformly smooth, J is uniformly continuous on bounded subsets of E, that is, for any bounded subset B of E and $\varepsilon>0$, there exists $\delta>0$ such that for every $x, y \in B,\|x-y\|<\delta$ implies $\|J x-J y\|<\varepsilon$; see $[35,36]$ for more details. Xu [39] proved the following; see also [41].
Theorem 2.1. Let E be a smooth Banach space. Then, E is 2-uniformly convex if and only if there exists a constant $c>0$ such that for all $x, y \in E,\|x+y\|^{2} \geq$ $\|x\|^{2}+2\langle y, J x\rangle+c\|y\|^{2}$ holds.

Let E be a smooth Banach space and the function $\phi: E \times E \rightarrow(-\infty, \infty)$ is defined by

$$
\phi(x, y)=\|x\|^{2}-2\langle x, J y\rangle+\|y\|^{2}
$$

for every $x, y \in E$. It is obvious that $(\|x\|-\|y\|)^{2} \leq \phi(x, y) \leq(\|x\|+\|y\|)^{2}$ for all $x, y \in E$ and $\phi(x, y)+\phi(z, u)=\phi(x, u)+\phi(z, y)-2\langle z-x, J u-J y\rangle$ for each $x, y, z, u \in E$. We have the following result [14] by Theorem 2.1.

Theorem 2.2. Let E be a 2-uniformly convex and smooth Banach space. Then, for every $x, y \in E, c\|x-y\|^{2} \leq \phi(x, y)$ and $c\|x-y\|^{2} \leq\langle x-y, J x-J y\rangle=$ $\frac{1}{2}(\phi(x, y)+\phi(y, x))$ hold, where c is the constant in Theorem 2.1.

Let C be a nonempty, closed and convex subset of a strictly convex, reflexive and smooth Banach space E and $x \in E$. Then, there exists a unique point $x_{0} \in C$ such that

$$
\phi\left(x_{0}, x\right)=\inf _{y \in C} \phi(y, x)
$$

We denote x_{0} by $\Pi_{C} x$ and call Π_{C} the generalized projection of E onto C; see $[1,2,13]$. We have the following result $[1,2,13]$ for the generalized projection.

Lemma 2.3. Let C be a nonempty and convex subset of a smooth Banach space E, $x \in E$ and $x_{0} \in C$. Then, $\phi\left(x_{0}, x\right)=\inf _{y \in C} \phi(y, x)$ if and only if $\left\langle x_{0}-z, J x-J x_{0}\right\rangle \geq$ 0 for all $z \in C$, or equivalently, $\phi(z, x) \geq \phi\left(z, x_{0}\right)+\phi\left(x_{0}, x\right)$ for each $z \in C$.

An operator $A \subset E \times E^{*}$ is said to be monotone if $\left\langle x-y, x^{*}-y^{*}\right\rangle \geq 0$ for every $\left(x, x^{*}\right),\left(y, y^{*}\right) \in A$. We say that a monotone operator A is maximal if the graph of A is not properly contained in the graph of any other monotone operator. It is known that a monotone operator A is maximal if and only if for $\left(u, u^{*}\right) \in E \times E^{*}$, $\left\langle x-u, x^{*}-u^{*}\right\rangle \geq 0$ for all $\left(x, x^{*}\right) \in A$ implies $\left(u, u^{*}\right) \in A$. Let $f: E \rightarrow(-\infty, \infty]$ be a proper and convex function. Then, the subdifferential ∂f of f is defined by

$$
\partial f(x)=\left\{x^{*} \in E^{*}: f(y) \geq f(x)+\left\langle y-x, x^{*}\right\rangle, \forall y \in E\right\}
$$

for each $x \in E$. Let $f: E \rightarrow(-\infty, \infty]$ be a proper, lower semicontinuous and convex function. Then we know that the subdifferential ∂f of f is a maximal monotone operator; see [30, 31]. The following was proved by Rockafellar [32]; see also [8].

Theorem 2.4. Let E be a strictly convex, reflexive and smooth Banach space and $A \subset E \times E^{*}$ be a monotone operator. Then, A is maximal if and only if $R(J+r A)=$ E^{*} for all $r>0$, where $R(J+r A)$ is the range of $J+r A$.

Let E be a strictly convex, reflexive and smooth Banach space and $A \subset E \times E^{*}$ be a maximal monotone operator. By Theorem 2.4 and strict convexity of E, for any $x \in E$ and $r>0$, there exists a unique element $x_{r} \in D(A)$ such that

$$
J(x) \in J\left(x_{r}\right)+r A x_{r} .
$$

We define J_{r}^{A} by $J_{r}^{A} x=x_{r}$ for each $x \in E$ and $r>0$ and such J_{r}^{A} is called the resolvent of A; see $[6,36]$ for more details.

Let C be a nonempty, closed and convex subset of E and A a single valued mapping of C into E^{*}. We consider the variational inequality problem [16] for A, that is, the problem of finding a point $z \in C$ such that

$$
\langle x-z, A z\rangle \geq 0 \text { for all } x \in C
$$

The set of all solutions of the variational inequality problem for A is denoted by $V I(C, A)$.

We say that a function $i: \mathbb{N} \rightarrow \mathbb{N}$ is eventually increasing if $\lim _{n \rightarrow \infty} i(n)=\infty$ and $i(n) \leq i(n+1)$ for every $n \in \mathbb{N}$. Mainge [19, Lemma 3.1] proved the following, see also [3].

Lemma 2.5. Let $\left\{\Gamma_{n}\right\}$ be a sequence of real numbers that does not decrease at infinity, in the sense that there exists a subsequence $\left\{\Gamma_{n_{j}}\right\}$ of $\left\{\Gamma_{n}\right\}$ such that $\Gamma_{n_{j}}<$ $\Gamma_{n_{j}+1}$ for all $j \in \mathbb{N}$. Then there exist $n_{0} \in \mathbb{N}$ and an eventually increasing function i such that $\Gamma_{i(n)} \leq \Gamma_{i(n)+1}$ and $\Gamma_{n} \leq \Gamma_{i(n)+1}$ for every $n \geq n_{0}$.

3. A main Result

Let C be a nonempty, closed and convex subset of a strictly convex, reflexive and smooth Banach space $E, A \subset E \times E^{*}$ a maximal monotone operator and B a mapping of C into E^{*} such that $F=(A+B)^{-1} 0 \neq \emptyset$. Then, by the idea of [7], we consider the following condition (I) [25] for A, B and C : For a bounded sequence $\left\{u_{n}\right\} \subset C$ and $\left\{\lambda_{n}\right\} \subset(0, \infty)$ with $\inf _{n \in \mathbf{N}} \lambda_{n}>0,\left\|u_{n}-J_{\lambda_{n}}^{A} J^{-1}\left(J u_{n}-\lambda_{n} B u_{n}\right)\right\| \rightarrow 0$ implies $\omega_{w}\left(\left\{u_{n}\right\}\right) \subset F$, where $\omega_{w}\left(\left\{u_{n}\right\}\right)$ is the set of all weak cluster points of $\left\{u_{n}\right\}$. We have the following examples [25] for the condition (I).

Example 3.1. [25, Theorem 4.1] Let E be a strictly convex, reflexive and uniformly smooth Banach space, $A \subset E \times E^{*}$ a maximal monotone operator and B a monotone and Lipschitz continuous mapping of E into E^{*} such that $F=(A+B)^{-1} 0 \neq \emptyset$. Then, A, B and E satisfy the condition (I).

Example 3.2. [25, Theorem 4.2] Let C be a nonempty, closed and convex subset of a strictly convex, reflexive and uniformly smooth Banach space E and B a monotone and Lipschitz continuous mapping of C into E^{*} such that $F=V I(C, B) \neq \emptyset$. Let i_{C} be the indicator function of C. Then, for $A=\partial i_{C}$ and B, we know that A is maximal monotone with $D(A)=C, J_{\lambda}^{A} x=\Pi_{C} x$ for all $\lambda>0$ and $x \in E$ and $(A+B)^{-1} 0=V I(C, B)$. Further, A, B and C satisfy the condition (I).

We also get the following result [25, Lemma 3.1].
Lemma 3.3. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and smooth Banach space E, A maximal monotone operator in $E \times E^{*}, B$ a monotone and Lipschitz continuous mapping of C into E^{*} such that $D(A) \subset C$ and $F=(A+B)^{-1} 0 \neq \emptyset$. Then, F is closed and convex.

Now, we prove a new strong convergence theorem.
Theorem 3.4. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth Banach space $E, A \subset E \times E^{*}$ a maximal monotone operator and B a monotone and Lipschitz continuous mapping of C into E^{*} with a Lipschitz constant $L>0$ such that $D(A) \subset C, F=(A+B)^{-1} 0 \neq \emptyset$ and A, B and C satisfy the condition (I). Let $u \in E$ and $\left\{x_{n}\right\}$ a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, x_{2} \in C, \\
x_{n+1}=J_{\lambda_{n}}^{A} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(J x_{n}-J u\right)\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N}$ with $n \geq 2$, where $0<\inf _{n \in \boldsymbol{N}} \lambda_{n} \leq \sup _{n \in \boldsymbol{N}} \lambda_{n}<c /(2 L)$, where c is the constant in Theorem 2.1 and $0<\alpha_{n} \leq 1$ for all $n \in \boldsymbol{N}$ with $\alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} u$.

Proof. From Lemma 3.3, F is nonempty, closed and convex and hence, Π_{F} is well defined. Let $z \in F$. We have $-B z \in A z$ and

$$
\begin{array}{r}
\left(1 / \lambda_{n}\right)\left(J x_{n}-J x_{n+1}\right)-B x_{n}-\left(\lambda_{n-1} / \lambda_{n}\right)\left(B x_{n}-B x_{n-1}\right) \\
-\left(\alpha_{n} / \lambda_{n}\right)\left(J x_{n}-J u\right) \in A x_{n+1}
\end{array}
$$

for every $n \geq 2$. Since A is monotone, we get

$$
\begin{aligned}
\left\langle x_{n+1}-z,\left(J x_{n}-J x_{n+1}\right)-\lambda_{n}\left(B x_{n}-B z\right)-\right. & \lambda_{n-1}\left(B x_{n}-B x_{n-1}\right) \\
& \left.-\alpha_{n}\left(J x_{n}-J u\right)\right\rangle \geq 0
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\phi\left(z, x_{n+1}\right) \leq & \phi\left(z, x_{n}\right)-\phi\left(x_{n+1}, x_{n}\right)-2 \lambda_{n}\left\langle x_{n+1}-z, B x_{n}-B z\right\rangle \\
& -2 \lambda_{n-1}\left\langle x_{n+1}-z, B x_{n}-B x_{n-1}\right\rangle-2 \alpha_{n}\left\langle x_{n+1}-z, J x_{n}-J u\right\rangle
\end{aligned}
$$

for all $n \geq 2$. By

$$
\begin{aligned}
\left\langle x_{n+1}-z, B x_{n}-B z\right\rangle & =\left\langle x_{n+1}-z, B x_{n}-B x_{n+1}\right\rangle+\left\langle x_{n+1}-z, B x_{n+1}-B z\right\rangle \\
& \geq\left\langle x_{n+1}-z, B x_{n}-B x_{n+1}\right\rangle,
\end{aligned}
$$

we obtain

$$
\begin{align*}
& \phi\left(z, x_{n+1}\right)+2 \lambda_{n}\left\langle x_{n+1}-z, B x_{n}-B x_{n+1}\right\rangle+\phi\left(x_{n+1}, x_{n}\right) \\
& \leq \quad \phi\left(z, x_{n}\right)+2 \lambda_{n-1}\left\langle x_{n}-z, B x_{n-1}-B x_{n}\right\rangle \tag{2}\\
& \quad-2 \lambda_{n-1}\left\langle x_{n+1}-x_{n}, B x_{n}-B x_{n-1}\right\rangle \\
& \quad-2 \alpha_{n}\left\langle x_{n+1}-z, J x_{n}-J u\right\rangle
\end{align*}
$$

for each $n \geq 2$. Let $M=\sup _{n \in \mathbb{N}} \lambda_{n}$. We have

$$
\begin{align*}
& -2 \lambda_{n-1}\left\langle x_{n+1}-x_{n}, B x_{n}-B x_{n-1}\right\rangle \\
& \quad \leq 2 \lambda_{n-1}\left\|x_{n+1}-x_{n}\right\| \cdot\left\|B x_{n}-B x_{n-1}\right\| \\
& \leq 2 M L\left\|x_{n+1}-x_{n}\right\| \cdot\left\|x_{n}-x_{n-1}\right\| \\
& \leq M L\left(\left\|x_{n+1}-x_{n}\right\|^{2}+\left\|x_{n}-x_{n-1}\right\|^{2}\right) \tag{3}
\end{align*}
$$

for every $n \geq 2$. Since $M<c /(2 L)$, there exists $\varepsilon_{1} \in(0,1)$ with $\left(1-2 \varepsilon_{1}\right) c>2 M L$.
From Theorem 2.2,

$$
\begin{aligned}
\phi\left(x_{n+1}, x_{n}\right) & =\left(1-\varepsilon_{1}\right) \phi\left(x_{n+1}, x_{n}\right)+\varepsilon_{1} \phi\left(x_{n+1}, x_{n}\right) \\
& \geq\left(1-\varepsilon_{1}\right) c\left\|x_{n+1}-x_{n}\right\|^{2}+\varepsilon_{1} \phi\left(x_{n+1}, x_{n}\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$. By (2) and (3), we get

$$
\begin{aligned}
\phi(z, & \left.x_{n+1}\right)+2 \lambda_{n}\left\langle x_{n+1}-z, B x_{n}-B x_{n+1}\right\rangle+\left(\left(1-\varepsilon_{1}\right) c-M L\right)\left\|x_{n+1}-x_{n}\right\|^{2} \\
\quad & +\varepsilon_{1} \phi\left(x_{n+1}, x_{n}\right) \\
\leq & \phi\left(z, x_{n}\right)+2 \lambda_{n-1}\left\langle x_{n}-z, B x_{n-1}-B x_{n}\right\rangle+M L\left\|x_{n}-x_{n-1}\right\|^{2} \\
& -2 \alpha_{n}\left\langle x_{n+1}-z, J x_{n}-J u\right\rangle
\end{aligned}
$$

for each $n \geq 2$. From $c / 2<\left(1-\varepsilon_{1}\right) c-M L$, we obtain

$$
\begin{align*}
\phi(z, & \left.x_{n+1}\right)+2 \lambda_{n}\left\langle x_{n+1}-z, B x_{n}-B x_{n+1}\right\rangle+(c / 2)\left\|x_{n+1}-x_{n}\right\|^{2} \\
& +\varepsilon_{1} \phi\left(x_{n+1}, x_{n}\right)+(c / 2-M L)\left\|x_{n}-x_{n-1}\right\|^{2} \\
\leq & \phi\left(z, x_{n}\right)+2 \lambda_{n-1}\left\langle x_{n}-z, B x_{n-1}-B x_{n}\right\rangle+(c / 2)\left\|x_{n}-x_{n-1}\right\|^{2} \tag{4}\\
& -2 \alpha_{n}\left\langle x_{n+1}-z, J x_{n}-J u\right\rangle
\end{align*}
$$

for every $n \geq 2$. Since

$$
2\left\langle x_{n+1}-z, J x_{n}-J u\right\rangle=-\phi\left(x_{n+1}, x_{n}\right)+\phi\left(x_{n+1}, u\right)+\phi\left(z, x_{n}\right)-\phi(z, u)
$$

we have

$$
\begin{align*}
& \phi(z,\left.x_{n+1}\right)+2 \lambda_{n}\left\langle x_{n+1}-z, B x_{n}-B x_{n+1}\right\rangle+(c / 2)\left\|x_{n+1}-x_{n}\right\|^{2} \\
& \quad+\left(\varepsilon_{1}-\alpha_{n}\right) \phi\left(x_{n+1}, x_{n}\right)+(c / 2-M L)\left\|x_{n}-x_{n-1}\right\|^{2} \\
& \leq \quad \phi\left(z, x_{n}\right)+2 \lambda_{n-1}\left\langle x_{n}-z, B x_{n-1}-B x_{n}\right\rangle+(c / 2)\left\|x_{n}-x_{n-1}\right\|^{2} \tag{5}\\
& \quad-\alpha_{n}\left(\phi\left(x_{n+1}, u\right)+\phi\left(z, x_{n}\right)-\phi(z, u)\right)
\end{align*}
$$

for all $n \geq 2$. Let $a_{n}=\phi\left(z, x_{n}\right)+2 \lambda_{n-1}\left\langle x_{n}-z, B x_{n-1}-B x_{n}\right\rangle+(c / 2) \| x_{n}-$ $x_{n-1} \|^{2}(\forall n \geq 2)$ for $z \in F$. From Theorem 2.2 and $2 M L<c$,

$$
\begin{aligned}
a_{n} & \geq c\left\|x_{n}-z\right\|^{2}-c\left\|x_{n}-z\right\| \cdot\left\|x_{n-1}-x_{n}\right\|+(c / 2)\left\|x_{n-1}-x_{n}\right\|^{2} \\
& =(c / 2)\left(\left\|x_{n-1}-x_{n}\right\|-\left\|x_{n}-z\right\|\right)^{2}+(c / 2)\left\|x_{n}-z\right\|^{2} \\
& \geq(c / 2)\left\|x_{n}-z\right\|^{2} \geq 0(\forall n \geq 2) .
\end{aligned}
$$

(i) We show that $\left\{x_{n}\right\}$ is bounded. If $\left\{a_{n}\right\}$ decreases at infinity, it is obvious that $\left\{x_{n}\right\}$ is bounded by (6). Suppose that $\left\{a_{n}\right\}$ does not decrease at infinity. From Lemma 2.5, there exist $n_{1} \in \mathbb{N}$ with $n_{1} \geq 2$ and an eventually increasing function j such that $a_{j(n)} \leq a_{j(n)+1}$ and $a_{n} \leq a_{j(n)+1}$ for each $n \geq n_{1}$. By $a_{j(n)} \leq$ $a_{j(n)+1}\left(\forall n \geq n_{1}\right), M L<c / 2$ and $\alpha_{n} \rightarrow 0$ in (5), we obtain

$$
a_{j(n)} \leq a_{j(n)+1} \leq a_{j(n)}-\alpha_{j(n)}\left(\phi\left(x_{j(n)+1}, u\right)+\phi\left(z, x_{j(n)}\right)-\phi(z, u)\right)
$$

for sufficiently large $n \in \mathbb{N}$. By $\alpha_{j(n)}>0$, we have

$$
\phi\left(x_{j(n)+1}, u\right)+\phi\left(z, x_{j(n)}\right) \leq \phi(z, u)
$$

which implies $\left\{x_{j(n)}\right\}$ and $\left\{x_{j(n)+1}\right\}$ are bounded. From (6), we get

$$
\begin{aligned}
& (c / 2)\left\|x_{n}-z\right\|^{2} \leq a_{n} \leq a_{j(n)+1} \\
& =\quad \phi\left(z, x_{j(n)+1}\right)+2 \lambda_{j(n)}\left\langle x_{j(n)+1}-z, B x_{j(n)}-B x_{j(n)+1}\right\rangle \\
& \quad+(c / 2)\left\|x_{j(n)+1}-x_{j(n)}\right\|^{2} \\
& \leq \quad \phi\left(z, x_{j(n)+1}\right)+2 M L\left\|x_{j(n)+1}-z\right\| \cdot\left\|x_{j(n)}-x_{j(n)+1}\right\| \\
& \quad+(c / 2)\left\|x_{j(n)+1}-x_{j(n)}\right\|^{2}
\end{aligned}
$$

for all $n \geq n_{1}$. So, it holds that $\left\{x_{n}\right\}$ is bounded.
(ii) We show that $x_{n} \rightarrow \Pi_{F} u$. Assume that $\left\{a_{n}\right\}$ with $z=\Pi_{F} u$ decreases at infinity. So, there exists $\lim _{n \rightarrow \infty} a_{n}$. By $\varepsilon_{1}>0, M L<c / 2$, the boundedness of $\left\{x_{n}\right\}$ and $\alpha_{n} \rightarrow 0$ in (4), $\phi\left(x_{n+1}, x_{n}\right) \rightarrow 0$ holds. From Theorem 2.2, we obtain

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\| \rightarrow 0 \tag{7}
\end{equation*}
$$

Let $y_{n}=J_{\lambda_{n}}^{A} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}\right)$. We have $\left(1 / \lambda_{n}\right)\left(J x_{n}-J y_{n}-\lambda_{n} B x_{n}\right) \in A y_{n}$. Since $\left(1 / \lambda_{n}\right)\left(J x_{n}-J x_{n+1}-\lambda_{n} B x_{n}\right)-\left(\lambda_{n-1} / \lambda_{n}\right)\left(B x_{n}-B x_{n-1}\right)-\left(\alpha_{n} / \lambda_{n}\right)\left(J x_{n}-J u\right) \in$ $A x_{n+1}$ and A is monotone, we get

$$
\left\langle x_{n+1}-y_{n},\left(J y_{n}-J x_{n+1}\right)-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(J x_{n}-J u\right)\right\rangle \geq 0
$$

for each $n \in \mathbb{N}$. So, we obtain

$$
\begin{aligned}
-\lambda_{n-1}\left\langle x_{n+1}-y_{n}, B x_{n}-B x_{n-1}\right\rangle-\alpha_{n} & \left\langle x_{n+1}-y_{n}, J x_{n}-J u\right\rangle \\
& \geq\left\langle x_{n+1}-y_{n}, J x_{n+1}-J y_{n}\right\rangle
\end{aligned}
$$

and hence,

$$
\begin{aligned}
M L\left\|x_{n+1}-y_{n}\right\| \cdot\left\|x_{n}-x_{n-1}\right\|+\alpha_{n} \| & x_{n+1}-y_{n}\|\cdot\| J x_{n}-J u \| \\
& \geq\left\langle x_{n+1}-y_{n}, J x_{n+1}-J y_{n}\right\rangle
\end{aligned}
$$

for every $n \in \mathbb{N}$. By Theorem 2.2,

$$
M L\left\|x_{n+1}-y_{n}\right\| \cdot\left\|x_{n}-x_{n-1}\right\|+\alpha_{n}\left\|x_{n+1}-y_{n}\right\| \cdot\left\|J x_{n}-J u\right\| \geq c\left\|x_{n+1}-y_{n}\right\|^{2}
$$

which implies

$$
M L\left\|x_{n}-x_{n-1}\right\|+\alpha_{n}\left\|J x_{n}-J u\right\| \geq c\left\|x_{n+1}-y_{n}\right\|
$$

for all $n \in \mathbb{N}$. It follows from (7) and $\alpha_{n} \rightarrow 0$ that $\left\|x_{n+1}-y_{n}\right\| \rightarrow 0$ and hence,

$$
\begin{equation*}
\left\|y_{n}-x_{n}\right\| \rightarrow 0 \tag{8}
\end{equation*}
$$

By the condition (I), $\omega_{w}\left(x_{n}\right) \subset F$ holds. Next, we show that

$$
\begin{equation*}
l=\limsup _{n \rightarrow \infty}\left\langle\Pi_{F} u-x_{n+1}, J x_{n}-J u\right\rangle \geq 0 \tag{9}
\end{equation*}
$$

Assume that $l<0$. There exists $n_{2} \in \mathbb{N}$ with $n_{2} \geq 2$ such that $\left\langle\Pi_{F} u-x_{n+1}, J x_{n}-\right.$ $J u\rangle \leq(l / 2)$ for each $n \geq n_{2}$. By $\varepsilon_{1}>0$ and $M L<c / 2$ in (4) with $z=\Pi_{F} u$,

$$
-l \alpha_{n} \leq 2 \alpha_{n}\left\langle x_{n+1}-\Pi_{F} u, J x_{n}-J u\right\rangle \leq a_{n}-a_{n+1}
$$

for every $n \geq n_{2}$ and hence

$$
\sum_{n=n_{2}}^{\infty}(-l) \alpha_{n} \leq a_{n_{2}}<\infty
$$

From $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, this is a contradiction. So, we have (9). Next, we have

$$
\begin{aligned}
\left\langle\Pi_{F} u-\right. & \left.x_{n+1}, J x_{n}-J u\right\rangle \\
= & \left\langle\Pi_{F} u-x_{n+1}, J x_{n}-J x_{n+1}\right\rangle+\left\langle\Pi_{F} u-x_{n+1}, J x_{n+1}-J \Pi_{F} u\right\rangle \\
& +\left\langle\Pi_{F} u-x_{n+1}, J \Pi_{F} u-J u\right\rangle \\
= & \left\langle\Pi_{F} u-x_{n+1}, J x_{n}-J x_{n+1}\right\rangle+\left\langle\Pi_{F} u-x_{n+1}, J x_{n+1}-J \Pi_{F} u\right\rangle \\
& +\left\langle\Pi_{F} u-x_{n}, J \Pi_{F} u-J u\right\rangle+\left\langle x_{n}-x_{n+1}, J \Pi_{F} u-J u\right\rangle \\
\leq & \left\|\Pi_{F} u-x_{n+1}\right\| \cdot\left\|J x_{n}-J x_{n+1}\right\|-(1 / 2) \phi\left(\Pi_{F} u, x_{n+1}\right) \\
& +\left\langle\Pi_{F} u-x_{n}, J \Pi_{F} u-J u\right\rangle+\left\|x_{n+1}-x_{n}\right\| \cdot\left\|J \Pi_{F} u-J u\right\|
\end{aligned}
$$

for every $n \in \mathbb{N}$. Since J is uniformly continuous on bounded subsets of E and (7), we get

$$
\begin{equation*}
\left\|J x_{n}-J x_{n+1}\right\| \rightarrow 0 \tag{10}
\end{equation*}
$$

So, we obtain

$$
0 \leq \limsup _{n \rightarrow \infty}\left\langle\Pi_{F} u-x_{n+1}, J x_{n}-J u\right\rangle
$$

$$
\leq-(1 / 2) \liminf _{n \rightarrow \infty} \phi\left(\Pi_{F} u, x_{n+1}\right)+\underset{n \rightarrow \infty}{\limsup }\left\langle\Pi_{F} u-x_{n}, J \Pi_{F} u-J u\right\rangle .
$$

And there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup w \in F$ and

$$
\limsup _{n \rightarrow \infty}\left\langle\Pi_{F} u-x_{n}, J \Pi_{F} u-J u\right\rangle=\lim _{j \rightarrow \infty}\left\langle\Pi_{F} u-x_{n_{j}}, J \Pi_{F} u-J u\right\rangle .
$$

By Lemma 2.3,

$$
\lim _{j \rightarrow \infty}\left\langle\Pi_{F} u-x_{n_{j}}, J \Pi_{F} u-J u\right\rangle=\left\langle\Pi_{F} u-w, J \Pi_{F} u-J u\right\rangle \leq 0
$$

holds. Hence, we have

$$
\liminf _{n \rightarrow \infty} \phi\left(\Pi_{F} u, x_{n+1}\right)=0 .
$$

Since $\lim _{n \rightarrow \infty} a_{n}$ exists, (7) and

$$
\begin{aligned}
& \left|a_{n+1}-\phi\left(\Pi_{F} u, x_{n+1}\right)\right| \\
& \quad \leq 2 \lambda_{n}\left|\left\langle x_{n+1}-\Pi_{F} u, B x_{n}-B x_{n+1}\right\rangle\right|+(c / 2)\left\|x_{n+1}-x_{n}\right\|^{2} \\
& \quad \leq 2 M L\left\|x_{n+1}-\Pi_{F} u\right\| \cdot\left\|x_{n}-x_{n+1}\right\|+(c / 2)\left\|x_{n+1}-x_{n}\right\|^{2}
\end{aligned}
$$

there exists $\lim _{n \rightarrow \infty} \phi\left(\Pi_{F} u, x_{n+1}\right)$. Therefore, $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} u$ from Theorem 2.2.

Suppose that $\left\{a_{n}\right\}$ with $z=\Pi_{F} u$ is not decreasing at infinity. By Lemma 2.5, there exist $n_{3} \in \mathbb{N}$ and an eventually increasing function i such that $i\left(n_{3}\right) \geq 2$, $a_{i(n)} \leq a_{i(n)+1}$ and $a_{n} \leq a_{i(n)+1}$ for every $n \geq n_{3}$. From (5) with $z=\Pi_{F} u$ and $a_{i(n)} \leq a_{i(n)+1}$, we get

$$
\begin{aligned}
& a_{i(n)}+\left(\varepsilon_{1}-\alpha_{i(n)}\right) \phi\left(x_{i(n)+1}, x_{i(n)}\right)+(c / 2-M L)\left\|x_{i(n)}-x_{i(n)-1}\right\|^{2} \\
& \quad \leq a_{i(n)+1}+\left(\varepsilon_{1}-\alpha_{i(n)}\right) \phi\left(x_{i(n)+1}, x_{i(n)}\right)+(c / 2-M L)\left\|x_{i(n)}-x_{i(n)-1}\right\|^{2} \\
& \quad \leq a_{i(n)}-\alpha_{i(n)}\left(\phi\left(x_{i(n)+1}, u\right)+\phi\left(\Pi_{F} u, x_{i(n)}\right)-\phi\left(\Pi_{F} u, u\right)\right)
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \left(\varepsilon_{1}-\alpha_{i(n)}\right) \phi\left(x_{i(n)+1}, x_{i(n)}\right)+(c / 2-M L)\left\|x_{i(n)}-x_{i(n)-1}\right\|^{2} \\
& \quad \leq-\alpha_{i(n)}\left(\phi\left(x_{i(n)+1}, u\right)+\phi\left(\Pi_{F} u, x_{i(n)}\right)-\phi\left(\Pi_{F} u, u\right)\right)
\end{aligned}
$$

for all $n \geq n_{3}$. Since $\varepsilon_{1}>0$ and $M L<c / 2,\left\{x_{n}\right\}$ is bounded and $\alpha_{i(n)} \rightarrow 0$, we obtain $\left\|x_{i(n)}-x_{i(n)-1}\right\| \rightarrow 0$ and $\phi\left(x_{i(n)+1}, x_{i(n)}\right) \rightarrow 0$ and hence,

$$
\begin{equation*}
\left\|x_{i(n)+1}-x_{i(n)}\right\| \rightarrow 0 \tag{11}
\end{equation*}
$$

by Theorem 2.2 . As in the proof of (8), we have

$$
\left\|y_{i(n)}-x_{i(n)}\right\| \rightarrow 0 .
$$

From the condition (I), $\omega_{w}\left(\left\{x_{i(n)+1}\right\}\right)=\omega_{w}\left(\left\{x_{i(n)}\right\}\right) \subset F$ holds. Since (4) with $z=\Pi_{F} u, \varepsilon_{1}>0, M L<c / 2$ and $a_{i(n)} \leq a_{i(n)+1}$,

$$
a_{i(n)} \leq a_{i(n)+1} \leq a_{i(n)}-2 \alpha_{i(n)}\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J u\right\rangle
$$

which implies

$$
\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J u\right\rangle \leq 0
$$

for every $n \geq n_{3}$ by $\alpha_{i(n)}>0$. We get

$$
\begin{aligned}
&\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J u\right\rangle \\
&=\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J x_{i(n)+1}\right\rangle+\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)+1}-J \Pi_{F} u\right\rangle \\
&+\left\langle x_{i(n)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle \\
& \geq\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J x_{i(n)+1}\right\rangle \\
&+(1 / 2) \phi\left(\Pi_{F} u, x_{i(n)+1}\right)+\left\langle x_{i(n)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle
\end{aligned}
$$

and hence,

$$
\begin{aligned}
& \phi\left(\Pi_{F} u, x_{i(n)+1}\right) \\
& \quad \leq-2\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J x_{i(n)+1}\right\rangle-2\left\langle x_{i(n)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle
\end{aligned}
$$

for each $n \geq n_{3}$. So,

$$
\begin{align*}
\limsup _{n \rightarrow \infty} & \phi\left(\Pi_{F} u, x_{i(n)+1}\right) \\
\leq & -2 \liminf _{n \rightarrow \infty}\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J x_{i(n)+1}\right\rangle \tag{12}\\
& -2 \liminf _{n \rightarrow \infty}\left\langle x_{i(n)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle .
\end{align*}
$$

There exists a subsequence $\left\{x_{i\left(n_{k}\right)+1}\right\}$ of $\left\{x_{i(n)+1}\right\}$ such that $x_{i\left(n_{k}\right)+1} \rightharpoonup p \in F$ and

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left\langle x_{i(n)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle & =\lim _{k \rightarrow \infty}\left\langle x_{i\left(n_{k}\right)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle \\
& =\left\langle p-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle .
\end{aligned}
$$

By Lemma 2.3 and $p \in F$, we obtain $\left\langle p-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle \geq 0$ and hence,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left\langle x_{i(n)+1}-\Pi_{F} u, J \Pi_{F} u-J u\right\rangle \geq 0 . \tag{13}
\end{equation*}
$$

Since J is uniformly continuous on bounded subsets of E and (11), $\| J x_{i(n)+1}-$ $J x_{i(n)} \| \rightarrow 0$ holds. So, we have

$$
\begin{aligned}
& \liminf _{n \rightarrow \infty}\left\langle x_{i(n)+1}-\Pi_{F} u, J x_{i(n)}-J x_{i(n)+1}\right\rangle \\
& \quad \geq-\limsup _{n \rightarrow \infty}\left\|x_{i(n)+1}-\Pi_{F} u\right\| \cdot\left\|J x_{i(n)}-J x_{i(n)+1}\right\|=0 .
\end{aligned}
$$

From (12) and (13), we get $\lim _{\sup _{n \rightarrow \infty}} \phi\left(\Pi_{F} u, x_{i(n)+1}\right)=0$ which implies

$$
\lim _{n \rightarrow \infty} \phi\left(\Pi_{F} u, x_{i(n)+1}\right)=0 .
$$

Since (11) and

$$
\begin{gathered}
\left|a_{i(n)+1}-\phi\left(\Pi_{F} u, x_{i(n)+1}\right)\right| \\
\leq 2 M L\left\|x_{i(n)+1}-\Pi_{F} u\right\| \cdot\left\|x_{i(n)}-x_{i(n)+1}\right\|+(c / 2)\left\|x_{i(n)}-x_{i(n)+1}\right\|^{2}
\end{gathered}
$$

we get $\lim _{n \rightarrow \infty} a_{i(n)+1}=0$. By $a_{n} \leq a_{i(n)+1}$ for every $n \geq n_{3}$, we obtain $\lim _{n \rightarrow \infty} a_{n}=$ 0 . By (6), $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} u$.

4. Deduced results

At first, we get a new strong convergence theorem for a sum of maximal monotone operators by Example 3.1 and Theorem 3.4.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space, A a maximal monotone operator in $E \times E^{*}, B$ a monotone and Lipschitz continuous mapping of E into E^{*} with a Lipschitz constant $L>0$ such that $F=(A+B)^{-1} 0 \neq \emptyset$. Let $u \in E$ and $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, x_{2} \in E, \\
x_{n+1}=J_{\lambda_{n}}^{A} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(J x_{n}-J u\right)\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N}$ with $n \geq 2$, where $0<\inf _{n \in N} \lambda_{n} \leq \sup _{n \in N} \lambda_{n}<c /(2 L)$ where c is the constant in Theorem 2.1 and $0<\alpha_{n} \leq 1$ for all $n \in \boldsymbol{N}$ with $\alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $\Pi_{F} u$.

Tufa and Zegeye [38] and the author [25] proved the strong convergence theorems of variational inequality problems for a monotone and Lipschitz continuous mapping in a 2-uniformly convex and uniformly smooth Banach space, respectively (see also [23, 24]). From Example 3.2 and Theorem 3.4, we have a new result which is different from those.

Theorem 4.2. Let C be a nonempty, closed and convex subset of a 2-uniformly convex and uniformly smooth Banach space E. Let B be a monotone and Lipschitz continuous mapping of C into E^{*} with a Lipschitz constant $L>0$ such that $V I(C, B) \neq \emptyset$. Let $u \in E$ and $\left\{x_{n}\right\}$ a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, x_{2} \in C \\
x_{n+1}=\Pi_{C} J^{-1}\left(J x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(J x_{n}-J u\right)\right)
\end{array}\right.
$$

for every $n \in N$ with $n \geq 2$, where $0<\inf _{n \in N} \lambda_{n} \leq \sup _{n \in N} \lambda_{n}<c /(2 L)$ where c is the constant in Theorem 2.1 and $0<\alpha_{n} \leq 1$ for all $n \in \boldsymbol{N}$ with $\alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $\Pi_{V I(C, B)} u$.

In a real Hilbert space H, we have $c=1$ in Theorem $2.1, J=J^{-1}=I$, where I is the identity mapping and $\Pi_{C}=P_{C}$ for every nonempty, closed and convex subset C of H, where P_{C} is the metric projection of C onto H. So, we get new results in a real Hilbert space by Theorems 4.1 and 4.2.

Theorem 4.3. Let A be a maximal monotone operator in $H \times H$ and B a monotone and Lipschitz continuous mapping of H into H with a Lipschitz constant $L>0$ such that $F=(A+B)^{-1} 0 \neq \emptyset$. Let $u \in H$ and $\left\{x_{n}\right\}$ be a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, x_{2} \in H \\
x_{n+1}=J_{\lambda_{n}}^{A}\left(x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(x_{n}-u\right)\right)
\end{array}\right.
$$

for every $n \in \boldsymbol{N}$ with $n \geq 2$, where $0<\inf _{n \in N} \lambda_{n} \leq \sup _{n \in N} \lambda_{n}<1 /(2 L)$ and $0<\alpha_{n} \leq 1$ for all $n \in \boldsymbol{N}$ with $\alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{F} u$

Theorem 4.4. Let C be a nonempty, closed and convex subset of H and B a monotone and Lipschitz continuous mapping of C into H with a Lipschitz constant $L>0$ such that $V I(C, B) \neq \emptyset$. Let $u \in H$ and $\left\{x_{n}\right\}$ a sequence generated by

$$
\left\{\begin{array}{l}
x_{1}, x_{2} \in C \\
x_{n+1}=P_{C}\left(x_{n}-\lambda_{n} B x_{n}-\lambda_{n-1}\left(B x_{n}-B x_{n-1}\right)-\alpha_{n}\left(x_{n}-u\right)\right)
\end{array}\right.
$$

for every $n \in N$ with $n \geq 2$, where $0<\inf _{n \in N} \lambda_{n} \leq \sup _{n \in N} \lambda_{n}<1 /(2 L)$ and $0<\alpha_{n} \leq 1$ for all $n \in \boldsymbol{N}$ with $\alpha_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$. Then, $\left\{x_{n}\right\}$ converges strongly to $P_{V I(C, B)} u$.

Acknowledgments. The author is very grateful to the referee for some useful suggestions.

References

[1] Y. I. Alber, Metric and generalized projections in Banach spaces: properties and applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (A. G. Kartasatos Ed.), 15-50, in Lecture Notes in Pure and Appl. Math., Vol. 178, Marcel Dekker, New York, 1996.
[2] Y. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54.
[3] K. Aoyama, Y. Kimura and F. Kohsaka, Strong convergence theorems for strongly relatively nonexpansive sequences and applications, J. Nonlinear Anal. Optim. 3 (2012), 67-77.
[4] H. Attouch, J. Peypouquet and P. Redont, Backward-forward algorithms for structured monotone inclusions in Hilbert spaces, J. Math. Anal. Appl., 457 (2018), 1095-1117.
[5] J. B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés et ncycliquement monotones, Israel J. Math. 26 (1977), 137-150.
[6] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei R. S. R. Bucuresti, Romania, 1976.
[7] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for fejérmonotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), 248-264.
[8] F. E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann., 175 (1968), 89-113.
[9] G. H-G. Chen and R. T. Rockafellar, Convergence rates in forward-backward splitting, SIAM J. Optim. 7 (1997), 421-444.
[10] S. Y. Cho, X. Qin and L. Wang, Strong convergtence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl. 2014 (2014): 2014.
[11] J. C. Dunn, Convexity, monotonicity, and gradient processes in Hilbert space, J. Math. Anal. Appl. 53 (1976), 145-158.
[12] D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (M.Fortin and R.Glowinski Eds.), Studies in Mathematics and Its Applications, North Holland, Amsterdam, Holland, Vol. 15, 1983, pp. 299-331.
[13] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938-945.
[14] Y. Kimura and K. Nakajo, The problem of image recovery by the metric projections in Banach spaces, Abstr. Appl. Anal., Vol. 2013, Article ID 817392, 6 pages.
[15] Y. Kimura and K. Nakajo, Strong convergence for a modified forward-backward splitting method in Banach spaces, J. Nonlinear Var. Anal. 3 (2019), 5-18.
[16] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-517.
[17] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979), 964-979.
[18] F. Liu and M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Anal. 6 (1998), 313-344.
[19] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899-912.
[20] Y. Malitsky and M. K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, arXiv:1808.04162v2 [math.OC] 28 May 2019.
[21] A. Moudafi and M. Théra, Finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl. 94 (1997), 425-448.
[22] A. Moudafi and M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447-454.
[23] K. Nakajo, Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces, Appl. Math. Comput. 271 (2015), 251-258.
[24] K. Nakajo, Improved gradient method for monotone and Lipschitz continuous mappings in Banach spaces, Acta Math. Sci. Ser. B, 37B(2) (2017), 342-354.
[25] K. Nakajo, Strong convergence theorems by a modified forward-backward-forward splitting method in Banach spaces, Linear and Nonlinear Anal. 5 (2019), 439-453.
[26] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006), 339360.
[27] K. Nakajo, K. Shimoji and W. Takahashi, Strong convergence theorems of Halpern's type for families of nonexpansive mappings in Hilbert spaces, Thai J. Math. 7 (2009), 49-67.
[28] G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl. 72 (1979), 383-390.
[29] X. Qin, S. Y. Cho and L. Wang, A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl. 2014 (2014): 75.
[30] R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510.
[31] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
[32] R. T. Rockafellar, On the maximal monotonicity of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
[33] N. Shahzad and H. Zegeye, Approximating a common point of fixed points of a pseudocontractive mapping and zeros of sum of monotone mappings, Fixed Point Theory Appl. 2014 (2014): 85.
[34] Y. Shehu, Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces, Results Math. 74 (2019): Article number 138.
[35] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[36] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (Japanese).
[37] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim. 38 (2000), 431-446.
[38] A. R. Tufa and H. Zegeye, An algorithm for finding a common point of the solutions of fixed point and variational inequality problems in Banach spaces, Arab. J. Math., 4 (2015), 199-213.
[39] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 11271138.
[40] T. Yuying and S. Plubtieng, Strong convergence theorems by hybrid and shrinking projection methods for sums of two monotone operators, J. Inequal. Annal., (2017), DOI 10.1186/s13660-017-1338-7.
[41] C. Zălinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344-374.
[42] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726.

Kazuhide Nakajo
Sundai Preparatory School, Surugadai, Kanda, Chiyoda-ku, Tokyo 101-8313, Japan E-mail address: knkjyna@jcom.zaq.ne.jp

[^0]: 2020 Mathematics Subject Classification. 47H05, 49J40, 47H14.
 Key words and phrases. Forward-backward splitting method, monotone and Lipschitz continuous mappings, variational inequality problems, 2-uniformly convex and uniformly smooth Banach spaces.

