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ON STRONG CONVERGENCE FOR A FORWARD-BACKWARD
SPLITTING METHOD IN BANACH SPACES

KAZUHIDE NAKAJO

ABSTRACT. We study strong convergence for a sum of a maximal monotone op-
erator and a monotone and Lipschitz continuous mapping in a real Banach space
in this paper. We propose a modified forward-backward splitting method and
prove a new strong convergence theorem in a 2-uniformly convex and uniformly
smooth Banach space. From this result, we also get a new result for variational
inequality problems.

1. INTRODUCTION

Throughout this paper, let E be a real Banach space with norm || - ||, E* its dual
space, and for z € E and z* € E*, let (x,2*) be the value of z* at . And we denote
by N the set of all positive integers. Let A and B be maximal monotone operators
in £ x E* such that A + B is maximal and (A 4+ B)~!0 is nonempty. Finding
an element of (A + B)7!0 contains a lot of important problems such as convex
minimization problems, variational inequality problems, complementary problems
and others. Lions and Mercier [17] and Passty [28] proposed the forward-backward
splitting method as one of the methods of finding a point of (A + B)~!0 in a real
Hilbert space H as follows:

x1=x € D(B), xp41= an(xn — Apwp)

for every n € N, where D(B) is the domain of B, D(A) C D(B), wy, € Bxy, {\,} C
(0,00) and J )f‘n is the resolvent of A. After that, Gabay [12], Chen and Rockafellar
[9], Moudafi and Thera [21] and Tseng [37] widely researched the splitting method.
In a real Hilbert space, Many researchers [4, 10, 12, 22, 26, 27, 29, 33, 40] studied
weak and strong convergence for a forward-backward splitting method and several
modified forward-backward splitting methods by a maximal monotone operator A
and an inverse-strongly-monotone mapping B, where B : H — H is called inverse-
strongly-monotone [5, 11] if there exists @ > 0 such that (z — y, Bx — By) >
a||Bz — By||? for all 2,y € H; see [18, 42]. In a 2-uniformly convex and uniformly
smooth Banach space, Kimura and the author [15] considered a modified forward-
backward splitting method by the same A and B as above, and they proved strong
convergence. Tseng [37] proposed the following forward-backward-forward splitting
method by a maximal monotone operator A C H x H and a single valued monotone
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operator B: H — H:

x1=x € C,
Yn = J)I\An(xn - )\nBl‘n)y
Tp4+1 = PC’(yn - An(Byn - an))y

for all n € N, where C' is nonempty, closed and convex subset of H, P is the metric
projection of H onto C, A+ B is maximal monotone and F = C'N (A + B)~10 # 0.
He proved that if B is Lipschitz continuous on C' U D(A), {z,} converges weakly
to a point of F' under some conditions. This result is applicable to a monotone
and Lipschitz continuous mapping which is more general than an inverse-strongly-
monotone operator. Recently, Shehu [34] and the author [25] studied different mod-
ified forward-backward-forward splitting methods, respectively and proved strong
convergence theorems in a 2-uniformly convex and uniformly smooth Banach space.

Malitsky and Tam [20] introduced the method, which requires only one forward
evaluation per iteration instead of two, which is called forward-reflected-backward
splitting method. The method for a maximal monotone operator A C H x H and a
monotone and Lipschitz continuous mapping B of H into H with a constant L > 0
such that (A + B)~10 # 0 is described as

xo,x1 € H,
Tni1 = I (2 — Ay Bon — Ano1(Ban — Brn_1)),

for all n € N, where {\,,} C (0,00). When {\,} C [e,(1 —2¢)/(2L)] for some & > 0,
they proved {z,} converges weakly to an element of (A + B)~'0.

In this paper, we consider strong convergence for the method of [20] in a real
Banach space. We propose a modified forward-reflected-backward splitting method
and prove strong convergence in a 2-uniformly convex and uniformly smooth Banach
space E. Let C be a nonempty, closed and convex subset of £, A C E x E* a
maximal monotone operator and B a monotone and Lipschitz continuous mapping
of C into E* with D(A) C C and (A + B)710 # 0. Let {z,,} be a sequence in C
generated by

xr1,T9 € C,
Tpg1 = J;\“nJ_l(J:Un — MBzy, — M\p—1(Bxy — Brp—1) — an(Jx, — Ju))

for every n € N with n > 2, where u € E, J is the duality mapping of E, {\,} C
(0,00) and {an} C (0,1] such that o, — 0 and > 2 | o, = co. Then we prove
{xn} converges strongly to Il 4 p)-19u under some assumptions, where I1 44 p)-19
is the generalized projection of E onto (A + B)~!0. From this result, we obtain
new strong convergence for a maximal monotone operator and a monotone Lipschitz
continuous mapping and for variational inequality problems in a 2-uniformly convex

and uniformly smooth Banach space and a real Hilbert space.

2. PRELIMINARIES

We use z,, — z to indicate that a sequence {z,} converges strongly to x and
ry, — x will symbolize weak convergence. We define the modulus of convexity dg
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of E as follows: dg is a function of [0, 2] into [0, 1] such that
op(e) =inf{l —|lz+yll/2: 2,y € E, [lz| =[lyl =1, [[z —y| = ¢}

for every € € [0,2]. For p > 1, we say that E is p-uniformly convex if there exists
a constant ¢ > 0 with dg(e) > ceP for all € € [0,2] and it is known that L, space
is p-uniformly convex if p > 2 and 2-uniformly convex if 1 < p < 2, see [39]. E
is said to be uniformly convex if dg(¢) > 0 for each € € (0,2]. It is obvious that
a p-uniformly convex Banach space is uniformly convex. We say that E is strictly
convex if ||z +y||/2 < 1 for every z,y € E with ||z| = |ly|| = 1 and = # y. We know
that a uniformly convex Banach space is strictly convex and reflexive. The duality
mapping J : E — 2F" of E is defined by

J(x) ={y* € E*: (w,y") = || = |ly*|*}
for all x € E. It is known that if F is strictly convex and reflexive, the duality
mapping J of E is bijective and J~! : E* — 2F is the duality mapping of E*. We
say that E is smooth if the limit

" ety o]
t—0 t

exists for each z,y € S(F), where S(E) = {z € E : ||z|| = 1}. FE is said to be
uniformly smooth if the limit (1) is attained uniformly for (z,y) in S(E) x S(E).
We know that E is smooth if and only if the duality mapping J of F is single
valued and if J is single valued, J is norm to weak* continuous. It is known that
if F is uniformly smooth, J is uniformly continuous on bounded subsets of E, that
is, for any bounded subset B of E and ¢ > 0, there exists § > 0 such that for every
z,y € B, ||z —y| < ¢ implies ||Jz — Jy|| < €; see [35, 36] for more details. Xu [39]
proved the following; see also [41].

Theorem 2.1. Let E be a smooth Banach space. Then, I is 2-uniformly convex
if and only if there exists a constant ¢ > 0 such that for all x,y € E, ||z + y||* >
|12+ 2(y, Jz) + cl[y|]* holds.

Let E be a smooth Banach space and the function ¢ : E x E — (—00,00) is
defined by

d(x,y) = [|l=l* = 2{z, Jy) + [ly]|?
for every z,y € E. It is obvious that (||z] — [|lyl)? < é(x,y) < (||| + ||ly||)? for
all z,y € E and ¢(z,y) + ¢(z,u) = ¢(x,u) + ¢(z,y) — 2(z — x, Ju — Jy) for each
x,y,z,u € E. We have the following result [14] by Theorem 2.1.
Theorem 2.2. Let E be a 2-uniformly convexr and smooth Banach space. Then,
for every z,y € E, cllz —y|* < ¢(z,y) and clz —y|* < (& —y, o — Jy) =
3(6(z,y) + (y,x)) hold, where c is the constant in Theorem 2.1.

Let C be a nonempty, closed and convex subset of a strictly convex, reflexive and
smooth Banach space E and z € E. Then, there exists a unique point zg € C such
that

= inf .
¢(z0,z) = Inf ¢y, z)
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We denote zg by Ilcx and call Il the generalized projection of E onto C; see
[1, 2, 13]. We have the following result [1, 2, 13] for the generalized projection.

Lemma 2.3. Let C' be a nonempty and convex subset of a smooth Banach space E,
x € Eandxg € C. Then, ¢(vo,x) = infycc ¢(y, x) if and only if (xo—z, Jr—Jxg) >
0 for all z € C, or equivalently, ¢(z,z) > ¢(z,x0) + ¢(xo,x) for each z € C.

An operator A C E x E* is said to be monotone if (z —y,z* — y*) > 0 for every
(z,z%), (y,y*) € A. We say that a monotone operator A is maximal if the graph
of A is not properly contained in the graph of any other monotone operator. It is
known that a monotone operator A is maximal if and only if for (u,u*) € E x E*,
(x —u,z* —u*) > 0 for all (z,2*) € A implies (u,u*) € A. Let f: E — (—o0, 0]
be a proper and convex function. Then, the subdifferential df of f is defined by

Of(x) ={z" € E*: f(y) = f(z) + (y —z,2"), Vy € E}

foreach x € E. Let f : E — (—00, 0] be a proper, lower semicontinuous and convex
function. Then we know that the subdifferential 0f of f is a maximal monotone
operator; see [30, 31]. The following was proved by Rockafellar [32]; see also [8].

Theorem 2.4. Let E be a strictly convez, reflexive and smooth Banach space and
A C ExE* be a monotone operator. Then, A is maximal if and only if R(J+rA) =
E* for all r > 0, where R(J + rA) is the range of J + rA.

Let E be a strictly convex, reflexive and smooth Banach space and A C F x E*
be a maximal monotone operator. By Theorem 2.4 and strict convexity of E, for
any x € E and r > 0, there exists a unique element z, € D(A) such that

J(z) € J(zy) + rAzx,.

We define J& by JAz = x, for each z € E and r > 0 and such J2 is called the
resolvent of A; see [6, 36] for more details.

Let C' be a nonempty, closed and convex subset of F and A a single valued
mapping of C into E*. We consider the variational inequality problem [16] for A,
that is, the problem of finding a point z € C such that

(x —2z,Az) > 0 forall z € C.

The set of all solutions of the variational inequality problem for A is denoted by
VI(C,A).

We say that a function i : N — N is eventually increasing if lim,,_,~ i(n) = 0o
and i(n) < i(n+ 1) for every n € N. Mainge [19, Lemma 3.1] proved the following,
see also [3].

Lemma 2.5. Let {I',} be a sequence of real numbers that does not decrease at
infinity, in the sense that there evists a subsequence {I'y;} of {I'n} such that T'y, <
Iy 41 for all j € N. Then there exist ng € N and an eventually increasing function
i such that Uy < Tipyq1 and T'n < Tiy41 for every n > ng.
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3. A MAIN RESULT

Let C be a nonempty, closed and convex subset of a strictly convex, reflexive
and smooth Banach space E, A C F x E* a maximal monotone operator and B a
mapping of C' into E* such that F' = (A + B)~'0 # (. Then, by the idea of [7], we
consider the following condition (I) [25] for A, B and C: For a bounded sequence
{un} C Cand {A,} C (0,00) with infpen A > 0, [lun—J5t T=H(Jty— Ay Buy)|| — 0
implies wy, ({un}) C F, where wy,({u,}) is the set of all weak cluster points of {u,}.
We have the following examples [25] for the condition (I).

Example 3.1. [25, Theorem 4.1] Let E be a strictly convex, reflexive and uniformly
smooth Banach space, A C F x E* a maximal monotone operator and B a monotone
and Lipschitz continuous mapping of F into E* such that F = (4 + B)~10 # 0.
Then, A, B and E satisfy the condition (I).

Example 3.2. [25, Theorem 4.2] Let C' be a nonempty, closed and convex subset of
a strictly convex, reflexive and uniformly smooth Banach space E and B a monotone
and Lipschitz continuous mapping of C' into E* such that F' = VI(C,B) # . Let
ic be the indicator function of C. Then, for A = dic and B, we know that A is
maximal monotone with D(A) = C, Jiz = Ilgz for all A > 0 and z € E and
(A+ B)7'0 = VI(C,B). Further, A, B and C satisfy the condition (I).

We also get the following result [25, Lemma 3.1].

Lemma 3.3. Let C' be a nonempty, closed and convex subset of a 2-uniformly
convex and smooth Banach space E, A a maximal monotone operator in E x E*, B
a monotone and Lipschitz continuous mapping of C into E* such that D(A) C C
and F = (A+ B)~'0 # 0. Then, F is closed and convex.

Now, we prove a new strong convergence theorem.

Theorem 3.4. Let C be a nonempty, closed and convex subset of a 2-uniformly
convex and uniformly smooth Banach space E, A C E x E* a mazimal monotone
operator and B a monotone and Lipschitz continuous mapping of C into E* with a
Lipschitz constant L > 0 such that D(A) C C, F = (A+ B) 10 # 0 and A, B and
C satisfy the condition (I). Let uw € E and {x,} a sequence generated by

r1, 29 € C,
Tni1 = I3 T HJwn — ABay — Ayo1(Ban — Bry_1) — an(Jo, — Ju))

for every n € N with n > 2, where 0 < inf,en A, < sup,cnyAn < ¢/(2L), where
c s the constant in Theorem 2.1 and 0 < a,, < 1 for all n € N with o, — 0 and
Yon o =00. Then, {z,} converges strongly to Ipu.

Proof. From Lemma 3.3, F' is nonempty, closed and convex and hence, I1p is well
defined. Let z € F. We have —Bz € Az and

(1/\)(Jxy, — Jxpi1) — Bxyy — (A—1/An)(Bxy, — Bxy—1)
—(an/ ) (Jzpy — Ju) € Az
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for every n > 2. Since A is monotone, we get

(xnt1 — 2, (Jzy — Jxpt1) — M(Bxy — Bz) — A\y—1(Bxy, — Brp—1)
—an(Jzp — Ju)) >0

and hence,

QZS(Z, mn—i—l) < QZ)(Z’ $n) - ¢(xn+17 ajn) - 2>\n<$n+1 —z,Bxy, — BZ>
— 2 \p—1{xpt+1 — 2, Bxy — Brp_1) — 20 (Tpni1 — 2, Jxy — Ju)

for all n > 2. By

(tpt1— 2,Bxy — Bz) = {(xpy1— 2, Bry — Brpi1) + (tpe1 — 2, Brpy1 — B2)

Y

(41 — 2z, Bxy, — Brpia),
we obtain
O(2, Tnt1) + 20 (Tng1 — 2, Ban — Bapi1) + ¢(@nt1, Tn)
(2) < @d(z,2n) + 2Mn—1{(xp — 2, Bxp—1 — Bxy)
—2X—1{(Tpn41 — Tpn, Bxy — Brp_1)
—2ap(xpy1 — 2, Jxy — Ju)
for each n > 2. Let M = sup,,cy A\n. We have

_2)\n—1<fcn+1 — Tp, Bxy, — an—1>

< 2Mal@n — @ - | Ban — Bap |
< 2ML||znt1 — o - |20 — 2na]
3) < ML(||zn41 = @all* + lon — zn-a]?)

for every n > 2. Since M < ¢/(2L), there exists 1 € (0,1) with (1 —2e1)ec > 2M L.
From Theorem 2.2,
(Tny1,2n) = (1 —e1)d(Tnt1,@n) +e10(Tnt1, Tn)
> (1—e)elenir — 2ol + e16(zns1, )
for all n € N. By (2) and (3), we get
(2, Tni1) + 20 (Tns1 — 2, Bxy — Bryi) + (1 —e1)e = ML)||2ps1 — 2
+ 51¢(xn+17$n)
< oz, xn) + 20n—1{xp — 2, Bxp_1 — Bxy) + MLz, — :L'n,1||2
—2ap(xpy1 — 2, Jxn, — Ju)
for each n > 2. From ¢/2 < (1 —e1)c — M L, we obtain
(2, Tpy1) + 220 (Tnt1 — 2, By — Brpga) + (¢/2)||2ng1 — $n||2
+e10(Tni1,20) + (¢/2 = ML) |2y — 2 ?
(4) < ¢(z,2n) + 20n_1(xn — 2, Bxy_1 — Bxy) + (¢/2)|| 20 — Tn1 |

— 20 (Tpy1 — 2, Jxn — Ju)
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for every n > 2. Since

2<xn+1 -z, Jl'n - Ju> = _¢($n+1, xn) + ¢($n+17 u) + ¢(Z7 :L‘n) - ¢(Z, u)7

we have

Oz 2r) + Donlngs — 2 By — Broor) + (¢/2)[2ner — 2]
+ (61 — an)d(@nt1, x) + (¢/2 = ML)||lzy — 21 ?
(5) < Bz, x0) + 201 (2 — 2, Bxp_1 — Bayp) + (¢/2)||12n — Tno1|?
= an(P(Tnt1,u) + ¢(z,2n) — ¢(2,u))
for all n > 2. Let a, = ¢(z,25) + 2M\—1{(xp — 2, Bxp_1 — Bzy) + (¢/2)||xn —
Tn_1|? (Vn >2) for z € F. From Theorem 2.2 and 2M L < c,

an 2 cllzn = 2|* = cllen = 2| - |21 — @nll + (¢/2)l|2n-1 — @al|?
= (¢/2)(lzn-1 — zall = llzn — 2[1)* + (¢/2) 25 — 2|
(6) (c/2)|zn = 2|I* 2 0 (vn > 2).

(i) We show that {z,} is bounded. If {a,} decreases at infinity, it is obvious

that {z,} is bounded by (6). Suppose that {a,} does not decrease at infinity.

From Lemma 2.5, there exist n; € N with n; > 2 and an eventually increasing

function j such that a;,) < ajm)41 and a, < )41 for each n > ny. By a
ajmy+1 (Yn>n1), ML < ¢/2 and a,, — 0 in (5) we obtain

@j(n) < jn)+1 < Gjn) = ¥(n) (D(Tj(n)+1, 1) + O(2, Zj(n)) — D2, 1))
for sufficiently large n € N. By a;(,) > 0, we have

O(Zj(ny+1,0) + O(2,75(n)) < B(2,0)
which implies {z(,)} and {zj(,)41} are bounded. From (6), we get

AV

jn) <

(c/2)]|zn — 2] < an < @41
= (2, 2jm)+1) + 2Aj<n> (@j(n)+1 = 2, Bxj(n) — Bxj(n)11)
+ (¢/2)1Tjmy+1 — i)l

P2, Tjny41) + 2ML||fﬁj(n =2l - lzjn) — Tjmy+al
+ (¢/2)|Zj(n)+1 — i1

for all n > ny. So, it holds that {x,} is bounded.

(ii) We show that x,, — ITpu. Assume that {a,} with z = IIpu decreases at infinity.
So, there exists lim,_,o an. By €1 > 0, ML < ¢/2, the boundedness of {z,} and
an — 01in (4), ¢(Tp+1,xn) — 0 holds. From Theorem 2.2, we obtain

IN

(7) [Znt1 = @l = 0.

Let y, = anJ_l(an—)\nB:vn). We have (1/\,)(Jxp— Jyn — AnBzy) € Ay,. Since
(1/\)(Jxy — Jxpy1 — \yBxy) — (An—1/An)(Bxy, — Bxp_1) — (o /An) (Jzp — Ju) €
Azpy1 and A is monotone, we get

<xn+1 — Yn, (JYn — J2n11) — An1(Brp — Bay 1) — an(Jo, — JU)> >0
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for each n € N. So, we obtain
—A—1{Tn+1 — Yn, Bxn — Bap_1) — an{@ni1 — yn, Jon, — Ju)
> (Tpy1 = Yns JTni1 — JYn)
and hence,
ML|zns1 = yull - 120 — 2na |l + anllzntr — ynll - [[J2n — Jul|
> (@pt1 = Y, STt — Jyn)
for every n € N. By Theorem 2.2,
ML||znt1 = yall - 20 = 2ot + anllznsr = yall - [T = Jul| > cllznts — yal®
which implies
ML|zn = zn1ll + on|Jzn — Jul| = ¢llzni1 — yall
for all n € N. Tt follows from (7) and «,, — 0 that ||z,+1 — yn| — 0 and hence,

(8) 1Yn = @nll = 0.

By the condition (I), wy(zy) C F holds. Next, we show that

9) | = limsup(I{pu — Tpi1, JT, — Ju) > 0.
n—oo

Assume that [ < 0. There exists no € N with ng > 2 such that (ITpu — zp41, Jx, —
Ju) < (1/2) for each n > ng. By e1 > 0 and ML < ¢/2 in (4) with z = IIpu,
—lay, < 2ap(xp41 — Hpu, Jx, — Ju) < ap — apy1

for every n > ngy and hence

o

Z (=D an < ap, < 0.

n=nj
From > >° | ay, = 00, this is a contradiction. So, we have (9). Next, we have
(Ipu — xpy1, Jon — Ju)
= (Upu—xpi1,Jxy — Jxpi1) + (pu — xpyy, Jps1 — JHpu)
+(Ipu — xpiq, JHpu — Ju)

= (IIrpu — xpy1, Jxy — Jxpi1) + (HIpu — Ty, Jxnyr — JIHpu)
+(IIpu — xp, JHpu — Ju) + (X, — Tpt1, JH pu — Ju)
1 pu = 2pia | - | J2n — Jznga |l — (1/2)(H pu, Tn41)
+{ITpu — zp, JHpu — Ju) + || Xnr1 — xu|| - || Hpu — Jul|

IN

for every n € N. Since J is uniformly continuous on bounded subsets of E and (7),
we get

(10) | Jxyn — Jzps1]| — 0.
So, we obtain

0 < limsup{(ITpu — Tpyi1, Jy — Ju)

n—oo
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< —(1/2) linr_1>inf d(ITpu, xpy1) + limsup(lpu — xp, JHpu — Ju,).

n—oo

And there exists a subsequence {xy,} of {z,} such that z,; = w € F and

limsup(Ilpu — oy, JHpu — Ju) = lim (ITpu — xy,, JI pu — Ju).

n—00 J—o0
By Lemma 2.3,
im (ITpu — 2, JHpu — Ju) = (Ilpu — w, JlTpu — Ju) <0
j—00

holds. Hence, we have

lim inf ¢(I pu, xy41) = 0.

n—oo
Since lim,,, o ay, exists, (7) and
|an+1 — ST pu, Tny1)|
< 20 |[(@n1 — Hpu, Bz — Brng)| + (¢/2) || 2011 — ol
< OMLlsnsr — Hpul - [2n — zesall + (e/2)|2ns1 — wall,
there exists lim,,—,oo #(IIpu, p41). Therefore, {x,} converges strongly to ITpu from
Theorem 2.2.

Suppose that {a,} with z = IIru is not decreasing at infinity. By Lemma 2.5,
there exist n3 € N and an eventually increasing function ¢ such that i(ns) > 2,
Aitn) < Giny+1 and an < a4 for every n > ng. From (5) with z = [Tpu and
Ai(n) < Gi(n)+1, We get

Qj(n) + (e1— ai(n))(b(xi(n)—l—lv Cfi(n)) + (c/2 - ML)HiUi(n) - l‘i(n)—1||2
Qj(n)+1 T+ (€1 — ai(n))¢($i(n)+1a :Ei(n)) + (c/2 — ML)HJ:i(n) - $i(n)—1|\2
in) — Qi) (D(Tin)41,u) + ST Fu, 2;(n)) — (I Fu, u))

which implies

IN A

(e1 = i(n)) B (@i(n) 41, Tiny) + (¢/2 = ML)|[@;0) — Tiny—1>
< =) (P(Tiny 1, ) + OITFPU, T4()) — ¢(ITFu, u))

for all n > n3. Since e1 > 0 and ML < ¢/2, {x,} is bounded and a;(,) — 0, we
obtain [|z;(,) — Zimy—1ll = 0 and @(xi(n)+1, Ti(n)) — 0 and hence,

(11) H%‘(n)ﬂ - xz’(n)” —0
by Theorem 2.2. As in the proof of (8), we have
%i(n) — Tigm) |l — 0.

From the condition (I), ww({Zin)+1}) = ww({Tim)}) C F holds. Since (4) with
z=Ipu, e1 >0, ML < ¢/2 and a;(») < @i(n)+1,

Ain) < Qin)+1 < Ai(n) — 20i(n) (Ti(n)+1 — HFu, JTi00) — Ju)
which implies

<$i(n)+1 — lFu, in(n) — Ju) <0
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for every n > n3 by ay(,) > 0. We get

(Titny1 — Hpu, Joym) — Ju)
<$z’(n)+1 — Ilpu, in(n) - in(n)+1> + <xi(n)+1 — I pu, JﬂCi(n)+1 — JIlpu)
+ <l‘i(n)+1 — pu, Jlpu — Ju)

> A(Tim)+1 — Hru, Jim) — JTim)41)
+ (1/2)¢(Hpu, Tin)11) + (Tin)41 — Hru, JHpu — Ju)
and hence,

O(ITpu, () 41)
< _2<xi(n)+l - HFU, sz(n) - Jmi(n)+1> - 2<J}i(n)+1 - HFU, JHFU - Ju>

for each n > n3. So,

lim sup ¢(ITpu, T;(m)11)
n—0o0

(12) < —2lim inf(xi(n)Jrl — I ru, Jﬂvi(n) - J$i(n)+1>

n—oo
— 2liminf(2;(n) 41 — Hpu, JHpu — Ju).

n—oo

There exists a subsequence {z;(,, )41} of {Zj(n)41} such that z;,, )1 — p € F and
linrgiogf@i(n)ﬂ — pu, Jlpu — Ju) = kli_{](f)l()(a;i(nk)ﬂ — pu, Jlpu — Ju)
= <p — HFU, JHFU — JU)
By Lemma 2.3 and p € F, we obtain (p — ITpu, JIIpu — Ju) > 0 and hence,
(13) l%rr_l}i{gf(ﬂvi(n)_s_l — pu, Jlpu — Ju) > 0.
Since J is uniformly continuous on bounded subsets of £ and (11), ||J&j(n)41 —
JZimyl — 0 holds. So, we have
lim inf<$i(n)+1 - HFU, Jxl(n) - in(n)—i—l)

n—o0

> —limsup ||y 41 — Hrull - [[Jzim) — JTim)+1ll = 0.

n—o0

From (12) and (13), we get limsup,,_, o, #(IIFru, T;n)+1) = 0 which implies
Jim G(lpu, Tiny41) = 0.
Since (11) and

|ainy+1 — GUILFPU, Ty 1)
< 2M L\ @iy 41 — Hpull - |2y — Tigny1ll + (€/2)1Tign) — Tigny+1]%

we get lim,,_ ainy+1 = 0. Bya, < Qi(n)+1 for every n > ng, we obtain lim,, s an, =
0. By (6), {x,,} converges strongly to I1pu. O
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4. DEDUCED RESULTS

At first, we get a new strong convergence theorem for a sum of maximal monotone
operators by Example 3.1 and Theorem 3.4.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space,
A a mazimal monotone operator in E X E*, B a monotone and Lipschitz continuous
mapping of E into E* with a Lipschitz constant L > 0 such that F = (A+B)~10 # 0.
Let uw € E and {x,} be a sequence generated by

T1,r9 € B,
Tn1 = J T HJxy — A Bty — An—1(Bxy — Brn_1) — an(Jz, — Ju))

for every n € N with n > 2, where 0 < inf,en A, < sup,enyAn < ¢/(2L) where ¢
s the constant in Theorem 2.1 and 0 < a,, < 1 for alln € N with a, — 0 and
Yol ay =o00. Then, {x,} converges strongly to Ilpu.

Tufa and Zegeye [38] and the author [25] proved the strong convergence theorems
of variational inequality problems for a monotone and Lipschitz continuous mapping
in a 2-uniformly convex and uniformly smooth Banach space, respectively (see also
[23, 24]). From Example 3.2 and Theorem 3.4, we have a new result which is
different from those.

Theorem 4.2. Let C be a nonempty, closed and convexr subset of a 2-uniformly
convex and uniformly smooth Banach space E. Let B be a monotone and Lips-
chitz continuous mapping of C into E* with a Lipschitz constant L > 0 such that
VI(C,B) #0. Let u € E and {x,} a sequence generated by

r1, 29 € C,
Tpi1 = HoJ Y Jzy — MyBxy — A1(Bry — Bry 1) — an(Jz, — Ju))

for every n € N with n > 2, where 0 < inf,en A, < sup,enyAn < ¢/(2L) where ¢
s the constant in Theorem 2.1 and 0 < a,, < 1 for alln € N with a, — 0 and

Y opey i = 00. Then, {x,} converges strongly to Ily . pyu.

In a real Hilbert space H, we have ¢ = 1 in Theorem 2.1, J = J~! = I, where [ is
the identity mapping and Il = Pg for every nonempty, closed and convex subset
C of H, where P¢ is the metric projection of C onto H. So, we get new results in
a real Hilbert space by Theorems 4.1 and 4.2.

Theorem 4.3. Let A be a mazximal monotone operator in H x H and B a monotone
and Lipschitz continuous mapping of H into H with a Lipschitz constant L > 0 such
that F = (A+ B)7'0# 0. Let u € H and {x,} be a sequence generated by

{ r1,x0 € H,
Tpgl = J;f‘n (xn, — AnBxy, — A—1(Bzp — Bxp—1) — an(zy, — u))

for every n € N with n > 2, where 0 < inf,en A, < sup,enyAn < 1/(2L) and
0<a, <1 foralne N with cp, = 0 and Y 2 | o = 0o. Then, {z,} converges
strongly to Pru
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Theorem 4.4. Let C be a nonempty, closed and convex subset of H and B a
monotone and Lipschitz continuous mapping of C into H with a Lipschitz constant
L >0 such that VI(C,B) # 0. Let w € H and {z,} a sequence generated by

{ xr1,T9 € C,
Tnt1 = Po(xy, — \MyBxy — Ay—1(Bxy, — Brp—1) — ap(z, — u))

for every n € N with n > 2, where 0 < inf,en A, < sup,enyAn < 1/(2L) and
0<a, <1 foralne N with o, — 0 and Y7 | &, = 00. Then, {x,} converges
strongly to Py, pyu.
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