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the existence of a (continuous) utility u : S → R and a probability measure P on
some measurable space (Ω,F) such that ξ1 ≿ ξ2 iff∫

Ω
u(ξ1(ω)) dP (ω) ≥

∫
Ω
u(ξ2(ω)) dP (ω).

Remark that, since, for any non-atomic probability measure space (Ω,F , P ), there
exists a measurable function f : Ω → [0, 1] such that P ◦f−1 = λ, if P is non-atomic,
the space ([0, 1],B([0, 1]), λ) in the Skorohod representation theorem can be replaced
by the space (Ω,F , P ), where B([0, 1]) stands for Borel σ-algebra on [0, 1]. The con-
dition (a) of Skorohod representation theorem states that the “domain equivalence”
holds between utility representations of von Neumann and Morgenstern, and Sav-
age. Furthermore, the condition (b) implies that the weak∗ convergence νn → ν0 in
the utility representation of von Neumann and Morgenstern can be strengthened to
be almost all convergence of acts: ξn(ω) → ξ0(ω) for almost all ω ∈ Ω, in the utility
representation of Savage.

Let (Ω,F , µ) be a complete finite positive measure space. In Tateishi [14], the au-
thor generalizes Skorohod representation theorem asserted on the probability space
M+

1 (S) to the space of Young measures, that is, the space of probability measures
on (Ω × S,F ⊗ B(S)) whose projection on Ω is equal to µ. The author established
that the narrow topology on the space of Young measures admits Skorohod repre-
sentation with respect to the conditional expectation of the Young measures. In
the paper, we proved the Skorohod representation theorem for Young measures in
which the conditional expectation is defined with respect to a measurable subset of
Ω. The aim of this paper is twofold. First, we generalize the result of Tateishi [14]
to the case in which the conditional expectation is defined with respect to a sub
σ-algebra of F . Secondly, we consider Skorohod representation theorem for sets of
Young measures. The study of Skorohod representation for sets of probabilities is
considered in Dumav and Stinchcombe [5]. This paper attempts to generalize their
results to the case of Young measures.

Following Section 2, we first consider, in Section 3, the Skorohod representation
theorem for Young measures in the case in which the conditional expectation is
defined with respect to a measurable subset of Ω. We extends it, in Section 4, to
the case in which the conditional expectation is defined with respect to a sub σ-
algebra of F . Section 5 is devoted to the extension of the Skorohod representation
theorem to sets of Young measures.

2. Preliminaries

Let (S, d) be a complete separable metric (Polish) space, and let (Ω,F , µ) be a
complete finite positive measure space. The Borel σ-algebra on S is denoted by B(S),
the set of bounded measures on B(S) by Mb(S), the set of nonnegative measures
on B(S) by M+(S), and the set of probability measures on B(S) by M+

1 (S). These
spaces are endowed with the weak∗ topology, that is, the topology generated by
the seminorms: ν 7→ |ν(ψ)|, where ψ is a continuous and bounded function on S.
A probability measure on (Ω × S,F ⊗ B(S)) whose projection on Ω is equal to µ
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is called a Young measure. By the theorem of disintegration of measures, for each
Young measures ν there corresponds to a function ν∗ : Ω × B(S) → [0, 1] called a
disintegration of measure ν which satisfies the following conditions:

(i) ν∗(ω, ·) is a probability measure on S for each ω ∈ Ω,
(ii) ν∗(·, B) is measurable for each B ∈ B(S), and
(iii) ν(B) =

∫
Ω

[∫
S 1B(ω, s)ν

∗
ω(ds)

]
dµ(ω) for each B ∈ F ⊗ B(S),

where 1B stands for the characteristic function of B. Remark that, each Young
measure ν corresponds to many disintegrations, but there is a one-one correspon-
dence between the space of Young measures and the space of the equivalence classes
of µ-almost everywhere equal disintegrations. We shall identify, in this paper, each
Young measure ν with its disintegration ν∗. We denote by Y(Ω,F ; S) the space of
all young measures on (Ω× S,F ⊗ B(S)).

A real-valued function ψ defined on Ω × S is called a Carathéodory integrand if
the following conditions hold:

(i) ψ is F ⊗ B(S)-measurable,
(ii) for each ω ∈ Ω, the map s 7→ ψ(ω, s) is continuous and bounded, and
(iii) the map ω 7→ ‖ψ(ω, ·)‖∞ is µ-integrable,

where ‖ · ‖∞ stands for the sup-norm. The set of Carathéodory integrands on Ω×S
is denoted by GC(Ω,F ; S).

The space Y(Ω,F ; S) of Young measures is endowed with the topology generated
by the seminorms: ν 7→ |ν(ψ)|, where ψ is a Carathéodory integrand on Ω×S. The
topology on Y(Ω,F ; S) is called a narrow topology.

3. Skorohod representation theorem for Young measures

We start with the following simultaneous Skorohod representation theorem by
Blackwell and Dubins.

Theorem 3.1 (Blackwell and Dubins [1]). Let S be a Polish space. Then, there
exists a joint measurable function ξ : M+

1 (S)× [0, 1] → S such that

(i) the law of ξ(τ, ·) coincides with τ , and
(ii) the map τ 7→ ξ(τ, x) is continuous for almost all x ∈ [0, 1].

The condition in Theorem 3.1(i) states that the domain equivalence holds for the
two decision problems:

sup
τ∈M+

1 (S)

∫
S
u(s) dτ(s), and

sup
τ∈M+

1 (S)

∫ 1

0
u(ξ(τ, x)) dλ(x).

The condition in Theorem 3.1(ii) implies that in the case where the space S is
compact, and so the space M+

1 (S) is compact with respect to the weak∗ topology,
the second problem also admits a maximum and has a strategy τ◦ ∈ M+

1 (S) such
that the act ξ(τ◦, ·) maximizes utility.
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The following theorem is some generalization of Skorohod representation theorem
to Young measures.

Theorem 3.2 (Tateishi [14]). Let (Ω,F , µ) be a complete finite positive mea-
sure space, and let S be a metrizable Souslin space. Then, there exists a map
ξ : Y(Ω,F ; S)×F × [0, 1] → S such that

(i) for each ν ∈ Y(Ω,F ; S) and A ∈ F , the law of ξ(ν,A, ·) coincides with E(ν | A),
(ii) for each A ∈ F , the map ν 7→ ξ(ν,A, x) is continuous for almost all x in [0, 1],

where

E(ν | A) = 1

µ(A)

∫
A
νω dµ(ω)

stands for the conditional expectation of ν given A.

Remark 3.3. Tateishi [13, 14] also studies another subject of interest of Young mea-
sures, namely, the open mapping property of Young measures. Let S,T be metrizable
Souslin spaces and let φ : S → T be a continuous, open, and surjective map. This
map induces a map π : M+

1 (S) → M+
1 (T) by the relation π(ν) = ν ◦ φ−1. We

define a map Π : Y(Ω,F ; S) → Y(Ω,F ;T) by the relation: Π(ν)ω = π(νω). Then
the map Π can be seen to be a continuous, open and surjective map (See Tateishi
[14, Theorem 6]). The property that Π is open implies, in particular, that the in-
verse map admits a continuous selection thanks to Michael’s continuous selection
theorem. It follows that if S has the Skorohod representation ξ which satisfies the
conditions in Theorem 3.2 (i),(ii), then T also has the Skorohod representation. The
Skorohod representation property transmits across spaces in this way. Hence, the
Skorohod representation property for the unit interval S = [0, 1] suffices to show that
a metrizable Souslin space S has the Skorohod representation property.

If Ω is the space of the states of the world, the σ-algebra F represents the infor-
mation structure the agent is faced with, and µ represents a prior of the agent, then
the decision problem which confronts the agent who has an information A ∈ F is
the following:

sup
ν∈Y(Ω,F ;S)

∫
S
u(s)E(ν | A)(ds),

that is,

sup
ν∈Y(Ω,F ;S)

1

µ(A)

∫
A

[∫
S
u(s)νω(ds)

]
dµ(ω).

The condition in Theorem 3.2(i) says that this problem can be reformulated, by
introducing a joint measurable map ξ : Y(Ω,F ; S)×F × [0, 1] → S, as follows:

sup
ν∈Y(Ω,F ;S)

∫ 1

0
u(ξ(ν,A, x)) dλ(x).

Furthermore, since, in the case where S is compact, the space Y(Ω,F ; S) is compact
with respect to the narrow topology, the condition in Theorem 3.2(ii) implies that
the problem admits a maximum and has a solution.
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4. Skorohod representation and information structure

We consider, in this section, the generalization of the Skorohod representation
for Young measures in the case in which the conditional expectation is defined with
respect to a measurable subset of Ω to the case in which the conditional expectation
is defined with respect to a sub σ-algebra of F .

Let ν ∈ Y(Ω,F ; S) be given and let G be a sub σ-algebra of F . Since, by
assumption, for each B ∈ B(S), the map ω 7→ νω(B) is measurable, it admits
a conditional expectation E(ν | G)ω(B) with respect to G (see, e.g., Dudley [4,
Theorem 10.1.1]). Since, for all A ∈ G,

(4.1)

∫
A
νω(B) dµ(ω) =

∫
A
E(ν | G)ω(B) dµ(ω) for all B ∈ B(S),

we have

(4.2)
1

µ(A)

∫
A
E(ν | G)(ω) dµ(ω) ∈ M+

1 (S) for all A ∈ G.

We call E(ν | G) defined in this way a conditional expectation of a Young measure
ν ∈ Y(Ω,F ; S) with respect to the sub σ-algebra G of F .

Lemma 4.1. Let να ∈ Y(Ω,F ; S) be a net which converges to ν0 ∈ Y(Ω,F ; S) with
respect to the narrow topology. Then, for all A ∈ G,∫

A
E(να | G)(ω) dµ(ω) →

∫
A
E(ν0 | G)(ω) dµ(ω)

weakly∗ in M+(S).
Proof. Since the narrow convergence of a net {να} to ν0 implies that, for each
A ∈ G, a net {να(A × ·)} of elements of M+(S) converges weakly∗ to ν0(A × ·)
(see, Castaing, Raynaud de Fitte and Valadier [3, p.21]), the assertion of the lemma
follows from (4.1). □
Theorem 4.2. Let (Ω,F , µ) be a complete finite positive measure space, G be a sub
σ-algebra of F , and let S be a Polish space. Then there exists a joint measurable
function ξ : Y(Ω,F ; S)× G × [0, 1] → S such that

(i) for each ν ∈ Y(Ω,F ; S), each sub σ-algebra G of F , and each A ∈ G, the law
of ξ(ν,A, ·) coincides with

1

µ(A)

∫
A
E(ν | G)(ω) dµ(ω),

(ii) for each A ∈ G, the map ν 7→ ξ(ν,A, x) is continuous for almost all x ∈ [0, 1].

Proof. Let η : M+
1 (S) × [0, 1] → S be a Skorohod representation of Blackwell and

Dubins obtained in Theorem 3.1 and define ξ : Y(Ω,F ; S)× G × [0, 1] → S by

ξ(ν,A, x) = η

(
1

µ(A)

∫
A
E(ν | G)(ω) dµ(ω), x

)
Then, the condition (i) follows from the condition in Theorem 3.1(i) and (4.2). The
condition (ii) also can be deduced from the condition Theorem 3.1(ii) and Lemma
4.1. □
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The ex-ante utility of a decision maker who is confronted with the information
structure G can be written as∫

Ω

[∫
S
u(s)E(ν | G)ω (ds)

]
dµ(ω).

The ex-post utility of the decision maker, when he possesses an information A ∈ G,
can be calculated as

1

µ(A)

∫
A

[∫
S
u(s)E(ν | G)ω (ds)

]
dµ(ω).

By Theorem 4.2, this problem encountered by the decision maker can be written,
by some joint measurable function ξ : Y(Ω,F ; S)× G × [0, 1] → S, as

sup
ν∈Y(Ω,F ;S)

∫ 1

0
u(ξ(ν,A, t)) dλ(t).

If we interpret the space ([0, 1], λ) as a type space à la Harsanyi [8], and consider
ξ(ν,A, t) as an action which is selected by an agent of type t who has a strategy ν,
and an information A, then the condition in Theorem 4.2(i) states that the decision
maker’s ex-post problem who possesses the restricted information structure G can be
formulated only by introducing one dimensional type space ([0, 1], λ) without having
recourse to the information structure G. Remark also that, when S is a compact
metric space, the space Y(Ω,F ; S) is compact with respect to the narrow topology.
Thus, by the condition in Theorem 4.2(ii), the problem admits a maximum and has
a solution.

5. Skorohod representation for sets of Young measures

In this section, we consider the Skorohod representation for sets of Young mea-
sures. The study in this section is inspired by Dumav and Stinchcombe [5].

Let K(Y) be the set of all compact subsets of Y(Ω,F ; S). Let BL1(S, d) be the
set of bounded Lipschitz function f : S → [0, 1] defined on the metric space (S, d)
with Lipschitz modulus bounded by 1. Let F be essentially countably generated.
Let {An} be a sequence in F which generates F and let Cn, n ∈ N be the partition
of Ω generated by A0, . . . , An. We rearrange the elements of C = ∪nCn so as to
C = {C1, . . . , Cn, . . .}. If S is a Polish space and F is essentially countably generated,
then the space Y(Ω,F ; S) endowed with the narrow topology is metrizable by the
metric:

ρ(ν, ν ′) :=
∑
n≥1

2−n sup
f∈BL1(S,d)

|(ν − ν ′)(1Cn ⊗ f)|

(see Castaing, Raynaud de Fitte and Valadier [3, Proposition 2.3.1]).
We define the Hausdorff metric h(K,K ′),K,K ′ ∈ K(Y) by

h(K,K ′) = max
{
sup
x∈K

ρ(x,K ′), sup
y∈K′

ρ(y,K)
}
.

Remark that, since the Hausdorff metric h is defined on K(Y), it is equivalent for
any metric ρ compatible with the narrow topology on Y(Ω,F ; S). Remark also that,
the compactness of S implies that the space K(Y) is compact with respect to the
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Hausdorff metric h. Let KC(Y) ⊂ K(Y) be a set of compact and convex subsets of
Y(Ω,F ; S). We assume that:

Assumption 5.1. KC(Y) ⊂ K(Y) is compact with respect to the Hausdorff metric
h.

The following theorem is some modification of Theorem 1(b) in Dumav and
Stinchcombe [5]. Let Ω◦ = [0, 1] × [0, 1], F◦ its usual Borel σ-algebra and Π◦ =
{λr : r ∈ [0, 1]} where for each r ∈ [0, 1], λr denotes the uniform distribution on
{r}× [0, 1].1 We say that a σ-algebra F is standard if there exists a Polish topology
TΩ on Ω such that F is generated by TΩ.

Theorem 5.2. Let (Ω,F , µ) be a complete finite positive measure space and F be
standard, G be a sub σ-algebra of F , and let S be a Polish space. Then there exists
a jointly measurable function ξ : KC(Y)× G × Ω◦ → S such that

(i) for each K ∈ KC(Y) and each A ∈ G,

ξ(K,A,Π◦) =

{
1

µ(A)

∫
A
E(ν | G)(ω) dµ(ω) : ν ∈ K

}
.

(ii) for each A ∈ G and each Kn,K0 in KC(Y) with h(Kn,K0) → 0,

P ({(r, s) ∈ Ω◦ : ξ(Kn, A, (r, s)) → ξ(K0, A, (r, s))}) = 1

for all P ∈ Π◦.

Proof. Let us define a function ρ◦(ν, ν ′) as follows:

ρ◦(ν, ν ′) :=

∑
n≥1

2−n

(
sup

f∈BL1(S,d)
|(ν − ν ′)(1Cn ⊗ f)|

)2
 1

2

.

Then ρ◦ is a metric on Y(Ω,F ; S) which is compatible with ρ. Furthermore, for
each ν ∈ Y(Ω,F ; S) and each K ∈ KC(Y), the problem infν′∈K ρ◦(ν, ν ′) has a
unique solution.2 We denote its solution by fK(ν). Since F is standard and S is
Polish, Proposition 2.3.3 in Castaing, Raynaud de Fitte and Valaider [3] implies that
the space Y(Ω,F ; S) is a Polish space. Hence, by the Borel isomorphism theorem
[4, Theorem 13.1.1], there exists a measurable bijection with measurable inverse
ψ : [0, 1] → Y(Ω,F ; S). Define ξ : KC(Y)× G × Ω◦ → S as follows:

ξ(K,A, (r, s)) = η

(
1

µ(A)

∫
A
E(fK(ψ(r)) | G)(ω) dµ(ω), s

)
.

It is clear that ξ is joint measurable. Furthermore, since

ξ(K,A, λr) =
1

µ(A)

∫
A
E(fK(ψ(r)) | G)(ω) dµ(ω),

1Dumav and Stinchcombe [5] also treat more general case in which Π◦ is descriptively complete.
2The space (Y(Ω,F ; S), ρ◦) is a space of strictly convex metric space with convex round balls in

the sense of Bula [2]. See [2, Lemma 3.2].
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it follows that

ξ(K,A,Π◦) =

{
1

µ(A)

∫
A
E(ν | G)(ω) dµ(ω) : ν ∈ K

}
.

To prove (ii), let A ∈ G and let Kn,K0 be in KC(Y) such that h(Kn,K0) → 0.
Since fK(ν) is continuous in K, fKn(ψ(r)) → fK0(ψ(r)). Hence Lemma 4.1 and the
condition in Theorem 3.1(ii) imply the assertion of (ii). □

We consider an agent who assumes an attitude of ambiguity aversion in the sense
of Ellsberg [6] in the set K of probabilities on (Ω × S,F ⊗ B(S)) which belongs to
KC(Y) and who also assumes an attitude of usual utility maximizer over the set
KC(Y). Remind that Gilboa and Schmeidler [7] succeed in axiomatizing an ambi-
guity averse preference of Ellsberg [6] and derive the maxmin utility representation
of the ambiguity averse preference. Gilboa and Schmeidler [7] consider the case in
which preference relation is defined on the set Y(Ω,F ; S) and establish the existence
of some utility representation u : M+

1 (S) → R and a set of probabilities C on the
measurable set (Ω,F) which satisfies the following condition: ν ≿ τ iff

min
P∈C

∫
u(ν) dP ≥ min

P∈C

∫
u(τ) dP. 3

Let us now suppose that all the probabilities belonging to the set C are absolutely
continuous with respect to µ. Then the above inequality can be written, by using
Radon Nykodým derivative, as follows:

min
P∈C

∫
Ω

[∫
S
u(s)

dP

dµ
(ω)νω(ds)

]
dµ(ω) ≥ min

P∈C

∫
Ω

[∫
S
u(s)

dP

dµ
(ω)τω(ds)

]
dµ(ω).

By setting M = {dP
dµ ν : P ∈ C}, N = {dP

dµ τ : P ∈ C}, this inequality can be

rewritten by

min
ν∗∈M

∫
u(ν∗) dµ ≥ min

τ∗∈N

∫
u(τ∗) dµ.

If we assume that the ambiguity averse agent follows the reasoning in the spirit
of Gilboa and Schmeidler [7], then the problem the agent is faced with will be as
follows:

sup
K∈KC(Y)

inf
ν∈K

∫
Ω

[∫
S
u(s)E(ν | G)ω(ds)

]
dµ(ω),

that is, the decision problem is to maximize his utility over the set KC(Y) which
represents a menu of options the ambiguity averse agent is faced with. By deciding
among these options, the agent optimizes his state of mind. This problem may also
be considered as a problem of selecting the state of confidence of Keynes [9, Chapter
12, II]. The set KC(Y) may be considered as a menu of low confidence of the agent.
The problem the agent is faced with is that he selects from the menu his optimum
state of mind with low confidence.

3The setting of Gilboa and Schmeidler [7] is somewhat different from mine due to the specific

constraint of decision theory.
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The ex-post utility of the decision maker, when he possesses an information A ∈
G, can be calculated as

(5.1) sup
K∈KC(Y)

inf
ν∈K

1

µ(A)

∫
A

[∫
S
u(s)E(ν | G)ω(ds)

]
dµ(ω).

By Theorem 5.2, the problem (5.1) can be rewritten as follows:

sup
K∈KC(Y)

inf
Q∈Π◦

∫ 1

0
u(ξ(K,A, x)) dQ(x).

Remark that this problem is a usual maxmin utility representation of Gilboa and
Schmeidler [7] with a parameter of the decision maker’s state of mind. By the

condition in Theorem 5.2(ii), the map K 7→ infQ∈Π◦
∫ 1
0 u(ξ(K,A, x)) dQ(x) is upper

semi-continuous and hence, by Assumption 5.1, it admits a maximum. This implies
that, if S is compact, the problem (5.1) has a solution and the decision maker has
his optimal state of mind.
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