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an extension of Farkas’ lemma in normed spaces. All in all, Komiya pub-
lished seven papers in the first five years of his scientific career, and his debut
publications were underscored and supplemented by results on linear inequal-
ities, majorization of functions and the Hahn-Banach theorem. The emphasis
on relationships and equivalences, as well as his authoritative admiration of
the work of Browder and Fan, rendered his theorems of especial interest to
theorists of economics, games and optimization.

In this tribute to Hidetoshi Komiya, the authors present a relational
overview, a circular tour or a network, so to speak, of work revolving around
the following three seminal results of non-linear analysis, all pertaining to a
topology that is not necessarily assumed to be locally convex.

Theorem 1.1. (Fan, 1961) Let X be a nonempty convex, compact1 set of
a Hausdorff topological vector space Y and F : X ↠ Y a correspondence
satisfying:

1. co{x1, .., xn} ⊆
∪n

i=1 F (xi) for all finite sets {x1, . . . , xn} ∈ X.
2. F (x) is closed for all x ∈ X.

Then
∩

x∈X F (x) 6= ∅.

Theorem 1.2. (Fan, 1961) Let X be a non-empty, compact and convex subset
of a Hausdorff topological vector space. Suppose that R ⊆ X ×X is a relation
satisfying:

1. For each x ∈ X, (x, x) ∈ R.
2. The set {y ∈ X : (x, y) /∈ R} is convex for each x ∈ X.
3. The set {x ∈ X : (x, y) ∈ R} is closed in X for each y ∈ X.

Then there exists x ∈ X such that (x, y) ∈ R for all y ∈ X.

Theorem 1.3. (Browder, 1968) Let X be a non-empty, compact and convex
subset of a Hausdorff topological vector space, and B : X ↠ X a correspon-
dence such that

1. x /∈ B(x) for all x ∈ X.
2. B(x) is convex for all x ∈ X.
3. The set {x ∈ X|y ∈ B(x)} is open in X for all y ∈ X.

Then there exists x̄ ∈ X such that B(x̄) = ∅.

Theorem 1.1 is a special case of Fan’s [17] celebrated generalization of
the equally celebrated Knaster–Kuratowski–Mazurkiewicz (KKM, hereafter)
lemma, and is now generally known as the “FKKM theorem.”2 In the same

1Relative to Theorem 1.1 above, Fan’s more general Lemma 1 in [17] assumes only that F (x0)

is compact for some x0 ∈ X.
2Reviews of these seven papers are available at Mathscinet: they were given favorable notice by

senior mathematicians of the subject: Mahlon Day, Jean Paul Doignon, Wolfgang Lusky, Carslaw

Scott and Ray Shiflet.
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1961 paper, Fan uses his result to prove what we present, taking the mild
generalization of Gwinner [22] into account, as our Theorem 1.2 concerning
variational relations, a result that is lesser known. Finally, in separate seminal
work, Browder [9] proved, what we present in a well known alternative equiv-
alent form, as our Theorem 1.3: a fixed point/maximal-element theorem for
correspondences with open lower sections. Our objective then is to clarify the
relationship among these three results of Fan and Browder.3 We show that
they are not equivalent but we can identify conditions under which variants of
these theorems are indeed equivalent. Furthermore, we can provide generaliza-
tions of these equivalences.4 One may note here that one aspect of Komiya’s
multi-faceted work concerns maps that go beyond the Kakutani-map, and
Komiya was deeply concerned about the equivalences of results for these sev-
eral types of multi-valued maps as well as with the continuity assumption that
is adduced on them.

In terms of a reader’s guide to the paper, we present twelve equivalence
theorems in three sections: each theorem presenting variants of Fan’s two the-
orems and Browder’s theorem recalled above. As such, we present a collection
of “circular tours” each of which provides an equivalence between a set in-
tersection theorem, a variational relation existence theorem and a fixed point
theorem. Each result requires a “continuity” assumption, a “compactness”
assumption and an assumption underscoring the overall “topological struc-
ture”. Our main results are Theorems A,B and C, on the one hand, and
Theorems D,E and F, on the other. All clarify the tradeoff between these
three assumptions. They demonstrate, in particular, that as the continuity
assumption is strengthened, the compactness and structure assumptions can
be correspondingly weakened. Each can be used to prove the other two and
in so doing, shed light on the underlying structure of all the three problems.
Whereas the first revolves around Theorems 1.1, 1.2 and 1.3 presented above,
and its three subsections distinguish between the Hausdorff and the locally
convex Hausdorff case, the second focusses on theorems of Komiya, Fan and
Peleg, catalogued as Theorems 4.1, 4.5, 4.7 and 4.9.

3In the antecedent literature, different combinations of these theorems have been variously

presented as the Fan-Browder Theorem, and shown to have many applications in different fields,

including mathematics, economics and statistics: the epigraph lists the manifold applications only

in pure mathematics.
4Browder [10] also mentions the relationship and attributes his theorem to Fan. More to the

point, Komiya has worked on generalizations and applications of FKKM theorem and fixed point

theorems; see for example [34, 36, 35, 53], and note that our focus in this paper parallels his. In

a different direction, L. Shapley provides a generalization of the KKM lemma which is especially

useful in economics. Komiya has considerable amount of work in this direction; see for example

[33] but we do not focus on this direction in this paper.
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We conclude with the plan of the paper. Section 2 presents the basic concep-
tual and notational preliminaries, and it is followed by the two tours. Section
3 presents the first tour involving Theorems A,B and C, and Section 4 the sec-
ond set of Theorems D,E and F. Section 5 takes up the opportunity to frame
the issues pertaining to equivalence from a methodological and philosophic
perspective drawing from the work of Dawson [13] and Thiele [64]. Finally,
Section 6 concludes with a summary statement.

2. Maps, correspondences and relations

This section is devoted to laying out the related notation pertaining to a
correspondence and its manifestation as a subset of the product set formed by
the underlying domain and the codomain. The first two subsections introduce
the basic notation, and the third provides specific definitions of KKM and
Browder maps and the KF relation.

2.1. Correspondences. Let X,Y be two sets. A correspondence (multi-
function, multi-map, map) from X into Y is a mapping F : X ↠ Y such
that F (x) ⊆ Y for all x ∈ X. Given a correspondence F : X ↠ Y , define the
correspondences F−1 : Y ↠ X and F c : X ↠ Y as:

F−1(y) ={x ∈ X| y ∈ F (x)},
F c(x) ={y ∈ Y | y /∈ F (x)}.

Note that for each y ∈ X,

(F−1)c(y) = {x ∈ X| y /∈ F (x)} = {x ∈ X| y ∈ F c(x)} = (F c)−1(y).

If F : X ↠ Y is correspondence, then the graph of F is the set

grF = {(x, y) ∈ X × Y |y ∈ F (x)}.

For any set A in a vector space, let coA denote the convex hull of A. For
any set A in a topological space, let clA denote the closure of A and intA
denote the interior of A.

Definition 2.1. Let X be a topological space and let Y be a topological
vector space. A correspondence F : X ↠ Y is co-closed if the convex hull
correspondence coF : X ↠ Y defined as (coF )(x) = coF (x) for all x ∈ X,
has closed graph.

Definition 2.2. Let X and Y be topological spaces and let F : X ↠ Y be a
correspondence.

1. F has closed graph if grF is closed in X × Y endowed with the
product topology.

2. F is closed valued if F (x) is closed in Y for all x ∈ X.
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3. F is transfer closed valued if whenever y /∈ F (x), there exists an
open set U(y) containing y and x∗ ∈ X such that y′ /∈ F (x∗) for all
y′ ∈ U(y).

4. If X is a topological vector space, then F is securely closed valued if
whenever y /∈ F (x), there exists an open set U(y) containing y and a co-
closed correspondence d : U(y) ↠ X such that such that y′ /∈ F (d(y′))
for all y′ ∈ U(y).

Remark 2.3. The notion of transfer closed valued correspondence is due to
Tian [65] and plays a role in many existence results. The notion of securely
closed valued correspondence is new and is motivated by the various ”secu-
rity” conditions used to prove the existence of a Nash equilibrium in games
with possibly discontinuous payoffs; see for example, Reny [55, 56, 57, 58],
McLennan, Monteiro, and Tourky [44], Carmona and Podczeck [12], Barelli
and Meneghel [5], Nessah and Tian [46] and Khan, McLean, and Uyanik [28].

Remark 2.4. It is well known that F is closed valued if F has closed graph but
the converse is false. If X = [0, 1] and F : X ↠ X is defined as F (x) = {1}
if x 6= 0 and F (0) = {0}, then F is closed valued but grF is not closed.
Furthermore, it is straightforward to show that F is transfer closed valued if F
is closed valued but the converse is false. Let F : X ↠ X be a correspondence
with closed values. Pick x, y ∈ X such that x ∈ F c(y). Since F c(y) is open
there exists U(x) containing x such that x′ ∈ F c(y) for all x′ ∈ U(x). Hence,
F is transfer closed valued. In order to see that transfer closed valuedness
does not imply closed valuedness, let X = [0, 1] and define F : X ↠ X as
F (x) = (x, 1] for all x < 1 and F (1) = {1}. Then, F is transfer closed valued
but F (x) is not closed whenever x < 1.

If X is a Hausdorff topological vector space, then F is securely closed val-
ued if F is transfer closed valued but the converse is false. If F : X ↠ Y is a
transfer closed valued correspondence, choose x, y ∈ X such that x ∈ F c(y).
Then there exists U(x) containing x and y∗ ∈ X such that x′ /∈ F (y∗) for all
x′ ∈ U(x). Since a singleton set is closed in a Hausdorff space, the correspon-
dence d : U(x) ↠ X defined as d(x′) = {y∗} for each x′ ∈ U(x) is co-closed.
Hence, F is securely closed valued. In order to see that securely closed val-
uedness does not imply transfer closed valuedness, let X = [0, 1] and define
F : X ↠ X as F (x) = X\{x} for all x ∈ X. Then for all x, y ∈ X, y /∈ F (x)
if and only if y = x. Pick x ∈ X. Define U(x) = [0, 1] and d(x) = {x} for all
x ∈ X. Then d is co-closed. Therefore F is securely closed valued. It is easy
to see that F is not transfer closed valued.

Definition 2.5. Let X and Y be topological spaces and let F : X ↠ Y be a
correspondence.
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1. F has open graph if grF is open in X ×Y endowed with the product
topology.

2. F has open lower sections if F−1(y) is open for all y ∈ Y .
3. F has the local intersection property if for each x ∈ X with F (x) 6=

∅, there exists an open set U(x) containing x and y∗ ∈ Y such that
y∗ ∈ F (x′) for each x′ ∈ U(x).

4. If Y is a topological vector space, then F has the continuous inclu-
sion property if for each x ∈ X with F (x) 6= ∅, there exists an open
set U(x) containing x and a co-closed correspondence d : U(x) ↠ Y
such that d(x′) ⊆ F (x′) for each x′ ∈ U(x).

Remark 2.6. The significance of correspondences with open lower sections
in fixed point theory was made clear by Browder’s 1968 result. Such corre-
spondences have since been used to prove existence results for collective fixed
point theorems and related problems in the theory of generalized games; see
for example, Sonnenschein [60], Yannelis and Prabhakar [71], Deguire, Tan,
and Yuan [14], Lin and Ansari [39] and Lin and Ansari [40]. Similar com-
ments apply to correspondences with the local intersection property; see for
example, [? ] and Ansari and Yao [2]. The continuous inclusion property and
its application to fixed point theory and generalized games appears in He and
Yannelis [23] and Uyanik [67] and Khan and Uyanik [30]. □
Remark 2.7. From the definition of product topology, it is clear that F has
open lower sections if F has open graph but the converse is false. If X = [0, 1]
and F : X ↠ X is defined as F (x) = [0, 1]\{x} if x < 1 and F (1) = [0, 1],
then F has open lower sections but grF is not open.

Furthermore, F has the local intersection property if F has open lower
sections but the converse is false. To see this , let F : X ↠ X be a corre-
spondence with open lower sections. Choose x ∈ X such that there exists
y ∈ F (x). Since F−1(y) open, there exists an open set U(x) containing x
such that y ∈ F (x′) for each x′ ∈ F (x). Hence, F has the local intersection
property. In order to see that local intersection property does not imply open
lower sections, let X = [0, 1] and define F : X ↠ X as F (x) = [0.5(x + 1), 1]
for all x < 1 and F (1) = ∅. Then, F has the local intersection property since
for all x < 1, selecting U(x) = [0, 1) and y∗ = 1 imply y∗ ∈ F (x′) for all
x′ ∈ U(x). However, F−1(1

2
) = {0} is not open.

If Y is a Hausdorff TVS and F has the local intersection property then F has
the continuous inclusion property but the converse is false. Let F : X ↠ X
be a correspondence with the local intersection property. Pick x ∈ X such
that F (x) 6= ∅. Then, there exists an open set U(x) containing x and y∗ ∈ X
such that y∗ ∈ F (x′) for each x′ ∈ U(x). Since a singleton set is closed in a
Hausdorff space, the correspondence d : U(x) ↠ X defined as d(x′) = {y∗} for
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each x′ ∈ U(x) is co-closed. Hence B has the continuous inclusion property.
In order to see that local intersection property does not imply the continuous
inclusion property, let X = [0, 1] and define F : X ↠ X as F (x) = {0.5(x+1)}
for all x < 1 and F (1) = ∅. It is clear that F does not have the local
intersection property but it has the continuous inclusion property.

2.2. Relations. Let X,Y be two sets. A relation in X × Y is a subset R of
X×Y . For each (x, y) ∈ X×Y , define the upper section R(x), its complement
Rc(x) and the lower section R−1(y) as:

R(x) = {y ∈ X| (x, y) ∈ R}
Rc(x) = {y ∈ X| (x, y) /∈ R}
R−1(y) = {x ∈ X| (x, y) ∈ R}.

If F : X ↠ Y is a correspondence and R = grF, then R(x) = F (x), Rc(x) =
F c(x) and R−1(y) = F−1(y) for each (x, y) ∈ X × Y.

Definition 2.8. Let X and Y be topological spaces and let R ⊆ X × Y be a
relation.

1. R is closed if R is closed in X×Y endowed with the product topology.
2. R has closed lower sections if R−1(y) is closed for all y ∈ Y .
3. R transfer semi-continuous if x ∈ X and (x, y) /∈ R imply that there

exists an open set U(x) containing x and y∗ ∈ Y such that (x′, y∗) /∈ R
for all x′ ∈ U(x).

4. If Y is a topological vector space, then R is correspondence secure
if whenever x ∈ X and (x, y) /∈ R, there exists an open set U(x)
containing x and a co-closed correspondence d : U(x) ↠ Y such that
d(x′) ⊆ {y ∈ Y : (x′, y) /∈ R} for all x′ ∈ U(x).

Remark 2.9. Transfer semi-continuous and correspondence secure relations
appear in McLean [43]. □
Remark 2.10. A relation R has closed lower sections if R is closed, and R is
transfer semi-continuous if R has closed lower sections but the converses are
false and we omit the straightforward proofs. In addition, R is correspondence
secure if R transfer semi-continuous but the convese is false and the proof
follows from arguments similar to those of Remark 2.7. □
2.3. KKM maps, KF relations and Browder maps. We begin with three
definitions.

Definition 2.11. Let X be a a non-empty and convex subset of a vector
space.
A correspondence5 F : X ↠ X is a

5See Yuan [73], Fan [19].
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1. KKM map if co{x1, .., xn} ⊆
∪n

i=1 F (xi) for every finite set
{x1, . . . , xn} ⊆ X.

2. strong KKM map if (F−1)c(y) is convex for each y ∈ X and x ∈ F (x)
for each x ∈ X.

A relation6 R ⊆ X ×X is a

3. KF relation if the following holds: For each x, x /∈ coRc(x), where
Rc(x) = {y ∈ X : (x, y) /∈ R}.

4. strong KF relation if Rc(x) is convex for each x ∈ X and (x, x) ∈ R
for each x ∈ X.

A correspondence7 B : X ↠ X is a

5. Browder map if the following holds: x /∈ coB(x) for each x ∈ X.
6. strong Browder map if for each x ∈ X, B(x) is convex and x /∈ B(x).

The following lemma provides a charactization of KKM maps that plays a
crucial role in many of the arguments of this paper.

Lemma 2.12. Let X be a a non-empty, convex subset of a vector space and
F : X ↠ X a correspondence. Then the following are equivalent:

1. F is a KKM map.
2. x /∈ co[(F−1)c(x)] for each x ∈ X.

Proof of Lemma 2.12. Assume that for every x ∈ X, x /∈ co[X\F−1(x)] and
that F is not a KKM map. Then there exists a set {x1, .., xn} and x ∈
co{x1, .., xn} such that x /∈ ∪iF (xi). Therefore, xi /∈ F−1(x) for each i implying
that x i ∈ X\F−1(x) for each i. Therefore x ∈ co[X\F−1(x)], a contradiction.
Assume that F is a KKM map and that there exists an x such that x ∈
co[X\F−1(x)]. Then there exists a set {x1, .., xn} such that xi /∈ F−1(x) for
each i and x ∈ co{x1, .., xn}. Therefore x ∈ co{x1, .., xn} but x /∈ ∪iF (xi).
This contradicts the assumpton that F is a KKM map. □

Remark 2.13. From Lemma 2.12 and the definitions, we conclude that every
strong KKM map (strong KF relation, strong Browder map) is a KKM map
(KF relation, Browder map). □

In the results of this and the following sections, we will make frequent use
of the following three Lemmas. In each result, indeed throughout the paper,
we omit the “strong” version of our equivalence results since the proofs are
identical in the strong case. The proofs of the Lemmas are not difficult; for

6See Yuan, Frenk, Kassay, and Kolumbán [20].
7In Yannelis and Prabhakar [71], a strong Browder map with open lower sections is called a KF

correspondence. In Yannelis and Prabhakar [71], a Browder map with open lower sections is said

to be of class L. See also Tarafdar [61, 62], Khan and Uyanik [29], Park and Jeong [52].
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the convenience of the reader, we provide the proof of the first one and omit
the other two.

Lemma 2.14. Let X be a non-empty subset of a vector space and let R ⊆
X ×X be a relation. Then the following are equivalent:

1. R is a (strong) KF relation.
2. F : X ↠ X defined as F (y) = R−1(y) for each y ∈ X is a (strong)

KKM map.
3. B : X ↠ X defined as B(x) = Rc(x) for each x ∈ X is a (strong)

Browder map.

Proof of Lemma 2.14. (1 ⇒ 2) Suppose that R ⊆ X × X is a KF relation.
If F (y) = R−1(y) for each y ∈ X, then (F−1)c(y) = Rc(y) for each y ∈ X.
Therefore y /∈ co[(F−1)c](y) for each y ∈ X and it follows that F : X ↠ X is
a KKM map.

(2 ⇒ 3) Suppose that F : X ↠ X defined as F (y) = R−1(y) for each
y ∈ X is a KKM map. If B : X ↠ X is defined as B(y) = Rc(y) for each
y ∈ X, then B(y) = ((Rc)−1)−1(y) = ((R−1)c)−1(y) = (F c)−1(y) for each
y ∈ X implying that B is a Browder map.

(3 ⇒ 1) This is an immediate consequence of the definitions. □

Lemma 2.15. Let X be a non-empty subset of a vector space and let F :
X ↠ X be a correspondence. Then the following are equivent:

1. F is a (strong) KKM map.
2. B : X ↠ X defined as B(y) = (F−1)c(y) for each y ∈ X is a (strong)

Browder map.
3. R ⊆ X ×X defined as R = [X ×X]\gr(F−1)c = grF−1 is a (strong)

KF relation.

Lemma 2.16. Let X be a non-empty subset of a vector space and let B :
X ↠ X be a correspondence. Then the following are equivalent:

1. B is a (strong) Browder map.
2. R = grBc is a (strong) KF relation.
3. F : X ↠ X defined as F (y) = (B−1)c(y) for each y ∈ X is a (strong)

KKM map.

3. Circular tours

The community to which this work is addressed sees little reason to interro-
gate the word equivalence, and takes its meaning for granted; see for example
[22] and Borgersen [7]. However, we are using equivalence in our theorems
is a nuancedly-different way, and it seems to us worthwhile to our results by
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elaborating the sense in which we use the term.8 The point is that an object
we work with can be portrayed in three different ways – a Fan-relation, a
Browder-map, and a KKM-map – and what is true for one portrayal trans-
lates into a straightforward modification of the others. To put the matter in
another way, once we obtain a theorem in one register, one has automatically
proved a corresponding result in the two other registers. A “truth table” is
helpful in illustrating this, and Lemmas 2.14 – 2.16 below, to take one exam-
ple, show how the hypotheses of suitable versions of FKKM, Fan, and Browder
Theorems are equivalent in the nuanced meaning that we are giving to the
word. In Table 1 below, if a property is true (T) for a Browder map B, then it
is true for a KF relation induced by grBc as well as for a KKM map induced
by (B−1)c.

B is Browder Map grBc is KF Relation (B−1)c is KKM Map
with Open Graph with Closed Graph with Closed Graph

T T T
F F F

Table 1. Equivalence of Hypotheses

Truth-table 1 pertained to the hypotheses, but there are also conclusions to
be considered, and we turn to them.

B(x) = ∅, x ∈ X ∩x∈XgrB
c(x) 6= ∅, x ∈ X (B−1)c(x) = ∅, x ∈ X

T T T
F F F

Table 2. Equivalence of Conclusions

And so it is not only that two “if then” statements are equivalent in the
colloquial sense of having the same truth values, it is the considerably stronger
statement that that their hypotheses (their “ifs”) as well as their conclusions
(their “thens”) have the same truth value.

3.1. The Hausdorff locally convex case. In our first circular tour, we
make the weakest continuity assumption but the strongest compactness and
topological structure assumptions. Again, in Theorem A and throughout this
section, we omit the proofs for the strong version of each result.

Theorem A. Let X be a non-empty and convex subset of a Hausdorff, locally
convex topological vector space. Then the following are true and equivalent:

8The uninterested reader can skip this opening and proceed directly to the results; in any case,

Section 5 goes into the issues in some comprehensive detail.
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1. Suppose that F : X ↠ X is a (strong) KKM map. If F is securely
closed valued and X is compact, then

∩
x∈X F (x) 6= ∅.

2. Suppose that R ⊆ X ×X is a (strong) KF relation. If R ⊆ X ×X is
correspondence secure and if X is compact, then R(x̄) = X for some
x̄ ∈ X.

3. Suppose that B : X ↠ X is a (strong) Browder map. If B has the
continuous inclusion property and if X is compact, then B(x) = ∅ for
some x ∈ X.

Proof of Theorem A. The result is true9 since Theorem A.3 is equivalent to
Theorem 2 in He and Yannelis [24] so it remains to prove the equivalences.

(1 ⇒ 2): Let R be a correspondence secure KF relation. Then the corre-
spondence F : X ↠ X defined as F (y) = R−1(y) is a securely closed KKM
map. To show that F is securely closed valued, choose x, y ∈ X such that
x /∈ F (y). Then (x, y) /∈ grF−1 implies that (x, y) /∈ R since grF−1 = R. Then
there exists an open set U(x) containing x and a co-closed correspondence
d : U(x) ↠ X such that d(x′) ⊆ {y ∈ X : (x′, y) /∈ R} for all x′ ∈ U(x).
Hence, x′ /∈ F (d(x′)) for all x′ ∈ U(x). Therefore, F is securely closed valued.
Hence there exists x ∈ X such that x ∈

∩
y∈X F (y) implying that R(x) = X.

(2 ⇒ 3): Let B be a Browder map with the continuous inclusion property.
Defining R = [X×X]\(grB) = {(x, y) ∈ X×X|y /∈ B(x)}, it follows that R is
a correspondence secure KF relation. To show that R is correspondence secure,
choose x, y ∈ X such that (x, y) /∈ R. Then y ∈ B(x). Hence there exists an
open set U(x) containing x and a co-closed correspondence d : U(x) ↠ X such
that d(x′) ⊆ B(x′) = Rc(x′) for each x′ ∈ U(x). Therefore, R is correspondence
secure. Hence there exists x ∈ X such that (x, y) ∈ R for all y ∈ X. Therefore,
Rc(x̄) = B(x̄) = ∅.

(3 ⇒ 1): Let F be a securely closed valued KKM map. Define B : X ↠ X
as B(x) = (F−1)c(x) and note that B is a Browder map with the continuous
inclusion property. To show that B has the continuous inclusion property,
choose x ∈ X with B(x) 6= ∅. Then there exists y ∈ X such that y /∈ F−1(x).
Since x /∈ F (y), there exists an open set U(x) containing x and a co-closed
correspondence d : U(x) ↠ X such that such that x′ /∈ F (d(x′)) for all
x′ ∈ U(x). Therefore, d(x′) ⊆ (F−1)c(x′) = B(x′) for all x′ ∈ U(x) implying
that B has the continuous inclusion property. Hence there exists x ∈ X such
that (F−1)c(x) = B(x) = ∅ and it follows that F−1(x) = X implying that
x ∈

∩
y∈X F (y). □

Remark 3.1. As mentioned in the proof, Theorem A.3 is exactly Theorem 2
in He and Yannelis [24] and Theorem A.2 is equivalent to Corollary 1 of the

9Note that the local convexity assumption is used only at this step.
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same paper. Theorem A.2 is also a special case of Theorem 4 in McLean [43].
Theorem A.1 is new. Yannelis [70] proves a related equivalence result where
it is shown that Theorem 1.3 is equivalent to Lemma 1 in Fan [17].

3.2. The Hausdorff case: Strengthened continuity and weakened
compactness. In Theorem A, it was assumed that X is a compact subset of
a Hausdorff, locally convex TVS. In this section, we present a result in which
the continuity assumption in each part of Theorem A is strengthened but the
local convexity assumption is dropped and the compactness assumption for X
is significantly weakened. We begin by defining a condition that is found in a
number of papers in the fixed point literature.

Definition 3.2. Let X be a a non-empty and convex subset of a topological
vector space. A correspondence G : X ↠ X satisfies the compact intersec-
tion property (CIP) if the following holds:

There exist non-empty and compact sets K,M ⊆ X, whereM is convex, such
that for each x ∈ X\K there exists an open set U(x) containing x with ∩

x′∈U(x)

G(x′)

 ∩M 6= ∅.

Theorem B. Let X be a non-empty and convex subset of a Hausdorff topo-
logical vector space. Then the following are true and equivalent:

1. Suppose that F : X ↠ X is a (strong) KKM map. If F is transfer
closed valued and if x 7→ (F−1)c(x) satisfies CIP, then

∩
x∈X F (x) 6= ∅.

2. Suppose that R ⊆ X ×X is a (strong) KF relation. If R ⊆ X ×X is
transfer semi-continuous and if x 7→ Rc(x) satisfies CIP, then R(x̄) =
X for some x̄ ∈ X.

3. Suppose that B : X ↠ X is a (strong) Browder map. If B satisfies the
local intersection property and if B satisfies CIP, then B(x) = ∅ for
some x ∈ X.

Proof of Theorem B. Theorem B.3 is true since it is a special case of Theorem
1 in Ansari and Yao [2] by applying Remark b.(ii)′′ of their paper. It now
remains to show that the claims are equivalent.

(1 ⇒ 2) Let R be a transfer semi-continuous KF relation and suppose that
x 7→ Rc(x) satisfies CIP. Then the correspondence F : X ↠ X defined as as
F (y) = R−1(y) is a transfer closed valed KKM map with closed graph. To see
that F is transfer closed valued, choose x, y ∈ X such that x /∈ F (y). Then
(x, y) /∈ grF−1 implies that (x, y) /∈ R since grF−1 = R. Then there exists
an open set U(x) containing x and y∗ ∈ X such that x′ /∈ R−1(y∗) = F (y∗)
for all x′ ∈ U(x). Therefore, F is transfer closed valued. Next, note that
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(F−1)c(x) = X\F−1(x) = X\R(x) = Rc(x) implying that F is a KKM map
and that x 7→ (F−1)c(x) satisfies CIP. Hence there exists x ∈ X such that
x ∈

∩
y∈X F (y) implying that R(x) = X.

(2 ⇒ 3) Let B be a Browder map with the local intersection property and
suppose that B satisfies CIP. Defining R = (X × X)\(grB) = {(x, y) ∈
X ×X|y /∈ B(x)}, it follows that R is a transfer semi-continuous KF relation.
To show that R is transfer semi-continuous, pick x, y ∈ X such that (x, y) /∈
R. Then y ∈ B(x). Hence there exists an open set U(x) containing x and
y∗ ∈ X such that y∗ ∈ B(x′) = Rc(x′) for each x′ ∈ U(x). Therefore, R is
transfer semi-continuous. Next, note that Rc(x) = B(x) implying R is a KF
relation and that x 7→ Rc(x) satisfies CIP. Hence there exists x ∈ X such that
(x, y) ∈ R for all y ∈ X. Therefore, Rc(x̄) = B(x̄) = ∅.

(3 ⇒ 1) Let F be a transfer closed KKM map and suppose that x 7→ (F−1)c(x)
satisfies CIP. Define B : X ↠ X as B(x) = (F−1)c(x) and note that B is a
Browder map with the local intersection property. To show that B has the
local intersection property, pick x ∈ X such that B(x) 6= ∅. Then there exists
y ∈ X such that y /∈ F−1(x). Since x /∈ F (y), there exists U(x) containing x
and y∗ ∈ X such that x′ /∈ F (y∗), i.e., y∗ ∈ B(x′), for all x′ ∈ U(x). Therefore,
B has the local intersection property. Furthermore, B satisfies CIP. Hence
there exists x ∈ X such that (F−1)c(x) = B(x) = ∅ and it follows that
F−1(x) = X implying that x ∈

∩
y∈X F (y). □

Remark 3.3. As mentioned in the proof, Theorem B.3 is a special case of
Theorem 1 in Ansari and Yao [2] and also Theorem 8 in Balaj and Muresan
[4]. Theorem B.2 is a special case of Theorem 3 in McLean [43]. Theorem
B.1 is new. Tian [65, Theorem 2] obtains the conclusion of Theorem B.1 for
transfer closed KKM maps using an assumption different from CIP. □
Corollary 3.4. Let X be a non-empty, convex subset of a Hausdorff topolog-
ical vector space. Then the following are true and equivalent:

1. Suppose that F : X ↠ X is a (strong) KKM map. If F is trans-
fer closed valued and if clF (y0) is compact for some y0 ∈ X, then∩

x∈X F (x) 6= ∅.
2. Suppose that R ⊆ X × X is a (strong) KF relation. If R is transfer

semi-continuous and if cl[R−1(y0)] is compact for some y0 ∈ X, then
R(x̄) = X for some x̄ ∈ X.

3. Suppose that B : X ↠ X is a (strong) Browder map. If B has has the
local intersection property and if cl[X\B−1(y0)] is compact for some
y0 ∈ X, then B(x) = ∅ for some x ∈ X.

Proof of Corollary 3.4. The equivalence of the three results follows from the
same arguments as those of Theorem B. To show that each claim is true, it
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suffices to show that the hypotheses of Corollary 3.4.1 imply those of Theorem
B.1. To see this, suppose that clF (x0) is compact for some x0 ∈ X and define
K = clF (x0) and M = {x0}. For each x ∈ X\K, it follows that U(x) = X\K
is open. Therefore,

x′ ∈ U(x) ⇒ x′ ∈ X\K ⇒ x′ ∈ X\clF (x0) ⇒ x′ /∈ F (x0) ⇒ x0 /∈ F−1(x′) · · ·
· · · ⇒ x0 ∈ X\F−1(x′).

It follows that  ∩
x′∈U(x)

(F−1)c(x′)

 ∩M = {x0}

implying that x 7→ (F−1)c(x) satisfies CIP. □

Remark 3.5. Corollary 3.4.1 is a special case of Theorem 2.1 in Ansari, Lin,
and Yao [1]. Corollary 3.4.2 is a special case of Theorem 3 in McLean [43]
while Corollary 3.4.3 is new.

3.3. The Hausdorff case: Further strengthening and weakening. In
this section, we present a result in which the continuity assumption of Theorem
B is stregthened but the compact intersection property is weakened. We begin
by defining a condition weaker than the compact intersection property that is
also useful in a number of fixed point and maximal element existence results;
see for example Deguire, Tan, and Yuan [14], Lin and Ansari [39, 40].

Definition 3.6. Let X be a non-empty and convex subset of a topological
vector space. A correspondence G : X ↠ X is satisfies the weak compact
intersection property (WCIP) if the following holds: there exist non-empty
and compact sets K,M ⊆ X, where M is convex, such that G(x) ∩M 6= ∅
for each x ∈ X\K.

Remark 3.7. A correspondence G : X ↠ X satisfies WCIP if G satisfies CIP
but the converse is false. To see this, let X = [0, 1[ and define G : X ↠ X as
G(x) = {x

2
}. Let M = [0, 1

2
] and K = {0}. Then K and M are non-empty and

compact withM convex such that G(x)∩M 6= ∅ for each x ∈ X\K. However,
G does not satisfy CIP. Suppose that K ⊆ [0, 1[ is compact and nonempty.
Then x∗ = max{x : x ∈ K} < 1. Choose x∗ < x < 1. Then x ∈ X\K and if
U(x) is an open set containing x, it follows that

∩
x′∈U(x)

G(x′) = ∅.

Theorem C. Let X be a non-empty, convex subset of a Hausdorff topological
vector space. Then the following are true and equivalent:

1. Suppose that F : X ↠ X is a (strong) KKM map. If F has closed
values and if x 7→ (F−1)c(x) satisfies WCIP, then

∩
x∈X F (x) 6= ∅.
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2. Suppose that R ⊆ X × X is a (strong) KF relation. If R has closed
lower sections and and if x 7→ Rc(x) satisfies WCIP, then R(x̄) = X
for some x̄ ∈ X.

3. Suppose that B : X ↠ X is a (strong) Browder map. If B has open
lower sections and and if B satisfies WCIP, then B(x) = ∅ for some
x ∈ X.

Remark 3.8. Theorem C.1, Theorem C.2 and Theorem C.3 are, respectively,
special cases of Theorem 3.2, 3.1 and 2.1 in Lin and Ansari [40]. The equiv-
alence of Theorems C.1 and C.2 can also be deduced as a special case of the
more general equivalence result stated as Remark 3.2 in Lin and Ansari. Us-
ing the argument in Lin and Ansari [40], one can use Theorem C.3 to prove
Theorem C.2. Theorem C completes the circular tour by showing that the gen-
eralization of Browder’s theorem given by Theorem C.3 is actually equivalent
to Theorems C.1 and C.3.

Corollary 3.9. Let X be a non-empty, convex subset of a Hausdorff topolog-
ical vector space. Then the following are true and equivalent:

1. Suppose that F : X ↠ X is a (strong) KKM map. If F has closed
values and if F (y0) is compact for some y0 ∈ X, then

∩
x∈X F (x) 6= ∅.

2. Suppose that R ⊆ X×X is a (strong) KF relation. If R has closed lower
sections and if R−1(y0) is compact for some y0 ∈ X, then R(x̄) = X
for some x̄ ∈ X.

3. Suppose that B : X ↠ X is a (strong) Browder map. If B has open
lower sections and if X\B−1(y0) is compact for some y0 ∈ X, then
B(x) = ∅ for some x ∈ X.

Remark 3.10. If X is compact, then the equivalence of Theorems 1.1, 1.2
and 1.3 discussed in the introduction is an obvious consequence of Corollary
3.9. Corollary 3.9.2 is a generalization of Theorem 4′ in Gwinner [22].

Corollary 3.11. Let X be a non-empty, convex subset of a topological vector
space. Then the following are true and equivalent:

1. Suppose that F : X ↠ X is a (strong) KKM map. If F has closed
graph and if F (y0) is compact for some y0 ∈ X, then

∩
x∈X F (x) 6= ∅.

2. Suppose that R ⊆ X ×X is a (strong) KF relation. If R is closed and
if R−1(y0) is compact for some y0 ∈ X, then R(x̄) = X for some x̄ ∈ X.

3. Suppose that B : X ↠ X is a (strong) Browder map. If B has open
graph and if X\B−1(y0) is compact for some y0 ∈ X, then B(x) = ∅
for some x ∈ X.
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Remark 3.12. Under the additional assumption that X is compact, the
strong version of Corollary 3.11.3 appears in Borglin and Keiding [8] who re-
fer to a strong Browder map with open graph as a “KF correspondence.” See
also Gale and Mas-Colell [21], Shafer and Sonnenschein [59] and Bergstrom,
Parks, and Rader [6] for applications of open graph property in mathematical
economics.

The main results of this section, Theorems A, B and C, are summarized in
the table below and illustrate the trade-off between ”continuity”, compactness
and the topological structure of the parent TVS containing X.

If X is a subset of a locally convex Hausdorff TVS, then the assumptions
of Theorem A are

Result KF map KF relation Browder map domain X

Thm A securely closed correspondence secure continuous inclusion compact

If X is a subset of a Hausdorff TVS, then the assumptions of Theorem B
and C and their relationships are

Result KF map KF relation Browder map domain X

Thm B transfer closed transfer semicontinuous local intersection property CIP

⇑ ⇑ ⇑ ⇓
Thm C closed valued closed lower sections open lower sections WCIP

If X is a subset of a locally, convex Hausdorff TVS, then a complete picture
of the assumptions of Theorem A, B and C, and their relationships is

Result KF map KF relation Browder map domain X

Thm A securely closed correspondence secure continuous inclusion compact

⇑ ⇑ ⇑ ⇓
Thm B transfer closed transfer semicontinuous local intersection property CIP

⇑ ⇑ ⇑ ⇓
Thm C closed valued closed lower sections open lower sections WCIP

4. Additional results

In this section we present three results based on the KKM lemma and
provide additional circular tours.

4.1. Komiya’s coincidence theorem. Intersection theorems of FKKM type
deal with self maps. If X and Y are different sets and if F : X ↠ Y is
a correspondence, then it is of interest to know when ∩x∈XF (x) is a non-
empty subset of Y . Komiya [32] proves the following coincidence theorem
that generalizes Browder’s theorem.
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Theorem 4.1. (Komiya, 1986) Suppose that X is a non-empty, convex subset
of a Hausdorff topological vector space and suppose that Y is a non-empty,
convex, compact subset of a Hausdorff topological vector space. Let A : X ↠ Y
be a non-empty valued, closed valued, convex valued upper hemicontinuous
correspondence and let B : Y ↠ X be a non-empty valued, convex valued
correspondence with open lower sections. Then there exists a y ∈ Y such that
B(y) ∩ A−1(y) 6= ∅.

In this section, we will apply Komiya’s coincidence theorem to prove a
result of FKKM type for a correspondence F : X ↠ Y. In fact, we prove an
equivalence theorem that generalizes several results of Section 3 above.

Definition 4.2. Suppose that X is a non-empty subset of a vector space
and Y is a non-empty set. Suppose that A : X ↠ Y and F : X ↠ Y are
correspondences. Then F is a KKM map with respect to A if

A−1(y) ∩ co{x1, .., xn} 6= ∅ implies y ∈
n∪

i=1

F (xi)

for every y ∈ Y and for every finite set {x1, . . . , xn} ⊆ X.

Remark 4.3. If X = Y and A(x) = {x}, then F : X ↠ X is a KKM map
with respect to A if and only if F is a KKM map in the sense of Definition
2.11. Similar definitions of KF relation with respect to A and Browder map
with respect to A are straightforward.

The following result provides a characterization of a KKM map with respect
to a correspondence; we provide its proof for the convenience of the reader.

Lemma 4.4. Suppose that X is a non-empty subset of a vector space and
Y is a non-empty set. Suppose that A : X ↠ Y and F : X ↠ Y are
correspondences. Then the following are equivalent:

1. F is a KKM map with respect to A
2. co(F−1)c(y) ∩ A−1(y) = ∅ for all y ∈ Y

Proof of Lemma 4.4. There exists y ∈ Y such that co(F−1)c(y)∩A−1(ȳ) 6= ∅
iff there exists y ∈ Y and x ∈ A−1(y) and a finite set {x1, . . . , xn} ⊆ X such
that x ∈ co{x1, .., xn} and y /∈ ∪n

i=1F (xi). □
We next reformulate Komiya’s theorem in a manner analogous to the refor-

mulation of Browder’s theorem presented as Theorem 1.3.

Theorem 4.5. Suppose that X is a non-empty, convex subset of a Hausdorff
topological vector space and suppose that Y is a non-empty, convex, compact
subset of a Hausdorff topological vector space. Let A : X ↠ Y be a non-empty
valued, closed valued, convex valued upper hemicontinuous correspondence and
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let G : Y ↠ X be a correspondence with open lower sections. If coG(y) ∩
A−1(y) = ∅ for each y ∈ Y, then there exists a y ∈ Y such that G(y) = ∅.

Remark 4.6. Theorems 4.1 and 4.5 are equivalent. To see that Theorem
4.1 implies Theorem 4.5, suppose that X,Y,A and G satisfy the assumptions
of Theorem 5 but G(y) 6= ∅ for each y ∈ Y . Define a correspondence B :
Y ↠ X as B(y) = coG(y) and note that B(y) 6= ∅ for each y ∈ Y . Applying
Lemma 5.1 in [71], it follows that B is convex valued with open lower sections.
Applying Theorem 4.1, there exists a y ∈ Y such that B(y)∩A−1(y) 6= ∅, an
impossibility.

To see that Theorem 4.5 implies Theorem 4.1, suppose that X,Y,A and
B satisfy the assumptions of Theorem 4 but B(y) ∩ A−1(y) = ∅ for each
y ∈ Y . Defining G(y) = coB(y) = B(y), it follows that X,Y,A and G satisfy
the assumptions of Theorem 5. Consequently, there exists a y ∈ Y such that
B(y) = G(y) = ∅, an impossibility.

The next result provides a new result of FKKM type and new result for
relations that are equivalent to Komiya’s coincidence theorem.

Theorem D. Suppose that X is a non-empty, convex subset of a Hausdorff
topological vector space and suppose that Y is a non-empty, convex, compact
subset of a Hausdorff topological vector space and let A : X ↠ Y be a non-
empty valued, closed valued, convex valued upper hemicontinuous correspon-
dence. Then the following are true and equivalent.

1. Let F : X ↠ Y be correspondence with closed values. If F is a KKM
map with respect to A, i.e., co(F−1)c(y) ∩ A−1(y) = ∅ for all y ∈ Y,
then there exists a y ∈ Y such that y ∈ ∩x∈XF (x), i.e., ∩x∈XF (x) 6= ∅.

2. If R ⊆ Y ×X is a relation with closed lower sections such that coRc(y)∩
A−1(y) = ∅ for all y ∈ Y, then there exists a y ∈ Y such that (y, x) ∈ R
for each x ∈ X.

3. If B : Y ↠ X is a convex valued correspondence with open lower
sections such that B(y)∩A−1(y) = ∅ for each y ∈ Y, then there exists
a y ∈ X such that B(y) = ∅

Proof of Theorem D. Theorem D.3 is exactly Komiya’s coincidence theorem
so we need only show that the three statements are equivalent.

(1 ⇒ 2) Let R ⊆ Y × X be a relation with closed lower sections such that
Rc(y) ∩ A−1(y) = ∅ for all y ∈ Y . Define a correspondence F : X ↠
Y as F (x) = R−1(x) and note that F has closed values. Next, note that
(F−1)c(y) = X\F−1(y) = X\R(y) = Rc(y) implying that F is a KKM map
and that (F−1)c(y) ∩ A−1(y) = Rc(y) ∩ A−1(y) = ∅ for all y ∈ Y. Therefore,
there exists a y ∈ Y such that y ∈ ∩x∈XF (x), i.e., y ∈ ∩x∈XR

−1(x) implying
that y ∈ Y and R(y) = X.
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(2 ⇒ 3) Let B : Y ↠ X be a convex valued correspondence with open
lower sections such that B(y) ∩ A−1(y) = ∅ for each y ∈ Y . Defining
R = (Y × X)\(grB) = {(y, x) ∈ Y × X|x /∈ B(y)}, it follows that R is a
relation with closed lower sections. Furthermore, Rc(y) = B(y) and B(y)
convex imply that that coRc(y) ∩ A−1(y) = B(y) ∩ A−1(y) = ∅ for all y ∈ Y.
Then there exists a y ∈ Y such that R(y) = X. That is, B(y) = Rc(y) = ∅.

(3 ⇒ 1) Let F : X ↠ Y be a correspondence with closed values such that
co(F−1)c(y) ∩ A−1(y) = ∅ for all y ∈ Y. Define a correspondence G : Y ↠ X
as G(y) = (F−1)c(y) and note that G has open lower sections since F is
closed valued. Defining B(y) = coG(y) = co[(F−1)c(y)] and applying Lemma
5.1 in [71], it follows that the correspondence B : Y ↠ X has open lower
sections. Since B(y) ∩ A−1(y) = ∅ for each y ∈ Y, it follows that B(y) =
co[(F−1)c(y)] = ∅ for some y ∈ Y implying that (F−1)c(y) = ∅. Therefore
F−1(y) = X implying that y ∈ ∩x∈XF (x). □

4.2. Fan’s further generalization of the KKM lemma. We next provide
an equivalence result based on a further generalization of the classic KKM
lemma he proved in Fan [18].

Theorem 4.7. (Fan, 1984) Let Z be a non-empty, convex subset of a Haus-
dorff topological vector space and X a subset of Z. Suppose that (i) X0 is a
non-empty subset of X and (ii) X0 ⊆ K ⊆ Z where K is a compact, convex
subset of Z. Suppose that

(a) F : X ↠ Z is closed valued, i.e., F (x) is closed in Z for each x ∈ X
(b) co{x1, .., xm} ⊆ ∪iF (xi) whenever {x1, .., xm} ⊆ X.
(c)

∩
x∈X0

F (x) is compact.

Then there exists an x ∈ Z such that x ∈
∩

x∈X F (x).

Remark 4.8. Letting X = Z and X0 = K = {x0} we recover the classic
FKKM Theorem in Fan [17].

We can now prove the following equivalence result where Theorem E.1 is
exactly Fan’s theorem. Theorems E.2 and E.3 are new.

Theorem E. Let Z be a non-empty, convex subset of a Hausdorff topological
vector space and X a subset of Z. Suppose that (i) X0 is a non-empty subset
of X and (ii) X0 ⊆ K ⊆ Z where K is a non-empty compact, convex subset
of Z. Then the following are true and equivalent:

1. If
(a) F : X ↠ Z is closed valued, i.e., F (x) is closed in Z for each

x ∈ X
(b) co{x1, .., xm} ⊆ ∪iF (xi) whenever {x1, .., xm} ⊆ X.
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(c)
∩

x∈X0
F (x) is compact.

Then there exists an x ∈ Z such that x ∈
∩

x∈X F (x).

2. If
(a) R ⊆ Z ×X is a relation with closed lower sections, i.e., for each

y ∈ X, R−1(y) = {x ∈ Z|(x, y) ∈ R} is closed in Z.
(b) co{x1, .., xm} ⊆ ∪iR

−1(xi) whenever {x1, .., xm} ⊆ X.
(c)

∩
x∈X0

R−1(x) is compact.
Then there exists an x ∈ Z such that (x, y) ∈ R for all y ∈ X.

3. If
(a) B : Z ↠ X has open lower sections, i.e., B−1(y) is open in Z for

each y ∈ X.
(b) co{x1, .., xm} ⊆ ∪i(B

−1)c(xi) whenever {x1, .., xm} ⊆ X.
(c)

∩
x∈X0

[Z\B−1(x)] =
∩

x∈X0
[(B−1)c(x)] is compact.

Then there exists x ∈ Z such that B(x) = ∅.

Proof of Theorem E. In light of Theorem 4.7 , we need only prove the equiv-
alences.

(1 ⇒ 2) Suppose that a, b and c of E.1 are satisfied. Define F : X ↠ Z as
F (y) = R−1(y) for each y ∈ Z. Then F (x) is closed in Z for each x ∈ X and
co{x1, .., xm} ⊆ ∪iF (y) whenever {x1, .., xm} ⊆ X. Since F (y) = R−1(y), it
follows that

∩
x∈X0

F (x) is compact and we conclude from Part 1 that there
exists an x ∈ Z such that x ∈

∩
y∈X F (y), i.e., there exists an x ∈ Z such that

x ∈ R−1(y) for each y ∈ X.

(2 ⇒ 3) Suppose that a, b and c of E.3 are satisfied. Define R ⊆ Z × X as
R = [Z ×X]\grB. If y ∈ X, then

R−1(y) = {x ∈ Z|(x, y) ∈ R} = {x ∈ Z|(x, y) /∈ grB} = Z\B−1(y)

is closed in Z and co{x1, .., xm} ⊆ ∪iR
−1(yi) whenever {x1, .., xm} ⊆ X.

Since R−1(y) = Z\B−1(y) for y ∈ X, it follows that
∩

x∈X0
R−1(x) =∩

x∈X0
[Z\B−1(x)] is compact. Therefore, there exists x ∈ Z such that

(x, y) /∈ grB for all y ∈ X, i.e., there exists x ∈ Z such that y /∈ B(x)
for all y ∈ X, i.e., there exists x ∈ Z such that B(x) = ∅.

(3 ⇒ 1) Suppose that a, b and c of E.1 are satisfied. Define B : Z ↠ X as
B(x) = X\F−1(x) = (F−1)c(x) for each x ∈ Z. If y ∈ X, then

B−1(y) = {x ∈ Z|y /∈ F−1(x)} = {x ∈ Z|x /∈ F (y)} = Z\F (y) = F c(y)

implying that F (y) is closed in Z for each y ∈ X . Since F (x) = (B−1)c(x)
for each x ∈ X, it follows that co{x1, .., xm} ⊆ ∪i(B

−1)c(xi) whenever
{x1, .., xm} ⊆ X. Since F (x) = (B−1)c(x) for each x ∈ X, it follows that∩

x∈X0
[(B−1)c(x)] =

∩
x∈X0

F (x) is compact implying that there exists x ∈ Z
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such that B(x) = ∅, i.e., there exists x ∈ Z such that X\F−1(x) = ∅, i.e.,
there exists x ∈ Z such that F−1(x) = X. □
4.3. Peleg’s generalization of KKM lemma. In this section, we apply
the arguments developed in our previous equivalence results to a trio of ”col-
lective” equilibrium problems. These problems are motivated by Peleg’s [54]
generalization of the classic finite dimensional KKM lemma and its infinite
dimensional extension due to Lassonde and Schenkel [37].

For the remainder of this section, let I = {1, ..., n}. For each i ∈ I, let
Xi be a a non-empty, convex , compact subset of a Hausdorff topological
vector space and let X = X1 × · · · × Xn. If i ∈ I and Si ⊆ Xi, we define
(X−i, Si) = X1×· · ·×Xi−1×Si×Xi+1×· · ·×Xn. As a corollary of Theorem 5 in
Lassonde and Schenkel [37], we have the following “collective” generalization
of Browder’s fixed point theorem10.

Theorem 4.9. For each i ∈ I, suppose that Bi : X ↠ Xi is a correspondence
satisfying:

1. Bi(x) is convex for all x ∈ X.
2. The set {x ∈ X|yi ∈ B(x)} is open in X for each yi ∈ Xi.

Furthermore, suppose that for each x ∈ X, there exists i ∈ I such that Bi(x) 6=
∅. Then there exists x̄ ∈ X and j ∈ I such that xj ∈ Bj(x̄).

We next pose three propositions each of which provides a collective gener-
alization of the corresponding Theorems 1.1 , 1.2 and 1.3 above.

Proposition 4.10. For each i ∈ I, suppose that Fi : Xi ↠ X is a correspon-
dence satisfying:

1. (X−i, coAi) ⊆ ∪xi∈Ai
Fi(xi) for every finite subset Ai ⊆ Xi.

2. Fi(xi) is closed in X for all xi ∈ Xi.

Then
n∩

i=1

[ ∩
yi∈Xi

Fi(yi)

]
6= ∅.

That is, there exists (x1, .., xn) ∈ X such that (x1, .., xn) ∈
∩

yi∈Xi

Fi(yi) for each

i ∈ I.

Proposition 4.11. For each i ∈ I, suppose that Ri ⊆ X ×Xi. is a relation
satisfying:

1. For each x ∈ X, (x, xi) ∈ Ri.
2. The set {yi ∈ Xi : (x, yi) /∈ Ri} is convex for each x ∈ X.

10Lassonde and Schenkel [37] prove this result in the more general framework of abstract convex

spaces. Every Hausdorff TVS is a convex space in their sense. See also, Marchi and Mart́ınez-Legaz

[42].
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3. The set R−1
i (yi) = {x ∈ X|(x, yi) ∈ Ri} is closed in X for each yi ∈ Xi.

Then there exists (x1, .., xn) ∈ X such that (x1, .., xn, yi) ∈ Ri for each i ∈ I
and for each yi ∈ Xi.

Proposition 4.12. For each i ∈ I, suppose that Bi : X ↠ Xi is a correspon-
dence satisfying:

1. xi /∈ Bi(x) for all x ∈ X.
2. Bi(x) is convex for all x ∈ X.
3. The set B−1(yi) = {x ∈ X|yi ∈ B(x)} is open in X for each yi ∈ Xi.

Then there exists x̄ ∈ X such that Bi(x̄) = ∅ for each i ∈ I.

Remark 4.13. Proposition 4.10 is an infinite dimensional extension of the
collective KKM Lemma in Peleg [54] and may be deduced as a corollary of
Theorem 1 in Lassonde and Schenkel [37]. Proposition 4.12 is a collective
maximal element result that is equivalent to Theorem 4.9 and we omit the
simple argument. Proposition 4.11 is a corollary of Theorem 3.1 in Lin and
Ansari [30]. Indeed, an alternative proof of the equivalence of Propositions
4.10 and 4.11 may be deduced from Theorems 3.1 and 3.2 in that paper.

Theorem F. Propositions 4.10, 4.11 and 4.12 are true and equivalent.

Proof of Theorem F. Each Proposition is true by Remark 4.13 so it only re-
mains to verify the equivalences.

(1 ⇒ 2) Suppose that for each i ∈ I, Ri ⊆ X ×Xi is a relation satisfying the
assumptions of Proposition 2. Then for each i, the correspondence Fi : Xi ↠
X defined as Fi(yi) = R−1

i (yi) for each yi ∈ Xi is closed valued. To show
that assumption 1 of Proposition 1 is satisfied, we argue by contradiction. Fix
i ∈ I and suppose that there exists a finite subset Ai ⊆ Xi and (z1, .., zn) ∈
(X−i, coAi) such that (z1, .., zn) /∈ ∪xi∈Ai

Fi(xi). Then zi ∈ coAi but xi ∈
Xi\F−1(z1, .., zn) for each xi ∈ Ai. Therefore, xi ∈ Rc

i (z1, .., zn) for each xi ∈
Ai. Since assumption 2 of Proposition 2 implies that Rc

i (z1, .., zn) is convex,
it follows that zi ∈ Rc

i (z1, .., zn), contradicting assumption 1 of Proposition 2.
Applying Proposition 1, it follows that there exists (x1, .., xn) ∈ X such that
(x1, .., xn) ∈

∩
yi∈Xi

Fi(yi) for each i ∈ I. That is, (x1, .., xn, yi) ∈ Ri for each

i ∈ I and for each yi ∈ Xi.

(2 ⇒ 3) Suppose that for each i ∈ I, Bi : X ↠ Xi is a correspondence
satisfying the assumptions of Proposition 3. Let Ri ⊆ X ×Xi be the relation
defined as Ri = (X × Xi)\(grB) = {(x, yi) ∈ X × Xi|yi /∈ B(x)}. Since Bi

has open lower sections and R−1
i (yi) = (B−1

i )c(yi) for each yi ∈ Xi, it follows
R−1

i (yi) is closed in X for each yi ∈ Xi. Furthermore, xi /∈ Bi(x) implies
that (x, xi) ∈ Ri and Bi(x) convex implies that Bi(x) = Rc

i (x) = {yi ∈ Xi :
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(x, yi) /∈ Ri} is convex for each x ∈ X. Applying Proposition 2, it follows that
there exists (x1, .., xn) ∈ X such that (x1, .., xn, yi) ∈ Ri for each i ∈ I and for
each yi ∈ Xi. That is, (x1, .., xn, yi) /∈ grBi for each i ∈ I and for each yi ∈ Xi

implying that Bi(x̄) = ∅ for each i ∈ I.

(3 ⇒ 1) Suppose that for each i ∈ I, Fi : Xi ↠ X is a correspondence satisfy-
ing the assumptions of Proposition 1. Define for each i ∈ I a correspondence
Gi : X ↠ Xi as Gi(x) = (F−1

i )c(x) for each x ∈ X. Since G−1
i (yi) = F c

i (yi), it
follows thatG−1(yi) is open inX for each yi ∈ Xi. Applying Lemma 5.1 in [71],
it follows that the correspondence Bi : X ↠ Xi defined as Bi(x) = coGi(x)
is convex valued with open lower sections. Using the same argument as that
of Lemma 2.12, assumption 1 of Proposition 1 implies that xi /∈ Bi(x) for all
x ∈ X. Applying Proposition 3, we conclude that there exists x̄ ∈ X such that
Bi(x̄) = ∅ for each i ∈ I. That is, there exists x̄ ∈ X such that F−1

i (x̄) = Xi

for each i ∈ I impling that (x1, .., xn) ∈
∩

yi∈Xi

Fi(yi) for each i ∈ I. □

5. An epistemological excursion

Gwinner [22] presents a circular tour of “fixed points and variational in-
equalities,” and writes:

The main object of this paper is to display relations and connections be-

tween some of the most fundamental results of modern nonlinear analysis:

the existence theorem for pseudomonotone variational inequalities, Fan’s

minimax principle and its extension, the basic fixed point theorems for

multivalued mappings, and the Gale-Nikaido-Debreu theorem in mathe-

matical economics. Our tour starts in a now traditional way, but also

ends with the classical Knaster-Kuratowski-Mazurkiewicz Theorem; thus

all these results, which are the single-numbered theorems in this paper, are

in some wide sense equivalent.

Given the expositional and referential motivation of this work, at least in part,
we delve a little deeper into what Gwinner’s phrase “in some wide sense” could
possibly connote.11

Consider a model or mathematical object symbolically expressed as G(x, g)
with g indicating the parameters, the given datum, and x the variables that
are to be explained. A result or a solution can then be expressed as x = φ(g),
and yet another as x = ψ(g), and so a straightforward meaning of an equiva-
lence theorem pertaining to the object G is simply to say that under certain
assumptions, say g ∈ A, φ(g) = ψ(g). Indeed, we have an equivalence theorem

11This section could be viewed as a formalization, as well as a sociological excursion into mathe-

matical economics, of the ideas informally expressed at the beginning of Section 3 above to introduce

the results presented there and in the section subsequent to it.
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which is to say that we have an if-then statement. Aumann’s equivalence the-
orem of 1964 is a canonical example in mathematical economics.12 However,
one has to be careful even here in that the equivalence better pertain to the
equivalence of like-objects or conditions. Dugundji presents an equivalence
theorem that asserts the equivalence of Zermelo’s theorem, Zorn’s lemma and
the axiom of choice.13

Furthermore, the difference between an equivalence theorem and an equiv-
alence of theorems bears emphasis. The second goes beyond an if-then
statement to come quite close to the words applied and application. When
one says that Theorems A and B are equivalent, one can also be seen as
saying each theorem, as an if-then statement, can be proved as a conse-
quence of the other, again as an if-then statement. This can be expressed
as H(B) ⇒ H(A) ⇒ C(A) ⇒ C(B), and H(A) ⇒ H(B) ⇒ C(B) ⇒ C(A),
where H is an operator signifying a hypothesis, and C signifying a conclusion.
A single one of these two directions could be referred to either as an applica-
tion, or as a corollary, in the context of using one as the proof of the other.14

It is precisely in this way that Borgerson (2004) presents the “equivalence of
seven major theorems in combinatorics.” However there is some dissonance
here stemming from the results being used to execute the direction.15 If these
results are not elementary, then it is far from clear as to whose application or
whose corollary the conclusions are. Or to argue from the other side, suppose
one were not to appeal to Theorem A, but simply give a detailed ab initio
argument for the proof of Theorem B that reproduces in full detail the proof
of Theorem A, an alternative proof with no new ideas but also with no ref-
erence to Theorem A. The question then reduces to whether one can regard
Theorem A as a corollary of Theorem B by virtue of only the statements of
the two theorems.

12See Aumann [3] that establishes the equivalence of core and competitive allocations of a

measure-theoretic economy under the particular assumption that the measure is atomless. In this

paper of [11], there are three equivalence theorems. But it calls the theorems involved “claims.”

A more recent example is [16] that establishes under certain parametric assumptions on a game,

the equivalence of a Nash, Berk-Nash, self-confirming, ABEE (analogy-based expectational equi-

librium) equilibria.
13See Dugundji [15, p. 30]. Also see Jech [25, p. 10] statement; and Jech [26].
14The word “corollary” has a complicated time line as far as English usage is concerned, with the

OED listing four specific meanings further sub-classified into sub-items. Even in the mathematical

register, one can ask whether a statement can be legitimately looked on as a corollary of another

when the latter has been generalized by using its proof.
15The reader might want to keep the alleged equivalence of the Brouwer and Kakutani fixed

point theorems as a way of concretizing the abstract statements to follow. To be sure, the theorems

are equivalent in the sense that one can be proved from the other, but how useful is this? One

direction is trivial, and the other requires us to know about barycentric subdivisions and retractions

rather than their formalization as an additional theorem.
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We now conclude this section by some observations of special interest for
mathematical economics. The preoccupation with the word equivalence origi-
nates there as a defensive move in response to Marshall and Keynes: a sugges-
tion of the former to use mathematics in economics as a back-of-the-envelope
verification of economic insights, to be burnt once the insights have been
had;16 and comments of the latter that the theorems of the applied subject
are really straightforward, if not trivial, exercises and applications of results
in pure mathematics. In regard to the issue of the existence of competitive
equilibrium, it then becomes a matter of some substantive and sociological
consequence to workers in the field to show that the truth-value, colloquially
put, of the theorem be of the same order as that of a fixed point theorem,
and especially given the acknowledgement and appreciation of the fact that
the Brouwer fixed point theorem is a theorem of some considerable depth
in mathematics. This was formally established by Uzawa [68]. In his book,
Majumdar [41] goes into the matter in some detail. He writes:

We shall now prove the striking result of Uzawa [68] that links the Gale-

Nikaido-Debreu lemma to the fixed point theorem of Brouwer. Assume the

Gale-Nikaido-Debreu lemma. We wish to prove that any upper semicon-

tinuous convex-valued correspondence from the interior of the simplex to

itself has a fixed point.17

What is to be noted is Majumdar’s studied avoidance of the word equivalence
in preference to the word links so as to give a rigorous rendering to the assertion
that “The existence of competitive equilibrium is “equivalent” to the fixed
theorem, and therefore shows the two results to have equal mathematical
depth.” Perhaps one can follow Lassonde and Schenkel [37] who put the matter
by referring to interconnections, a word that can be read as a metanomic
stand-in for equivalences that has been so far our focus.18

6. Concluding remarks

The theorems that constitute our equivalence results have deep connections
to Ky Fan’s minimax inequality, variational inequalities, variational inclusions
and many other related equilibrium problems. A comprehensive bibliography
is beyond the scope of this paper but, in addition to the references cited below,
we refer the reader to Tarafdar and Chowdhury [63] and the many references

16See Khan [27] for reaction and references.
17See pages 8 and 52. Majumdar credits [45] for the argument. Note also that Majumdar’s

theorem 2.3 is is labelled Uzawa’s theorem and it asserts that “the Gale-Nikaido-Debreu lemma

implies Brouwer’s theorem.” In this connection, also see [38].
18They authors write “The role of the topological assumptions in these results is emphasized.

In particular, it is shown that the assumption of openness or closedness can be used indifferently.

This observation definitely clarifies the interconnections between the KKM principle, the fixed

point theorems, and the theorems on the existence of Nash equilibria.”
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therein. Our equivalence results could all be re-worked in the framework of
abstract convex spaces studied in the very first paper Komiya wrote [31]. We
will not pursue these generalizations here but refer the reader to the surveys
in Park [47, 48, 49, 50, 51] and their references.
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