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ABSTRACT. In this paper, we first discuss nonlinear analytic methods for study-
ing linear contractive mappings in Banach spaces. Using these results, we obtain
strong convergence theorems for commutative two linear contractive operators in
Banach spaces. In theorems, the limit points are characterized by sunny gener-
alized nonexpansive retractions in Banach spaces.

1. INTRODUCTION

Let E be a real Banach space and let C' be a nonempty closed convex subset
of E. For a mapping T : C' — C, we denoted by F(T) the set of fixed points of
T. A mapping T : C — C'is called nonexpansive if |Tz — Ty|| < ||z — y]|| for all
x,y € C. In particular, a nonexpansive mapping T : ¥ — F is called contractive
if it is linear, that is, a linear contactive mapping 7' : £ — FE is a linear operator
satisfying ||T'|| < 1. In 1932, von Neumann [37] proved the first mean convergence
theorem for linear operators in a Hilbert space.

Theorem 1.1 ([37]). Let T be a unitary operator in a Hilbert space H. Then, for
any x € H, the sequence

1n—1
Spr = EkZ_OTkac

converges strongly to a point in H.

This theorem, in 1938, was extended to the following mean ergodic theorem for
linear bounded operators by Yosida [39].

Theorem 1.2 ([39]). Let E be a real Banach space and let T be a linear operator
of E into itself such that there exists a constant C' with | T"| < C for n € N, and
T is weakly completely continuous, i.e., T maps the closed unit ball of E into a
weakly compact subset of E. Then, for each © € E, the Cesaro means Spx converge
strongly as n — oo to a fized point of T.
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See Day [7] and Kido and Takahashi [22] for mean convergence theorems of semi-
groups of linear operators in a Banach space.

On the other hand, we know the first mean convergence theorem for nonexpansive
mappings in a Hilbert space by Baillon [4].

Theorem 1.3 ([4]). Let C be a nonempty closed convexr subset of H and let T :
C — C be a nonexpansive mapping such that F(T) is nonempty. Then for any
zeC,

1 n—1
Spx = — F
nT - ZT T
k=0
converges weakly to an element z € F(T).

Such a theorem was extended to a noncommutative semigroup (called amenable)
of nonexpanive mappings in a Hilbert space by Takahashi [31]; see also [32]. Baillon’s
theorem for nonexpansive mappings has been extended to Banach spaces by many
authors; see, for example, [5, 6, 10, 11, 25].

From [34] we also know a weak convergence theorem by Mann'’s iteration [26] for
nonexpansive mappings in a Hilbert space: Let H be a Hilbert space, let C be a
nonempty closed convex subset of H and let T': C' — C be a nonexpansive mapping
with F(T) # (. Define a sequence {z,} in C by z; =z € C and

Tnt1 = nxp + (1 — ap)Tx,, VneN,

where {a,} is a real sequence in [0, 1] such that 07 | o, (1 — ) = 0o. Then, {x,}
converges weakly to an element z of F(T), where z = lim,_,o, Pz, and P is the
metric projection of H onto F(T'). By Reich [30], such a theorem was extended to
a uniformly convex Banach space with a Fréchet differentiable norm. However, we
have not known whether the limit point z is characterized under any projections in
a Banach space. Using nonlinear analytic methods obtained by [15, 18, 19], Taka-
hashi and Yao [35] solved such a problem for positively homogeneous nonexpansive
mappings in a Banach space.

In this paper, we first discuss nonlinear analytic methods for studying linear con-
tractive mappings in Banach spaces. Using these results, we obtain strong conver-
gence theorems for commutative two linear contractive operators in Banach spaces.
In theorems, the limit points are characterized by sunny generalized nonexpansive
retractions in Banach spaces.

2. PRELIMINARIES

Throughout this paper, we assume that a Banach space E with the dual space E*
is real. We denote by N and R the sets of all positive integers and all real numbers,
respectively. We also denote by (x,z*) the dual pair of x € E and z* € E*. A
Banach space E is said to be strictly convex if ||z + y| < 2 for z,y € E with
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lz]| <1, [|y|| <1and z #y. Let E be a Banach space and let

5(e) = inf {1 -

x+y'

2y € Bz = Iyl = 1, |z — yll = }

We call the function ¢ : [0,2] — [0, 1] the modulus of convexity. A Banach space
E is said to be uniformly convex if §(e¢) > 0 for every € > 0. A uniformly convex
Banach space is strictly convex and reflexive.

A Banach space F is said to be smooth provided

ety |
t—0 t

exists for each z,y € F with ||z|| = |ly|]| = 1. Let E be a Banach space. With each
x € E, we associate the set

J(@) ={a" € B*: (z,27) = |la]|* = |l="||*}-

The multivalued operator J : E — E* is called the normalized duality mapping of
E. From the Hahn-Banach theorem, Jx # ) for each z € E. We know that E is
smooth if and only if J is single-valued. If F is strictly convex, then J is one-to-one,
Le,x#£y= J(x)NJ(y) =0. If E is reflexive, then J is a mapping of FE onto E*.
So, if E is reflexive, strictly convex and smooth, then J is single-valued, one-to-one
and onto. In this case, the normalized duality mapping J. from E* into F is the
inverse of J, that is, J, = J~!; see [33] for more details.

Lemma 2.1 ([33]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then (x —y, Jx — Jy) > 0 for all x,y € E. Furthermore, if E is strictly
convex and (v —y,Jxr — Jy) =0, then x = y.

Let E be a smooth Banach space and let J be the normalized duality mapping
of E. We define the function ¢ : £ x E — R by

¢z, y) = |lz]* = 2(z, Jy) + [ly||*

for all z,y € E. It is easy to see that (||z| — ||ly[)? < o(z,y) < (||lz| + ||y||)? for
all z,y € E. Thus, in particular, ¢(z,y) > 0 for all z,y € E. We also know the
following:

(2.1) O(z,y) = o(x,2) + ¢(2,9) + 2w — 2, Jz = Jy)

for all x,y, 2z € E. Further, we have

(2.2) 2z =y, Jz = Jw) = ¢(x, w) + ¢(y, 2) — d(z, 2) — oy, w)

for all z,y,z,w € E. If F is additionally assumed to be strictly convex, then
(2.3) o(x,y) =0z =y.

The following lemma due to Kamimura and Takahashi [21] is well-known.
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Lemma 2.2 ([21]). Let E be a smooth and uniformly convex Banach space and
let {x} and {yn} be sequences in E such that either {x,} or {y,} is bounded. If

limy, 00 ¢(Zp, yn) = 0, then lim, o ||z, — yn|| = 0.

Let C' be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point x of E, the set

{zeC:¢(z,2) = Iyrgg oy, )}

is always a singleton. Let us define the mapping Il of E onto C' by z = Ilgx for
every ¢ € F, ie.,
gz, z) = min ,
$(llca,2) = min o(y. 2
for every x € E. Such ll¢ is called the generalized projection of £ onto C; see

Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi
[21].

Lemma 2.3 ([1, 21]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (z,z) € E x C. Then, the following
hold:

(a) z =1lez if and only if (y — z,Jx — Jz) <0 for all y € C;
(b) QS(ZaHCm) + ¢(HC$,I’) < ¢(Za$)'

Let D be a nonempty closed subset of a smooth Banach space E, let T be a
mapping from D into itself and let F(T") be the set of fixed points of T'. Then, T is
said to be generalized nonexpansive [16] if F'(T") is nonempty and ¢(Tz,u) < ¢(x, u)
for all x € D and u € F(T). Let C be a nonempty subset of F and let R be a
mapping from F onto C'. Then R is said to be a retraction, or a projection if Rr = z
for all € C. It is known that if a mapping P of F into E satisfies P? = P, then
P is a projection of F onto {Pz : x € E}. A mapping T : E — E with F(T) # 0
is a retraction if and only if F(T) = R(T), where R(T') is the range of T. The
mapping R is also said to be sunny if R(Rz +t(x — Rx)) = Rx whenever x € F and
t > 0. A nonempty subset C' of a smooth Banach space F is said to be a generalized
nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there
exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction) R from E onto C. The following lemmas were proved by Ibaraki and
Takahashi [16].

Lemma 2.4 ([16]). Let C be a nonempty closed sunny and generalized nonexpansive
retract of a smooth and strictly convexr Banach space E. Then, the sunny generalized
nonexrpansive retraction from E onto C is uniquely determined.
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Lemma 2.5 ([16]). Let C' be a nonempty closed subset of a smooth and strictly
conver Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C' and let (x,z) € E x C. Then, the following hold:

(a) z = Rx if and only if (x — z,Jy — Jz) <0 for ally € C;

(b) ¢(Rx,z) + ¢(z, Rx) < ¢(x, 2).

The following theorems were proved by Kohsaka and Takahashi [24].

Theorem 2.1 ([24]). Let E be a smooth, strictly convex and reflexive Banach space,
let C* be a monempty closed convex subset of E* and let llg~ be the generalized
projection of E* onto C*. Then the mapping R defined by R = J 'lg+J is a
sunny generalized nonexpansive retraction of E onto J 1C*.

Theorem 2.2 ([24]). Let E be a smooth, strictly convex and reflexive Banach space
and let D be a nonempty subset of E. Then, the following are equivalent.

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

Let E be a smooth, strictly convex and reflexive Banach space, let J be the
normalized duality mapping from E onto E* and let C' be a closed subset of E
such that JC is closed and convex. Then, we can define a unique sunny generalized
nonexpansive retraction Ro of F onto C' as follows:

Re = J 10,

where Il ;o is the generalized projection from E* onto JC.
Let C' be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E. For an arbitrary point x of F, the set

€C:|z—z| =mi -
{z I = =l = min [y — [}

is always nonempty and a singleton. Let us define the mapping Po of E onto C by
z = Pox for every x € F| i.e.,

Peox —z|| =min ||y — x
|Pew = ] = min |y

for every x € E. Such P is called the metric projection of E onto C'; see [33]. The
following lemma is in [33].

Lemma 2.6 ([33]). Let C be a nonempty closed convex subset of a smooth, strictly
convex and reflexive Banach space E and let (z,z) € E x C. Then, z = Pox if and
only if (y —z,J(x —2)) <0 forally € C.

Let E be a Banach space and let K be a closed convex cone of E. Then, T :
K — K is called a positively homogeneous mapping if T'(ax) = aTx for all a > 0
and z € K. Let M be a closed linear subspace of E. Then, S : M — M is called a
homogeneous mapping if T'(fz) = ST« for all 5 € R and x € M.
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Remark 2.1. In LP spaces, 1 < p < oo, we know examples of nonexpansive and
positively homogeneous mappings; see, for instance, Wittmann [38].

We know the following theorem from Takahashi, Yao and Honda [36].

Theorem 2.3 ([36]). Let E be a smooth Banach space and let K be a closed convex
cone of E. Then, a positively homogeneous mapping T : K — K is generalized
nonexpansive if and only if for any x € K and u € F(T),

ITx| < ||z|| and (x — Tz, Ju) < 0.

Furthermore, let M be a closed linear subspace of E. Then, a homogeneous mapping
S: M — M is generalized nonexpansive if and only if for any x € M and v € F(T),

|Sz| < ||z|| and (x — Sz, Jv) = 0.

We also know the follwing theorem from Takahashi and Yao [35]; see also Honda,
Takahashi and Yao [15].

Theorem 2.4 ([35]). Let E be a smooth Banach space and let K be a closed convex
conein E If T : K — K is a positively homogeneous nonexpansive mapping, then
T is generalized nonexpansive. In particular, if T : E — E is a linear contractive
mapping, then T is generalized nonexpansive.

From Theorems 2.4 and 2.3, we have the following corollary.

Corollary 2.1. Let E be a smooth Banach space and let K be a closed convex cone
of E. If a mapping T : K — K is positively homogeneous nonexpansive, then for
any x € K and uw € F(T),

ITz|| < ||z| and (x —Tx, Ju) < 0.

Furthermore, let M be a closed linear subspace of E. If a mapping S : M — M s
homogeneous nonexpansive, then for any x € M and v € F(T),

|Sz|| < ||z|| and (x — Sz, Jv) = 0.
From Takahashi, Yao and Honda [36], we know the following concept.

Definition 2.1 ([36]). Let E be a smooth Banch space, let x € E and let F' be a
nonempty subset of E. The set R(x; F') between x and F' is as follows:

R(x;F)={z€ E:(x—2zJu)=0 for allu € F and ||z|| < |z}
We have the following result from Takahashi, Yao and Honda [36].

Lemma 2.7 ([36]). Let E be a strictly convex and smooth Banch space, let © € E
and let F' be a nonempty subset of E. Then R(xz;F) is nonempty, closed, convex
and bounded, and F N R(x; F) consists of at most one point.
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3. STRONG CONVERGENCE THEOREMS

Let Y be a nonempty subset of a Banach space E and let Y* be a nonempty
subset of the dual space E*. Then, we can define the annihilator Y of Y* and the
annihilator Y of Y as follows:

Yi={zeFE:f(x)=0foral feY"}

and
Yt={feE :f(x)=0forallzcY}.
We know the following result from Megginson [29].
Lemma 3.1 ([29]). Let A be a nonempty subset of E. Then
(A'), = spanA,
where Spand is the smallest closed linear subspace of E containing A.

Let T : F — FE be a bounded linear operator. Then, the adjoint mapping
T* . B* — E* is defined as follows:

(, T*z*) = (Tx,z")

for any x € E and z* € E*. We know that T* is also a bounded linear operator
and ||T|| = ||T%||. If S and T are bounded linear operators form E into itself and
a € R, then (S+T)" = 8* + T* and (aS)" = aS*. Let I be the identity operator
on E. Then, I'* is the identity operator on E*. Let T** : E** — E** be the adjoint
of T*. Then we have T**(7(FE)) C n(E) and 7~ 'T**7 = T, where 7 is the natural
embedding from E into its second dual space E**; see [29]. We know the following
lemma from Takahashi, Yao and Honda [36].

Lemma 3.2 ([36]). Let E be a smooth, strictly convex and reflexive Banach space,
let T be a linear contractive operator of E into itself, i.e., T : E — E is a linear
operator such that | T|| < 1 and let F(T') be the set of fized points of T. Then JF(T')
is a closed linear subspace in E* and JF(T) = F(T*) = {z — Tz : z € E}*, where
J : E— E* is the normalized duality mapping and T* is the adjoint operator of T .

Using Lemma 3.2, we have the following result.

Lemma 3.3. Let E be a smooth, strictly convex and reflexive Banach space, let S, T
be linear contractive operators of E into itself. Then J (F(S)N F(T)) is a closed
linear subspace in E* and J (F(S)NF(T)) = F(S*)NF(T*) ={z — Sz,2—T=z:
z € EYY, where J : E — E* is the normalized duality mapping and S*,T* are the
adjoint operators of S, T, respectively.

Proof. Since E is a smooth, strictly convex and reflexive Banach space, J is single-
valued, one-to-one and onto. Thus, we have that

J(F(S) N F(T)) = JF(S) N JF(T).
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Using this equality and Lemma 3.2, we have that J (F'(S) N F(T')) is a closed linear
subspace in E*. Furthermore, we have that

feJFS)NFIT) e feJF(S)NJF(T)
< feF(SY)NF(TY
sfe{z—8Sz:2e E}*n{z—Tz:2¢ E}*
o fe{r—822-Tz:2€ E}*.
This completes the proof. O

Theorem 3.1. Let E be a smooth, strictly conver and reflexive Banach space, let
S, T be linear contractive operators on E and let {S, : n € N} be a sequence of
contractive linear operators on E such that F(S) N F(T) C F(Sy) for all n € N.
Then, the following are equivalent:

(1) Spx converges to an element of FI(S) N F(T) for each x € E;

(2) Spx converges to 0 for each x € (J (F(S)NF(T)))L;

(3) Spx — Sy oSz and S,z — Sy, o Tx converge to 0 for each x € E.
Furthermore, if (1) holds, then Syx converges to Rp(synp(ryr € F(S)NF(T'), where

Rrsynrr) = J_IHJ(F(S)OF(T))J and 1 ;(p(s)nr(T)) @S the generalized projection of
E* onto J(F(S)NF(T)).

Proof. Suppose (1). Then, for any x € E, S,z € R(z; F(S,)) C R(x; F(S)NF(T))
for all n € N. We know from Lemma 2.7 that R(z; F'(S)N F(T)) N (F(S)NF(T))
consists of at most one point. Since R(x; F'(S)NF(T)) is closed and S,z converges
strongly to an element z of F/(S) N F(T'), we have

R(z; F(S) N F(T)) N (F(S) N F(T)) = {}.

Let Rx be the unique element z of R(x; F(S) N F(T)) N (F(S)N F(T)). Then,
a mapping R : E — F(S) N F(T) defined by z = Rx is a retraction of E onto
F(S)N F(T). Furthermore, we know from Corollary 2.1 that (z — Syz, Ju) = 0 for
all u € F(S,) and n € N. Since F(S)NF(T) C F(S,) for all n € N, we have that
(x — Spx,Ju) = 0 for all u € F(S)N F(T) and n € N. So, we have that, for any
ue F(S)NF(T),

(3.1) (x — Rz, Ju) =0
From Rx € F(S)N F(T), we also have (x — Rz, JRz) = 0 and thus
(3.2) (x — Rz,JRx — Ju) =0

for all uw € FI(S)N F(T'). We have from Lemmas 2.4 and 2.5 that R is the unique
sunny generalized nonexpansive retraction of E onto F(S)N F(T). Therefore, from
Theorem 2.1, we have

R = Rpsynrr) = I Wyrs)nrry) s

where Il ;(p(s)nr(r)) is the generalized projection of E* onto J (F'(S) N F(T)). If
x € (J(F(S)NF(T))),, then we have (z,Ju) = 0 for all w € F(S)N F(T). We
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also have from (3.1) that (z — Rz, Ju) = 0 for all w € F(S) N F(T). Then, we get
(Rx,Ju) = 0forallu € F(S)NF(T). This implies Rz € (J (F(S)NF(T))).. From
Rre F(S)NF(T)N(J (F(S)NF(T)))L and F(S)NF(T)N(J(F(S)NF(T))), =
{0}, we have that S,r — Rp(synp(ryr = 0 as n — oco. Therefore, we obtain (2).

Suppose (2). From Lemma 3.3, J (F(S)NF(T)) = JF(S)NJF(T) is a closed
linear subspace of E*. Then, we have from [2, 3, 13, 14] that for any x € E,

v = Rps)nr@)® + Pursnrm) o,
where P j(p(s)nr(r))), is the metric projection of £ onto (J (F(S)N F(T))).. We
have from (2) that
Sp = Sp(Rps)nr1)® + Ply(rs)nF(T)) . T)

= SnBps)nr)® + SnP(rs)nFpr) T

= Bp@)nrm)® + SnPrs)nrm)

— Rps)nr(ryr € F(S) N F(T),
as n — oo. Then, we obtain (1). Furthermore, we know from Lemma 3.3 that
x—Szx,x—Tx e (J(F(S)NF(T))), for all z € E. Hence we have from (2) that

Sp(z — Sz) — 0 and S, (x — Tx) — 0 as n — 0o. So, we obtain (3).
Suppose (3). We have that, for any = € E,

Sp(x — Sx) = 0 and Sy, (z —Tx) — 0.

Then we have S,y converges to 0 for any y € lin{z — Tz : € E}, where linA is the
smallest linear subspace of E containing A. From Lemmas 3.2 and 3.1, we have

(J(F(S)NF(T))y = ({z—822-Tz:z€ E}Y), =span{z—Sz,2—Tx:z € E}.

Take z € (J (F(S)NF(T)))L. Then, for any ¢ > 0, there exists an element y €
lin{x — Sz, — Tz : x € E} such that ||z — y|| < e. Then we have
1Snz |l = [1Sny + (Snz — Sny)|
< 1Syl + 150z = Snyl|
< [1Snyll + [l = yll
< ISnyll + €

and hence

limsup ||Spz| < limsup(||Syy|| +€) = e.

Since € > 0 is arbitrary, we have that for any x € (J (F(S) N F(T)))1, Spx converges
to 0. Then, we obtain (2).

Furthermore, if (1) holds, then we have from the proof of (1) that for any = € E,
Spx converges strongly to Rpsynp(myz € F(S) N F(T). O

Using Theorem 3.1, we have the following useful result.
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Theorem 3.2. Let E be a smooth, strictly conver and reflexive Banach space, let
S, T be linear contactive operators on E, let {T; : i € N} be a sequence of linear
contractive operators on E such that F(S)N F(T) C F(T;) for all i € N and let
Sp=Tpo0T, 10---0Ty for all n € N. Then, the following are equivalent:

(1) Spx converges to an element of FI(S) N F(T) for each x € E;

(2) Spx converges to 0 for each x € (J (F(S)NF(T)))L;

(3) Spx — Sp 0SSz — 0 and Sp,x — Sy 0o Tx — 0 for each x € E.
Furthermore, if (1) holds, then Spx converges to Rp(s)np(ryr € F(S)NF(T), where
Rps)nr(r) = J*1HJ(F(5)QF(T))J and 1Ly(p(s)nr(T)) 18 the generalized projection of
E* onto J(F(S)NF(T)).

Proof. For any n € N, S,, =T, 0T,_10---0T} is a linear contractive operator on
E and F(S)N F(T) C F(Sy) for all i € N. Therefore, we have the desired result
from Theorem 3.1

O

4. APPLICATIONS

In this section, using Theorems 3.1 and 3.2, we obtain some strong convergence
theorems for linear contractive mappings in a Banach space. Applying Theorem
3.2, we obtain a strong convergence theorem of Mann type for contractive linear
mappings in a Banach space. The following lemma was proved by Eshita and
Takahashi [8].

Lemma 4.1 ([8]). Let {a,} be a sequence in [0,1] such that > o2 (1 — ap) = o0
and let {by} and {e,} be sequences in [0,00) such that

bnt1 < anby + (1 — an)en, YneN
and limy,_ oo €, = 0. Then lim,,_, b, = 0.
Using Lemma 4.1, we obtain the following theorem.

Theorem 4.1. Let E be a smooth and uniformly convexr Banach space and let S, T
be commutative contractive linear operators on E. Let {ay} be a sequence of real
numbers such that 0 < o, < 1 and > > (1 — a) = 00. Then a sequence {xy}
generated by x1 = x € E and

Tt =ty + (1 - an>(n+11)2 > S"Twn, neN,
k=0 [=0
converges strongly to an element Rx of F(S) N F(T), where R = Rps)npr) =
J*1HJ(F(S)QF(T))J and jps)nr(r)) s the generalized projection of E* onto
J(F(S)NF(T)).

Proof. Put U; = ¢y Yjmg Ximg ST and let T; = ail + (1 — aq)Uj for all i € N,
where [ is the identity operator on K. Let S, = T, 0cT,_10---01] for all n €
N. Then, we have that z,11 = Spz. Since S,T are linear cotractive operators,
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F(S)N F(T) is a closed linear subspace of E. For any i € N, we have ||T;|| < 1
and F(S) N F(T) C F(T;). Using these results, we obtain that [|S,| < 1 and
F(S)NF(T) C F(S,) for any n € N.
It is sufficient to show from Theorem 3.2 that, for all x € E.
|Spz — Sy oSzl — 0
and
| Spx — Sp o Tz|| — 0.

Since S,T are commutative contractive linear operators on E, we can also show
that So S, =S,05 and T o S, = S, oT. We may show from x,,1 = S,z that

|n+1 — Sxpt1|| — 0 and ||zp41 — Txpy1]] — 0.
Since xp 41 = apxy + (1 — ay)Upzy, and S is linear, we have that
(A1) onst — Stnetll < anllzn — Szall + (1 — an)l|Unn — SUnzall
Furthermore, we have
[2ni1ll = llanzn 4+ (1 — an)Unzn|

< aflzall + (1 — an) |Unzs||

< aflzpll + (1 — an)lzn]

= [znl].

Then lim,, o ||z, || exists and hence {z,} is bounded. We have from ST = T'S that

1 X el 1 X gl
=0 =0 k=0 1=0
1 n n
kil k+1l
= 7222(5 Tz, — S Ta;n)‘
(n+1)* =i
1 n
= m Z(STla:n + Tz, — S™ 2T, + S”HTlxn)
=0

Since {z,} is bounded, we have that ||Uyz, — SUpz,| — 0. Using (4.1), Lemma
4.1 and ||Upxy, — SUpx,|| — 0, we have that

(4.2) H13n+1 — S:L’n+1|| — 0.
Similarly, we have that
(4.3) [Zn+1 — Tp1] — 0.

By Theorem 3.2, {z,} converges strongly to the element Rx of F'(S)NF(T'), where
R = Rpsynr(r) = J_IHJ(F(S)QF(T))J and I1;p(s)nr(T)) is the generalized projec-
tion of E* onto J (F'(S) N F(T)). This completes the proof. O

From Theorem 3.1, we can prove a mean strong convergence theorem for com-
mutative contractive linear operators in a Banach space.
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Theorem 4.2. Let E be a smooth, strictly convex and reflexive Banach space and
let S, T be commutative contractive linear operators on E. Then, for each x € E,

Spx = n+1 2ZZSle

k=0 1=0

converge strongly to the element Rx of F(S) N F(T), where R = Rps)npr) =
J*1HJ(F(S)QF(T))J and jps)nr(r)) s the generalized projection of E* onto
J(F(S)NF(T)).

Proof. Put S,z = ﬁZZ:o Yo SFT!z for all z € E and n € N. For any
n € N, the operator S,, : E — F is a contractive linear operator. Furthermore, we
have F(S)N F(T) C F(Sy). To complete the proof, it is sufficient to show that
Spx — Sp oSt — 0and S,z — S, 0oTx — 0 for each x € E. We have

Spx — Sy oSt = n+1QZZSlex— QZZSI“TISQ:

k=0 1=0 k=0 1=0

— n — 1 — Z Z Sle SkJrlTl.CU)

k=0 =0

1
= o712 Z ST'z + Tl — S" 2Tz + S"H1T'x)

Then, for any n € N, we have

n
> (ST'z + Tha — "7l 4 ST )
=0

1

[Snx — Sp o Tzl = HW

Thus we obtain that S,z — S, o Sz — 0 for each x € E. Similarly, we have that
Spr—SpoTx — 0 Using Theorem 3.1, {S,,x} converges strongly to the element Rz of
F(S)NF(T), where R = RF(S)HF(T) = J_IHJ(F(S)QF(T))J and HJ(F(S)HF(T)) is the
generalized projection of E* onto J (F(S) N F(T)). This completes the proof. [

Remark 4.1. In Theorem 4.2, note that the point z = lim,_ o Spx is char-
acterlized by the sunny generalized nonexpansive retraction R = Rps)nrp(r) =
J_ll_.[J(F(S)mF(T))J of E onto F(S)N F(T). Such a result is still new even if the
operator T is linear.
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