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See Day [7] and Kido and Takahashi [22] for mean convergence theorems of semi-

groups of linear operators in a Banach space.

On the other hand, we know the first mean convergence theorem for nonexpansive

mappings in a Hilbert space by Baillon [4].

Theorem 1.3 ([4]). Let C be a nonempty closed convex subset of H and let T :

C → C be a nonexpansive mapping such that F (T ) is nonempty. Then for any

x ∈ C,

Snx =
1

n

n−1∑
k=0

T kx

converges weakly to an element z ∈ F (T ).

Such a theorem was extended to a noncommutative semigroup (called amenable)

of nonexpanive mappings in a Hilbert space by Takahashi [31]; see also [32]. Baillon’s

theorem for nonexpansive mappings has been extended to Banach spaces by many

authors; see, for example, [5, 6, 10, 11, 25].

From [34] we also know a weak convergence theorem by Mann’s iteration [26] for

nonexpansive mappings in a Hilbert space: Let H be a Hilbert space, let C be a

nonempty closed convex subset of H and let T : C → C be a nonexpansive mapping

with F (T ) ̸= ∅. Define a sequence {xn} in C by x1 = x ∈ C and

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N,

where {αn} is a real sequence in [0, 1] such that
∑∞

n=1 αn(1−αn) = ∞. Then, {xn}
converges weakly to an element z of F (T ), where z = limn→∞ Pxn and P is the

metric projection of H onto F (T ). By Reich [30], such a theorem was extended to

a uniformly convex Banach space with a Fréchet differentiable norm. However, we

have not known whether the limit point z is characterized under any projections in

a Banach space. Using nonlinear analytic methods obtained by [15, 18, 19], Taka-

hashi and Yao [35] solved such a problem for positively homogeneous nonexpansive

mappings in a Banach space.

In this paper, we first discuss nonlinear analytic methods for studying linear con-

tractive mappings in Banach spaces. Using these results, we obtain strong conver-

gence theorems for commutative two linear contractive operators in Banach spaces.

In theorems, the limit points are characterized by sunny generalized nonexpansive

retractions in Banach spaces.

2. Preliminaries

Throughout this paper, we assume that a Banach space E with the dual space E∗

is real. We denote by N and R the sets of all positive integers and all real numbers,

respectively. We also denote by ⟨x, x∗⟩ the dual pair of x ∈ E and x∗ ∈ E∗. A

Banach space E is said to be strictly convex if ∥x + y∥ < 2 for x, y ∈ E with
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∥x∥ ≤ 1, ∥y∥ ≤ 1 and x ̸= y. Let E be a Banach space and let

δ(ϵ) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : x, y ∈ E, ∥x∥ = ∥y∥ = 1, ∥x− y∥ = ϵ

}
.

We call the function δ : [0, 2] → [0, 1] the modulus of convexity. A Banach space

E is said to be uniformly convex if δ(ϵ) > 0 for every ϵ > 0. A uniformly convex

Banach space is strictly convex and reflexive.

A Banach space E is said to be smooth provided

lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for each x, y ∈ E with ∥x∥ = ∥y∥ = 1. Let E be a Banach space. With each

x ∈ E, we associate the set

J(x) = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}.

The multivalued operator J : E → E∗ is called the normalized duality mapping of

E. From the Hahn-Banach theorem, Jx ̸= ∅ for each x ∈ E. We know that E is

smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-one,

i.e., x ̸= y ⇒ J(x) ∩ J(y) = ∅. If E is reflexive, then J is a mapping of E onto E∗.

So, if E is reflexive, strictly convex and smooth, then J is single-valued, one-to-one

and onto. In this case, the normalized duality mapping J∗ from E∗ into E is the

inverse of J , that is, J∗ = J−1; see [33] for more details.

Lemma 2.1 ([33]). Let E be a smooth Banach space and let J be the duality map-

ping on E. Then ⟨x− y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly

convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let E be a smooth Banach space and let J be the normalized duality mapping

of E. We define the function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for all x, y ∈ E. It is easy to see that (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥ + ∥y∥)2 for

all x, y ∈ E. Thus, in particular, ϕ(x, y) ≥ 0 for all x, y ∈ E. We also know the

following:

ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩(2.1)

for all x, y, z ∈ E. Further, we have

2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w)(2.2)

for all x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then

ϕ(x, y) = 0 ⇔ x = y.(2.3)

The following lemma due to Kamimura and Takahashi [21] is well-known.
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Lemma 2.2 ([21]). Let E be a smooth and uniformly convex Banach space and

let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded. If

limn→∞ ϕ(xn, yn) = 0, then limn→∞ ∥xn − yn∥ = 0.

Let C be a nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ϕ(z, x) = min
y∈C

ϕ(y, x)}

is always a singleton. Let us define the mapping ΠC of E onto C by z = ΠCx for

every x ∈ E, i.e.,

ϕ(ΠCx, x) = min
y∈C

ϕ(y, x)

for every x ∈ E. Such ΠC is called the generalized projection of E onto C; see

Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi

[21].

Lemma 2.3 ([1, 21]). Let C be a nonempty closed convex subset of a smooth, strictly

convex and reflexive Banach space E and let (x, z) ∈ E × C. Then, the following

hold:

(a) z = ΠCx if and only if ⟨y − z, Jx− Jz⟩ ≤ 0 for all y ∈ C;

(b) ϕ(z,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(z, x).

Let D be a nonempty closed subset of a smooth Banach space E, let T be a

mapping from D into itself and let F (T ) be the set of fixed points of T . Then, T is

said to be generalized nonexpansive [16] if F (T ) is nonempty and ϕ(Tx, u) ≤ ϕ(x, u)

for all x ∈ D and u ∈ F (T ). Let C be a nonempty subset of E and let R be a

mapping from E onto C. Then R is said to be a retraction, or a projection if Rx = x

for all x ∈ C. It is known that if a mapping P of E into E satisfies P 2 = P , then

P is a projection of E onto {Px : x ∈ E}. A mapping T : E → E with F (T ) ̸= ∅
is a retraction if and only if F (T ) = R(T ), where R(T ) is the range of T . The

mapping R is also said to be sunny if R(Rx+ t(x−Rx)) = Rx whenever x ∈ E and

t ≥ 0. A nonempty subset C of a smooth Banach space E is said to be a generalized

nonexpansive retract (resp. sunny generalized nonexpansive retract) of E if there

exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive

retraction) R from E onto C. The following lemmas were proved by Ibaraki and

Takahashi [16].

Lemma 2.4 ([16]). Let C be a nonempty closed sunny and generalized nonexpansive

retract of a smooth and strictly convex Banach space E. Then, the sunny generalized

nonexpansive retraction from E onto C is uniquely determined.
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Lemma 2.5 ([16]). Let C be a nonempty closed subset of a smooth and strictly

convex Banach space E such that there exists a sunny generalized nonexpansive

retraction R from E onto C and let (x, z) ∈ E × C. Then, the following hold:

(a) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C;

(b) ϕ(Rx, z) + ϕ(x,Rx) ≤ ϕ(x, z).

The following theorems were proved by Kohsaka and Takahashi [24].

Theorem 2.1 ([24]). Let E be a smooth, strictly convex and reflexive Banach space,

let C∗ be a nonempty closed convex subset of E∗ and let ΠC∗ be the generalized

projection of E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a

sunny generalized nonexpansive retraction of E onto J−1C∗.

Theorem 2.2 ([24]). Let E be a smooth, strictly convex and reflexive Banach space

and let D be a nonempty subset of E. Then, the following are equivalent.

(1) D is a sunny generalized nonexpansive retract of E;

(2) D is a generalized nonexpansive retract of E;

(3) JD is closed and convex.

In this case, D is closed.

Let E be a smooth, strictly convex and reflexive Banach space, let J be the

normalized duality mapping from E onto E∗ and let C be a closed subset of E

such that JC is closed and convex. Then, we can define a unique sunny generalized

nonexpansive retraction RC of E onto C as follows:

RC = J−1ΠJCJ,

where ΠJC is the generalized projection from E∗ onto JC.

Let C be a nonempty closed convex subset of a smooth, strictly convex and

reflexive Banach space E. For an arbitrary point x of E, the set

{z ∈ C : ∥z − x∥ = min
y∈C

∥y − x∥}

is always nonempty and a singleton. Let us define the mapping PC of E onto C by

z = PCx for every x ∈ E, i.e.,

∥PCx− x∥ = min
y∈C

∥y − x∥

for every x ∈ E. Such PC is called the metric projection of E onto C; see [33]. The

following lemma is in [33].

Lemma 2.6 ([33]). Let C be a nonempty closed convex subset of a smooth, strictly

convex and reflexive Banach space E and let (x, z) ∈ E ×C. Then, z = PCx if and

only if ⟨y − z, J(x− z)⟩ ≤ 0 for all y ∈ C.

Let E be a Banach space and let K be a closed convex cone of E. Then, T :

K → K is called a positively homogeneous mapping if T (αx) = αTx for all α ≥ 0

and x ∈ K. Let M be a closed linear subspace of E. Then, S : M → M is called a

homogeneous mapping if T (βx) = βTx for all β ∈ R and x ∈ M .
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Remark 2.1. In Lp spaces, 1 ≤ p ≤ ∞, we know examples of nonexpansive and

positively homogeneous mappings; see, for instance, Wittmann [38].

We know the following theorem from Takahashi, Yao and Honda [36].

Theorem 2.3 ([36]). Let E be a smooth Banach space and let K be a closed convex

cone of E. Then, a positively homogeneous mapping T : K → K is generalized

nonexpansive if and only if for any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0.

Furthermore, let M be a closed linear subspace of E. Then, a homogeneous mapping

S : M → M is generalized nonexpansive if and only if for any x ∈ M and v ∈ F (T ),

∥Sx∥ ≤ ∥x∥ and ⟨x− Sx, Jv⟩ = 0.

We also know the follwing theorem from Takahashi and Yao [35]; see also Honda,

Takahashi and Yao [15].

Theorem 2.4 ([35]). Let E be a smooth Banach space and let K be a closed convex

cone in E If T : K → K is a positively homogeneous nonexpansive mapping, then

T is generalized nonexpansive. In particular, if T : E → E is a linear contractive

mapping, then T is generalized nonexpansive.

From Theorems 2.4 and 2.3, we have the following corollary.

Corollary 2.1. Let E be a smooth Banach space and let K be a closed convex cone

of E. If a mapping T : K → K is positively homogeneous nonexpansive, then for

any x ∈ K and u ∈ F (T ),

∥Tx∥ ≤ ∥x∥ and ⟨x− Tx, Ju⟩ ≤ 0.

Furthermore, let M be a closed linear subspace of E. If a mapping S : M → M is

homogeneous nonexpansive, then for any x ∈ M and v ∈ F (T ),

∥Sx∥ ≤ ∥x∥ and ⟨x− Sx, Jv⟩ = 0.

From Takahashi, Yao and Honda [36], we know the following concept.

Definition 2.1 ([36]). Let E be a smooth Banch space, let x ∈ E and let F be a

nonempty subset of E. The set R(x;F ) between x and F is as follows:

R(x;F ) = {z ∈ E : ⟨x− z, Ju⟩ = 0 for all u ∈ F and ∥z∥ ≤ ∥x∥}.

We have the following result from Takahashi, Yao and Honda [36].

Lemma 2.7 ([36]). Let E be a strictly convex and smooth Banch space, let x ∈ E

and let F be a nonempty subset of E. Then R(x;F ) is nonempty, closed, convex

and bounded, and F ∩R(x;F ) consists of at most one point.
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3. Strong convergence theorems

Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty

subset of the dual space E∗. Then, we can define the annihilator Y ∗
⊥ of Y ∗ and the

annihilator Y ⊥ of Y as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and

Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.

We know the following result from Megginson [29].

Lemma 3.1 ([29]). Let A be a nonempty subset of E. Then

(A⊥)⊥ = spanA,

where spanA is the smallest closed linear subspace of E containing A.

Let T : E → E be a bounded linear operator. Then, the adjoint mapping

T ∗ : E∗ → E∗ is defined as follows:

⟨x, T ∗x∗⟩ = ⟨Tx, x∗⟩

for any x ∈ E and x∗ ∈ E∗. We know that T ∗ is also a bounded linear operator

and ∥T∥ = ∥T ∗∥. If S and T are bounded linear operators form E into itself and

α ∈ R, then (S + T )∗ = S∗ + T ∗ and (αS)∗ = αS∗. Let I be the identity operator

on E. Then, I∗ is the identity operator on E∗. Let T ∗∗ : E∗∗ → E∗∗ be the adjoint

of T ∗. Then we have T ∗∗(π(E)) ⊂ π(E) and π−1T ∗∗π = T , where π is the natural

embedding from E into its second dual space E∗∗; see [29]. We know the following

lemma from Takahashi, Yao and Honda [36].

Lemma 3.2 ([36]). Let E be a smooth, strictly convex and reflexive Banach space,

let T be a linear contractive operator of E into itself, i.e., T : E → E is a linear

operator such that ∥T∥ ≤ 1 and let F (T ) be the set of fixed points of T . Then JF (T )

is a closed linear subspace in E∗ and JF (T ) = F (T ∗) = {z − Tz : z ∈ E}⊥, where
J : E → E∗ is the normalized duality mapping and T ∗ is the adjoint operator of T .

Using Lemma 3.2, we have the following result.

Lemma 3.3. Let E be a smooth, strictly convex and reflexive Banach space, let S, T

be linear contractive operators of E into itself. Then J (F (S) ∩ F (T )) is a closed

linear subspace in E∗ and J (F (S) ∩ F (T )) = F (S∗) ∩ F (T ∗) = {z − Sz, z − Tz :

z ∈ E}⊥, where J : E → E∗ is the normalized duality mapping and S∗, T ∗ are the

adjoint operators of S, T , respectively.

Proof. Since E is a smooth, strictly convex and reflexive Banach space, J is single-

valued, one-to-one and onto. Thus, we have that

J (F (S) ∩ F (T )) = JF (S) ∩ JF (T ).
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Using this equality and Lemma 3.2, we have that J (F (S) ∩ F (T )) is a closed linear

subspace in E∗. Furthermore, we have that

f ∈ J (F (S) ∩ F (T )) ⇔ f ∈ JF (S) ∩ JF (T )

⇔ f ∈ F (S∗) ∩ F (T ∗)

⇔ f ∈ {z − Sz : z ∈ E}⊥ ∩ {z − Tz : z ∈ E}⊥

⇔ f ∈ {z − Sz, z − Tz : z ∈ E}⊥.

This completes the proof. □

Theorem 3.1. Let E be a smooth, strictly convex and reflexive Banach space, let

S, T be linear contractive operators on E and let {Sn : n ∈ N} be a sequence of

contractive linear operators on E such that F (S) ∩ F (T ) ⊂ F (Sn) for all n ∈ N.
Then, the following are equivalent:

(1) Snx converges to an element of F (S) ∩ F (T ) for each x ∈ E;

(2) Snx converges to 0 for each x ∈ (J (F (S) ∩ F (T )))⊥;

(3) Snx− Sn ◦ Sx and Snx− Sn ◦ Tx converge to 0 for each x ∈ E.

Furthermore, if (1) holds, then Snx converges to RF (S)∩F (T )x ∈ F (S)∩F (T ), where

RF (S)∩F (T ) = J−1ΠJ(F (S)∩F (T ))J and ΠJ(F (S)∩F (T )) is the generalized projection of

E∗ onto J (F (S) ∩ F (T )).

Proof. Suppose (1). Then, for any x ∈ E, Snx ∈ R(x;F (Sn)) ⊂ R(x;F (S) ∩ F (T ))

for all n ∈ N. We know from Lemma 2.7 that R(x;F (S) ∩ F (T )) ∩ (F (S) ∩ F (T ))

consists of at most one point. Since R(x;F (S)∩F (T )) is closed and Snx converges

strongly to an element z of F (S) ∩ F (T ), we have

R(x;F (S) ∩ F (T )) ∩ (F (S) ∩ F (T )) = {z}.

Let Rx be the unique element z of R(x;F (S) ∩ F (T )) ∩ (F (S) ∩ F (T )). Then,

a mapping R : E → F (S) ∩ F (T ) defined by z = Rx is a retraction of E onto

F (S)∩ F (T ). Furthermore, we know from Corollary 2.1 that ⟨x− Snx, Ju⟩ = 0 for

all u ∈ F (Sn) and n ∈ N. Since F (S) ∩ F (T ) ⊂ F (Sn) for all n ∈ N, we have that

⟨x − Snx, Ju⟩ = 0 for all u ∈ F (S) ∩ F (T ) and n ∈ N. So, we have that, for any

u ∈ F (S) ∩ F (T ),

⟨x−Rx, Ju⟩ = 0(3.1)

From Rx ∈ F (S) ∩ F (T ), we also have ⟨x−Rx, JRx⟩ = 0 and thus

⟨x−Rx, JRx− Ju⟩ = 0(3.2)

for all u ∈ F (S) ∩ F (T ). We have from Lemmas 2.4 and 2.5 that R is the unique

sunny generalized nonexpansive retraction of E onto F (S)∩F (T ). Therefore, from

Theorem 2.1, we have

R = RF (S)∩F (T ) = J−1ΠJ(F (S)∩F (T ))J,

where ΠJ(F (S)∩F (T )) is the generalized projection of E∗ onto J (F (S) ∩ F (T )). If

x ∈ (J (F (S) ∩ F (T )))⊥, then we have ⟨x, Ju⟩ = 0 for all u ∈ F (S) ∩ F (T ). We
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also have from (3.1) that ⟨x − Rx, Ju⟩ = 0 for all u ∈ F (S) ∩ F (T ). Then, we get

⟨Rx, Ju⟩ = 0 for all u ∈ F (S)∩F (T ). This implies Rx ∈ (J (F (S) ∩ F (T )))⊥. From

Rx ∈ F (S)∩F (T )∩ (J (F (S) ∩ F (T )))⊥ and F (S)∩F (T )∩ (J (F (S) ∩ F (T )))⊥ =

{0}, we have that Snx → RF (S)∩F (T )x = 0 as n → ∞. Therefore, we obtain (2).

Suppose (2). From Lemma 3.3, J (F (S) ∩ F (T )) = JF (S) ∩ JF (T ) is a closed

linear subspace of E∗. Then, we have from [2, 3, 13, 14] that for any x ∈ E,

x = RF (S)∩F (T )x+ P(J(F (S)∩F (T )))⊥x,

where P(J(F (S)∩F (T )))⊥ is the metric projection of E onto (J (F (S) ∩ F (T )))⊥. We

have from (2) that

Snx = Sn(RF (S)∩F (T )x+ P(J(F (S)∩F (T )))⊥x)

= SnRF (S)∩F (T )x+ SnP(J(F (S)∩F (T )))⊥x

= RF (S)∩F (T )x+ SnP(J(F (S)∩F (T )))⊥x

→ RF (S)∩F (T )x ∈ F (S) ∩ F (T ),

as n → ∞. Then, we obtain (1). Furthermore, we know from Lemma 3.3 that

x − Sx, x − Tx ∈ (J (F (S) ∩ F (T )))⊥ for all x ∈ E. Hence we have from (2) that

Sn(x− Sx) → 0 and Sn(x− Tx) → 0 as n → ∞. So, we obtain (3).

Suppose (3). We have that, for any x ∈ E,

Sn(x− Sx) → 0 and Sn(x− Tx) → 0.

Then we have Sny converges to 0 for any y ∈ lin{x−Tx : x ∈ E}, where linA is the

smallest linear subspace of E containing A. From Lemmas 3.2 and 3.1, we have

(J (F (S) ∩ F (T )))⊥ = ({z−Sz, z−Tz : z ∈ E}⊥)⊥ = span{z−Sz, x−Tx : x ∈ E}.

Take x ∈ (J (F (S) ∩ F (T )))⊥. Then, for any ϵ > 0, there exists an element y ∈
lin{x− Sx, x− Tx : x ∈ E} such that ∥x− y∥ < ϵ. Then we have

∥Snx∥ = ∥Sny + (Snx− Sny)∥
≤ ∥Sny∥+ ∥Snx− Sny∥
≤ ∥Sny∥+ ∥x− y∥
≤ ∥Sny∥+ ϵ

and hence

lim sup
n→∞

∥Snx∥ ≤ lim sup
n→∞

(∥Sny∥+ ϵ) = ϵ.

Since ϵ > 0 is arbitrary, we have that for any x ∈ (J (F (S) ∩ F (T )))⊥, Snx converges

to 0. Then, we obtain (2).

Furthermore, if (1) holds, then we have from the proof of (1) that for any x ∈ E,

Snx converges strongly to RF (S)∩F (T )x ∈ F (S) ∩ F (T ). □

Using Theorem 3.1, we have the following useful result.
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Theorem 3.2. Let E be a smooth, strictly convex and reflexive Banach space, let

S, T be linear contactive operators on E, let {Ti : i ∈ N} be a sequence of linear

contractive operators on E such that F (S) ∩ F (T ) ⊂ F (Ti) for all i ∈ N and let

Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 for all n ∈ N. Then, the following are equivalent:

(1) Snx converges to an element of F (S) ∩ F (T ) for each x ∈ E;

(2) Snx converges to 0 for each x ∈ (J (F (S) ∩ F (T )))⊥;

(3) Snx− Sn ◦ Sx → 0 and Snx− Sn ◦ Tx → 0 for each x ∈ E.

Furthermore, if (1) holds, then Snx converges to RF (S)∩F (T )x ∈ F (S)∩F (T ), where

RF (S)∩F (T ) = J−1ΠJ(F (S)∩F (T ))J and ΠJ(F (S)∩F (T )) is the generalized projection of

E∗ onto J (F (S) ∩ F (T )).

Proof. For any n ∈ N, Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 is a linear contractive operator on

E and F (S) ∩ F (T ) ⊂ F (Sn) for all i ∈ N. Therefore, we have the desired result

from Theorem 3.1

□

4. Applications

In this section, using Theorems 3.1 and 3.2, we obtain some strong convergence

theorems for linear contractive mappings in a Banach space. Applying Theorem

3.2, we obtain a strong convergence theorem of Mann type for contractive linear

mappings in a Banach space. The following lemma was proved by Eshita and

Takahashi [8].

Lemma 4.1 ([8]). Let {αn} be a sequence in [0, 1] such that
∑∞

n=1(1 − αn) = ∞
and let {bn} and {εn} be sequences in [0,∞) such that

bn+1 ≤ αnbn + (1− αn)εn, ∀n ∈ N

and limn→∞ εn = 0. Then limn→∞ bn = 0.

Using Lemma 4.1, we obtain the following theorem.

Theorem 4.1. Let E be a smooth and uniformly convex Banach space and let S, T

be commutative contractive linear operators on E. Let {αn} be a sequence of real

numbers such that 0 ≤ αn ≤ 1 and
∑∞

n=1(1 − αn) = ∞. Then a sequence {xn}
generated by x1 = x ∈ E and

xn+1 = αnxn + (1− αn)
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lxn, n ∈ N,

converges strongly to an element Rx of F (S) ∩ F (T ), where R = RF (S)∩F (T ) =

J−1ΠJ(F (S)∩F (T ))J and ΠJ(F (S)∩F (T )) is the generalized projection of E∗ onto

J (F (S) ∩ F (T )).

Proof. Put Ui =
1

(i+1)2
∑i

k=0

∑i
l=0 S

kT l and let Ti = αiI + (1− αi)Ui for all i ∈ N,
where I is the identity operator on E. Let Sn = Tn ◦ Tn−1 ◦ · · · ◦ T1 for all n ∈
N. Then, we have that xn+1 = Snx. Since S, T are linear cotractive operators,
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F (S) ∩ F (T ) is a closed linear subspace of E. For any i ∈ N, we have ∥Ti∥ ≤ 1

and F (S) ∩ F (T ) ⊂ F (Ti). Using these results, we obtain that ∥Sn∥ ≤ 1 and

F (S) ∩ F (T ) ⊂ F (Sn) for any n ∈ N.
It is sufficient to show from Theorem 3.2 that, for all x ∈ E.

∥Snx− Sn ◦ Sx∥ → 0

and

∥Snx− Sn ◦ Tx∥ → 0.

Since S, T are commutative contractive linear operators on E, we can also show

that S ◦ Sn = Sn ◦ S and T ◦ Sn = Sn ◦ T . We may show from xn+1 = Snx that

∥xn+1 − Sxn+1∥ → 0 and ∥xn+1 − Txn+1∥ → 0.

Since xn+1 = αnxn + (1− αn)Unxn and S is linear, we have that

(4.1) ∥xn+1 − Sxn+1∥ ≤ αn∥xn − Sxn∥+ (1− αn)∥Unxn − SUnxn∥.

Furthermore, we have

∥xn+1∥ = ∥αnxn + (1− αn)Unxn∥
≤ α∥xn∥+ (1− αn)∥Unxn∥
≤ α∥xn∥+ (1− αn)∥xn∥
= ∥xn∥.

Then limn→∞ ∥xn∥ exists and hence {xn} is bounded. We have from ST = TS that

∥Unxn − SUnxn∥ =

∥∥∥∥∥ 1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lxn − S
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lxn

∥∥∥∥∥
=

∥∥∥∥∥ 1

(n+ 1)2

n∑
k=0

n∑
l=0

(SkT lxn − Sk+1T lxn)

∥∥∥∥∥
=

∥∥∥∥∥ 1

(n+ 1)2

n∑
l=0

(ST lxn + T lxn − Sn+2T lxn + Sn+1T lxn)

∥∥∥∥∥ .
Since {xn} is bounded, we have that ∥Unxn − SUnxn∥ → 0. Using (4.1), Lemma

4.1 and ∥Unxn − SUnxn∥ → 0, we have that

(4.2) ∥xn+1 − Sxn+1∥ → 0.

Similarly, we have that

(4.3) ∥xn+1 − Txn+1∥ → 0.

By Theorem 3.2, {xn} converges strongly to the element Rx of F (S)∩F (T ), where

R = RF (S)∩F (T ) = J−1ΠJ(F (S)∩F (T ))J and ΠJ(F (S)∩F (T )) is the generalized projec-

tion of E∗ onto J (F (S) ∩ F (T )). This completes the proof. □

From Theorem 3.1, we can prove a mean strong convergence theorem for com-

mutative contractive linear operators in a Banach space.
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Theorem 4.2. Let E be a smooth, strictly convex and reflexive Banach space and

let S, T be commutative contractive linear operators on E. Then, for each x ∈ E,

Snx =
1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx

converge strongly to the element Rx of F (S) ∩ F (T ), where R = RF (S)∩F (T ) =

J−1ΠJ(F (S)∩F (T ))J and ΠJ(F (S)∩F (T )) is the generalized projection of E∗ onto

J (F (S) ∩ F (T )).

Proof. Put Snx = 1
(n+1)2

∑n
k=0

∑n
l=0 S

kT lx for all x ∈ E and n ∈ N. For any

n ∈ N, the operator Sn : E → E is a contractive linear operator. Furthermore, we

have F (S) ∩ F (T ) ⊂ F (Sn). To complete the proof, it is sufficient to show that

Snx− Sn ◦ Sx → 0 and Snx− Sn ◦ Tx → 0 for each x ∈ E. We have

Snx− Sn ◦ Sx =

∥∥∥∥∥ 1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lx− 1

(n+ 1)2

n∑
k=0

n∑
l=0

SkT lSx

∥∥∥∥∥
=

∥∥∥∥∥ 1

(n+ 1)2

n∑
k=0

n∑
l=0

(SkT lx− Sk+1T lx)

∥∥∥∥∥
=

∥∥∥∥∥ 1

(n+ 1)2

n∑
l=0

(ST lx+ T lx− Sn+2T lx+ Sn+1T lx)

∥∥∥∥∥ .
Then, for any n ∈ N, we have

∥Snx− Sn ◦ Tx∥ =

∥∥∥∥∥ 1

(n+ 1)2

n∑
l=0

(ST lx+ T lx− Sn+2T lx+ Sn+1T lx)

∥∥∥∥∥ .
Thus we obtain that Snx − Sn ◦ Sx → 0 for each x ∈ E. Similarly, we have that

Snx−Sn◦Tx → 0 Using Theorem 3.1, {Snx} converges strongly to the element Rx of

F (S)∩F (T ), where R = RF (S)∩F (T ) = J−1ΠJ(F (S)∩F (T ))J and ΠJ(F (S)∩F (T )) is the

generalized projection of E∗ onto J (F (S) ∩ F (T )). This completes the proof. □

Remark 4.1. In Theorem 4.2, note that the point z = limn→∞ Snx is char-

acterlized by the sunny generalized nonexpansive retraction R = RF (S)∩F (T ) =

J−1ΠJ(F (S)∩F (T ))J of E onto F (S) ∩ F (T ). Such a result is still new even if the

operator T is linear.
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