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ABSTRACT. In this paper, we consider the Halpern iteration scheme for a finite
family of quasinonexpansive mappings and then prove a strong convergence the-
orem to their common fixed point in a complete geodesic space with curvature
bounded above by one.

1. INTRODUCTION

Let us begin with a historical explanation on Halpern schemes. In 1967, Halpern
[5] considered an iterative method to find a fixed point of a nonexpansive mapping
from the unit ball of a real Hilbert space into itself. In 1992, Wittmann [18] con-
sidered the following Halpern type iteration scheme in a real Hilbert space H: Let
C C H be a closed convex subset, and u,z; € C are given. The iteration scheme is

Tt = apu+ (1 — )Tz,

for all n € N, where T is a nonexpansive mapping from C' into itself such that the
set F'(T) of its fixed points is nonempty, and where the real sequence {«,} satisfies
limy, o0 @t = 0, 00 @y = 00 and > 07 |41 — | < 0o. He showed that {x,}
converges strongly to a fixed point which is nearest to v in F(T).

In 1997, Shioji-Takahashi [16] extended Wittmann’s result to the case where the
Hilbert space H is replaced by a Banach space. In 1998, motivated by results of
Ishikawa [6] and Das-Debata [3], Atsushiba-Takahashi [1] considered a variation of
Halpern iteration using W-mappings {W,,} (see Definition 2.1) in a Banach space:
u, x1 are given and

Tpt1 = Buu+ (1 = Bp) Wy,
for all n € N.

A CAT(0) space is a generalization of Hilbert space in a direction different from
that of a Banach space. In 2011, Saejung [14] considered the Halpern iteration
using single nonexpansive mapping in a CAT(0) space. In 2011, Phuengrattana-
Suantai [13] considered the same iteration scheme using W-mapping in a convex
metric space. Remark that a CAT(0) space is a convex metric space, so that their
result covers the case of CAT(0) space. In 2013, Kimura-Sato [12] considered the
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Halpern iteration using single strongly quasinonexpansive mapping in a CAT(1)
space. Remark that a CAT(1) space is not necessarily a convex metric space.

In this paper, we consider the Halpern iteration with W-mapping generated by a
finite family of quasinonexpansive mappings in a CAT(1) space, that is, we showed
the following theorem under the similar condition in the result of Kimura-Sato:

Theorem 1.1. Let X be a complete CAT(1) space such that d(v,v") < 7/2 for

every v,v' € X. Let T, Ts,..., T, be a finite number of quasinonexpansive and

A-demiclosed mappings of X into itself such that F := (\._y F(T;) # 0, and let

Qn,1,0n.2, .., 0ny be Teal numbers for n € N such that ay; € [a,1—a] for every i =

1,2,...,7, where 0 < a < 1/2. Let W,, be the W-mappings of X into itself generated

by Th, 1o, ..., T, and an1,0m2, ... ,an, forn € N. Let {$,} be a sequence of real
o0

numbers such that 0 < 3, <1 for every n € N,lim,_,oc 8, =0 and ) ", B, = oco.
For a given points u,x1 € X, let {x,} be a sequence in X generated by

Tnt1 = Bt ® (1 — Bn) Wy,
for n € N. Suppose that one of the following conditions holds:
() Sup ey d(v,0)) < 7/2;
(b) d(u, Pru) < w/4 and d(u, Pru) + d(x1, Pru) < w/2;
(€) 3oniy B = oo

Then {z,} converges to Ppu.

The proof will be given in §3.

In §4, we give some applications of the main theorem. In Theorem 4.1, we give
an approximation of a minimizer of convex functions on a complete CAT(1) space.
A further application will be given in Theorem 4.2. We also give an example of
quasinonexpansive mappings which is not strongly quasinonexpansive in Example
4.1.

2. PRELIMINARIES

Let (X, d) be a metric space. For z,y € X, a mapping c: [0,]] — X is a geodesic
of x,y € X if ¢(0) = z,¢(l) = y and d(c(s),c(t)) = |s — t| for all s,¢t € [0,{]. For
r > 0, if a geodesic exists for every z,y € X with d(z,y) < r, then X is called
an r-geodesic metric space. If a geodesic is unique for every z,y € X, we define
[z,y] := ¢([0,1]) and it is called a geodesic segment of z,y € X. In what follows, a
metric space X is always assumed to be w-geodesic and every geodesic is unique.
For z,y € X, let ¢: [0,{] = X be a geodesic of z,y € X. For t € [0, 1], we denote

tr® (1 —t)y = c((1 —1)).
In other words, z := tx @ (1 — t)y satisfies d(z,2) = (1 — t)d(z,y). Let X be
a geodesic metric space. A geodesic triangle is defined by the union of segment
A(z,y,2) := [z,y] U[y, 2] U [2,2]. Let S? be the unit sphere of the Euclidean space

R? and dg: is the spherical metric on S?. Then, for z,y, z € X satisfying d(z,y) +
d(y, z) + d(z,r) < 2, there exist 7,7,z € S? such that d(z,y) = ds2(Z,7),d(y, 2) =
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ds2(y,z) and d(z,z) = ds2(Z,7). A point p € [Z,7| is called a comparison point
for p € [z,y] if ds2(Z,p) = d(x,p). If every p,q on the triangle A(z,y, z) with
d(z,y) +d(y,z) + d(z,2) < 27 and their comparison points p,q € A(T, 7, z) satisfy
that

d(pa Q) < dS2 (pv Q)a
X is called a CAT(1) space. We refer details and examples of a CAT(1) space to

[2].

Theorem 2.1 (Kimura-Sato [11]). Let x,y, z be points in CAT(1) space such that
d(z,y) + d(y,z) + d(z,2) < 27. Let v:=tx ® (1 —t)y for some t € [0,1]. Then

cosd(v, z)sind(x,y) > cosd(z, z) sin(td(z,y)) + cosd(y, z) sin((1 — t)d(z,y)).

Corollary 2.1 (Kimura-Sato [12]). Let x,y, z be points in CAT(1) space such that
d(z,y) +d(y,z) +d(z,x) < 2m. Let v:=tx® (1 —t)y for somet € [0,1]. Then

cosd(v,z) > tcosd(x,z) + (1 —t) cosd(y, z).

Let X be a complete CAT(1) space such that d(v,v") < 7/2 for all v,v" € X, and
let C' be a nonempty closed convex subset of X. Then for any z € X, there exists
a unique point Poz € C such that

d(xz, Pox) = ylgg d(z,y).

That is, using similar techniques to the case of Hilbert space, we can define metric
projection P from X onto C' such that Pox is the nearest point of C to x. Let
X be a metric space and {z,} a bounded sequence of X. The asymptotic center
AC({zn}) of {x,} is defined by

AC{xn}) = {z | imsupd(z,z,) = inf limsup d(x,a:n)}.
n—+00 2€X n—oo
We say that {z,} is A-convergent to a point z if for all subsequences {z,} of {z,},
its asymptotic center consists only of z, that is, AC({z,,}) = {z}. Let X be a metric
space. Let T be a mapping of X into itself. Then, T is said to be nonexpansive if
d(Tz,Ty) < d(z,y) for all x,y € X. Hereafter we denote

F(T):={z|Tz=z}

the set of fixed points. Then T is said to be quasinonexpansive if d(Tx,p) <
d(z,p) for all z € X and p € F(T). Using similar techniques to the case of
Hilbert space, we can prove that F(7T) is a closed convex subset of X. T is
said to be strongly quasinonexpansive if it is quasinonexpansive, and for every
p € F(T) and every sequence in X satisfying that sup,cyd(zn,p) < 7/2 and
limy, o0 (cos d(xy, p)/ cos d(Txy,p)) = 0, it follows that lim, o d(zp, T2y) = 0. T
is said to be A-demiclosed if for any A-convergent sequence {z,} in X, its A-limit
belongs to F(T') whenever lim,, oo d(T'zy, z,) = 0.

The notation of W-mapping is originally proposed by Takahashi. We use the
same notation in the setting of geodesic space as following:
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Definition 2.1 (Takahashi [17]). Let X be a geodesic metric space. Let T, T, ..., T,
be a finite number of mappings of X into itself and ag, a9, ..., o, be real numbers
such that 0 < o; < 1 for every ¢ = 1,2,...,r. Then, we define a mapping W of X
into itself as follows:

U =011 & (1 — Oél)I,

Us := aToU; © (1 — Ozg)],

U=, T.U—1®(1—a,)l,
W .= U,.
Such a mapping W is called a W-mapping generated by 11,15, ..., T, and a1, a9, . .., Q.
The following lemmas are important for our main result.

Lemma 2.1 (Kimura-Sat6 [12]). Let T be a quasinonexpansive mapping defined on
a CAT(1) space. For any real number a € [0,1], the mapping oT & (1 — a)l is
quUasinonerpansive.

The proof of Lemma 2.1 is essentially obtained in [12], so we omit the proof.

Lemma 2.2 (Kimura-Sato [12]). Let T' be a nonexpansive mapping on a CAT(1)
space. For a any real number a € (0, 1], the mapping oT ® (1 —a)l is A-demiclosed.

Lemma 2.3 (Saejung-Yotkaew [15]). Let {sn}, {tn} be sequences of real numbers
such that s, > 0 for every n € N. Let {v,} be a sequence in (0,1) such that
Yo oI = 00. Suppose that spy1 < (1 — Vn)sp + Yntn for every n € N. If
limsup,_, o tn; < 0 for every subsequence {n;} of N satisfying liminf; . (sn;+1 —
8p;) > 0, then limy, 00 55, = 0.

Lemma 2.4 (Espinola-Ferndndez-Leén [4]). Let X be a complete CAT(1) space, and
{zn} be a sequence in X . If there exists x € X such that limsup,,_, . d(xy,z) < 7/2,
then {x,} has a A-convergent subsequence.

Lemma 2.5 (He-Fang-Lopez-Li [7]). Let X be a complete CAT(1) space andp € X.
If a sequence {x,} in X satisfies that limsup,, ,. d(xy,p) < 7/2 and that {z,} is
A-convergent to x € X, then d(x,p) < liminf,,_, d(z,,p).

Lemma 2.6 (Kimura-Sato [12]). Let X be a CAT(1) space such that d(v,v") < 7/2
for every v,v' € X. Let a € [0,1] and u,y,z € X. Then

1 —cosd(Bu®d (1 - p)y,=2)

< (1—79)(1—cosd(y,2)) +~ <1 —

cosd(u, z)
sind(u, y) tan(2=18d(u, y)) + cos d(u, y)> ’

where

| sin((1 - B)d(u.y))
sin(Bd(u, )

)
I



HALPERN ITERATION ON A GEODESIC SPACE 145

3. MAIN RESULT
We begin this section with the following useful lemma.
Lemma 3.1. If§ € [0,7/2] satisfies
sind > sin(ad) + sin((1 — a)d)
for some o € (0,1), then 6 = 0.
Proof. 1t is obtained by an elementary calculation. 0
Next we study the set of fixed points of a W-mapping.

Proposition 3.1. Let X be a CAT(1) space. Let Ty, T>,...,T, be quasinonez-
pansiwve mappings of X into itself such that (\;_; F(T;) # 0 and let i, a9, ..., ap
be real numbers such that 0 < o; < 1 for every i = 1,2,...,r. Let W be the
W -mapping of X into itself generated by T1,T>, ..., T, and ai,q,...,a.. Then,
FW) =iz F(T3).
Proof. 1t is obvious that (),_, F/(T;) C F(W). So, we shall prove F(W) C (,_; F(T;).
Let z € F(W) and w € (;_; F(T;). Then it follows that
0=d(z,2) =d(Wz,2) =d(a, T, Up_12® (1 — o)z, 2) = apd(z, T, Up_12).
Since 0 < o, < 1, we obtain z = T,.U,_1z and hence
cosd(z,w) = cosd(T, Up_12,w)
> cosd(Up—1z,w)
= cosd(a,_1Tr-1Ur—22 ® (1 — ay_1)2z,w)
> ap_qcosd(Tr—1Up—2z,w) + (1 — ayp—1) cos d(z, w)
> ay—1cosd(Ur—2z,w) + (1 — ap_1) cos d(z, w)
> ap_qcosd(ap—oTr oU,—32® (1 — ap_2)z,w)
+ (1 — ap_1) cosd(z,w)
> ap_qap_gcosd(Tr_oU,_3z,w) + (1 — ap—_10,—2) cos d(z, w)
> ...
> ap_105—g - agcosd(TrUr 2z, w)
+ (1 —ar_10p—2---ag)cosd(z,w)
> Qp_1Qp_g - g cosd(Urz, w)
+ (1 —ar_10p—2---ag)cosd(z,w)
> Qpo1Qp_g-ragcosd(aTiz® (1 —aq)z,w)
+ (1 —ap_10p—2---ag)cosd(z,w)
> Qpo1Qp_g - gy cosd(Tyz,w)
+ (1 —ar_105—2- - agaq) cosd(z, w)
> cosd(z,w).
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Then it follows that
d(z,w) = cosd(T1z,w) = d(Uyz,w) = d(anT1z2® (1 — a1)z, w).
By Theorem 2.1 and Lemma 3.1 with
cosd(a1Tiz® (1 — aq)z,w)sind(Tyz, 2)
> cosd(Thz,w)sin(and(T1 2, 2)) + cosd(z, w) sin((1 — a1)d(T1 2, 2)),
we obtain 71z = z. Similarly, we have
d(z,w) = d(TeUyz,w) = d(Uzz,w) = d(aToU12 & (1 — ag)z, w).
By Theorem 2.1 and Lemma 3.1 with
cosd(aaTolU1z & (1 — ag)z,w)sind(TaU 2, 2)
> cos d(ToUyz,w) sin(aed(ToUr 2, 2)) + cos d(z, w) sin((1 — ag)d(ToU 2, 2)),
we obtain 75U,z = 2. Since Uz = z, we obtain Tb2z = z. Using such techniques, we

obtain Tjz = z and U;z = z for all i = 1,2,...,r, and hence z € (,_; F/(T;). This
implies F(W) C (;_; F(T;). Therefore we have F(W) = (,_, F(T;). O

Remark 3.1. Let W, be the W-mappings of X into itself generated by 171,75, ...,T;
and a1, 0.2, .., 0, for n € N. By Proposition 3.1, all the sets of fixed points
{F(W,)} is identical.

The following Lemma 3.2 is essentially given by Kasahara [9]. For the sake of
completeness, we give the proof.

Lemma 3.2 (Kasahara [9]). Let {S,} be a sequence of quasinonerpansive map-
pings of a CAT(1) space X into itself such that (), F(Sn) # 0. Then for given
real numbers oy, € [a,1 —a] C (0,1) and p € (N, F(Sn), if {zn} satisfies that
Sup,en d(xn, p) < 7/2 and

. cosd(xp,p)

lim

n—oo co8 d(anSpTn @ (1 — ay)xy, p)

=1,
then limy, o0 d(Spxn, ) = 0.

Proof. Let 6, = d(Sntn,xn). Assume that {z,} C X and p € (2, F(Sn)
such that sup,cyd(zn,p) < 7/2 and lim, oo (cosd(xy,, p)/ cosd(a,Spr, & (1 —
apn)Tn,p)) = 1, by Theorem 2.1, we have

cos d(anSpn @ (1 — ap)xy, p) sind(Spzy, Tn)

> cos d(Spxn, p) sin(ad(Spxn, ) + cos d(xy, p) sin((1 — a,)d(Spxn, T,))

> min{cos d(Spxn, p), cos d(xy,, p) H(sin(and(Spxn, ) + sin((1 — a,)d(Spzn, xn)))
d(Snxn, ) cos (2a, — 1)d(Spxn, )

= 2cosd i
cos d(xy, p) sin 5 5

Hence
(2a, — 1)0y,

)
cos d(anSpn @ (1 — ay)xy, p) sind, > 2 cosd(xy, p) sin ?n cos 5
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We assume that d,, # 0. Dividing above by 2sin(d,,/2), we have

n 2 n - 1 n
cos d(anSptn & (1 — o)y, p) cos% > cosd(xp,p) cos (az)é
1—2a)d,
> cosd(xp, p) cos (2a)‘
Moreover, dividing above by cos((1 — 2a)d, /2), we have
cos —
cos d(xn,p) < cosd(aSpzy @ (1 — an)mn,p)ﬁ.
cos =
2
Then
cosd(xn, D)
1—2a)d, . (1 —=2a)d, .
Ccos (1 =2a)0n cos(ady) — sin (1 =2a)0n sin(ady,)
< cosd(anSpey @ (1 — an)xn, ) 2 =245
COS #ﬂ

< cos d(anSpn ® (1 — )Ty, p) cos(ady,).
Thus we have that
cosd(xp,p)
cosd(anSpzn @ (1 — ap)xy, p)

cosd(ady,) >

— 1 (n — o0),

which implies lim,,_,o §, = 0, that is, lim, oo d(Spzp, ) = 0. O

Theorem 3.1. Let X be a complete CAT(1) space such that d(v,v") < 7/2 for
every v,v' € X. Let T\, Ts,..., T, be a finite number of quasinonexpansive and
A-demiclosed mappings of X into itself such that F := (\i_; F(T;) # 0, and let
Qn,1,0n2, ..., 0n, be Teal numbers for n € N such that ay; € [a,1—a] for every i =
1,2,...,r, where 0 < a < 1/2. Let W,, be the W-mappings of X into itself generated
by Th, Ty, ..., T, and oy 1,0m2,...,an, forn € N. Let {B,} be a sequence of real
numbers such that 0 < B, < 1 for every n € N,lim, o 8, = 0 and 220:1 B, = 00.
For a given points u,z1 € X, let {x,} be a sequence in X generated by

Tn+l = Bnu @ (1 - Bn)ann
for n € N. Suppose that one of the following conditions holds:
(a) Supv,v’EX d(U, Ul) < 77/2;
(b) d(u, Pru) < w/4 and d(u, Pru) + d(x1, Pru) < m/2;
(¢) >onii Bh = 0.
Then {xz,} converges to Ppu.
Proof. Let p := Pru and let
Sp =1 — cosd(xn,p),

cosd(u,p)

th i =1— — ,
sin d(u, Wy, tan(271 8,d(u, Wyxy,)) + cos d(u, W)
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sin((1 — By)d(u, Wyan))
Vn 1= N sin(Bpd(u, Wypxy)) (u # Wyay),
b (u=Wazn)

for n € N. If {s,},{t,} and {v,} satisfy the conditions of Lemma 2.3, then we
will have lim,_,~ s, = 0, that is, {x,} converges to p = Ppu. Thus the proof of
Theorem 3.1 will be completed. First, it is obvious that s, > 0. By Lemma 2.1,
W, is quasinonexpansive. Then, it follows from Lemma 2.6 that
$nt1 < (1 =) (1 — cosd(Wnzn, p)) + Yntn < (1 —n)sn + ntn
for every n € N. Now, it is also obvious that {7,} is a sequence in (0,1). we show
that >, 4, = 0o holds under each condition (a),(b) and (c). We have
CoS d(xn+17p) = CO8 d(ﬁnu D (1 - ﬁn)annap)

> B cos d(u,p) + (1 - ﬂn) Cos d(annyp)

> Bn COs d(u,p) + (1 - Bn) COS d(ﬂjn,p)

> min{cos d(u, p),cosd(zn,p)}

for all n € N. Thus we have

cos d(xp,p) > min{cos d(u,p),cosd(z1,p)}
= cosmax{d(u,p),d(x1,p)}
>0

for all n € N and hence sup,,cy d(zp,p) < max{d(u,p),d(z1,p)} < 7/2. For the
case of (a) and (b), let M = sup,,cn d(u, Wyzy,). Then we show that M < 7/2. For
(a), it is trivial. For (b), since sup, ey d(zp,p) < max{d(u,p),d(z1,p)}, we have

M = supd(u, Wyxy)
neN

< sup(d(u, p) + d(p, Wnay))
neN

< sgg(d(u,p) + d(p, 7n))

< max{2d(u,p),d(u,p) + d(z1,p)}

<7T
2.

Thus, in each case of (a) and (b), we have
1 sin((1 — 8,)M)

e = sin M
2 . (Bn Bn
= —M 1—-— | M
SinMsm< ! >cos<< "
> B, cos M.
Since > o7, B = o0, it follows that Y > | 7, = co. For the case of (c), we have
1— 2.2
Y = 1—sinwzl—cosﬁn—7T > Pn®

2 2 — 16



HALPERN ITERATION ON A GEODESIC SPACE 149

for every n € N. Therefore, in the case of (c) we also have > °° v, = oo.
Finally, we show that limsup, ,. t,; < 0 for any subsequence {n;} of N with
liminf; oo (Sn;41 — Sn;) > 0. Let {s,,} be a subsequence of {s,} satisfying that
liminf; ;oo (Sn;4+1 — Sn;) > 0, and put

a:= min | inf oy
k=1,...,r \neN
Then we have

0< hm 1nf(snj+1 — Sn;
= hm inf(cos d(2n;,p) — cosd(xn,+1,p))
]*)OO
( COS d(,ﬁn u D ( /an)anmnjap))
< lim inf(cos d(zn,,p) — (Bn, cosd(u,p)
j—00
+ (]' - BTZJ) COS d(Wn]l'n],p))
= liminf(cos d(xy, p) — cos d(Wy,xn;,p))
]*)OO

= liminf(cos d(xy,, p
j—00

)
) -
) -
) —

= lijygglf(cos d(xn;,p) — cosd(on, v TrUn; r—1%n; © (1 — oy ) Tn;, D))
< lim inf(cos d(zn;,p) — (an, » cos d(TrUy, r—12n,, p)
]*)OO

+ (1 — Qp;, 7") Ccos d(xnjap)))

= 11]n_1>1nf(an r €08 d(Tn,;,p) — an; rcosd(T:Up; r—17n;,))

< aliminf(cos d(wn;, p) — cos d(T,Uy, r—12n;, p))
j—ro0

< aliminf(cos d(xp;, p) — cos d(Up; r—1Zn;,DP))
j—00

= aliminf(cos d(zn;, p)
j—o0

_COSd(an r— 11— lUn r—2Tn,; & (1 - anj,r—l)mnj7p))

(

< aliminf(cos d(wn;,p) — (an; r—1c08 d(Tr—1Uy, r—2Tn,, p)
j—00

+ (1 — oy r—1) o8 d(zn,, p)))

= ah}i})ﬂf(an r—1€08d(Tp;,p) — an; 1008 d(Tr1Up; 2, p))

<« hmmf(cosd(xn ,p) — cos d(Tr—1Up; r—2%n;, p))
J—00
<.
<o 1hm1nf(cosd(xn ,p) — cos d(ToUp; 12, p))
j—o0
<a'” 1hm1nf(cosd(xn ,p) — cos d(Un; 1Zn;,D))

J—00

= o/ ! lim inf(cos d(xn;,p) — cosd(an; 1T12n; © (1 — an;1)Tn;, p))

J—00
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<"t limsup(cos d(xn;,p) — cosd(an; 1T12n; © (1 — an;1)Tn;,p))
j—>OO
<0.

Thus we have

lim (cos d(zn,,p) — cosd(an,; 1T17n; © (1 — apn; 1)Tn;,p)) = 0.

j—o0
Using the inequality sup,cy d(wy,,p) < m/2, we also have

cos d(xn;, p)

lim =1.

j—oo cos d(an; 1T1Tn; @ (1 — an;1)Tn,, p)
By Lemma 3.2, it follows that
lim d(Thzp;,7n;) = 0.

j—o0o
Put
yj(k) = Un].,kxn].
for k=1,2,...,r — 1. We show that
B ) =0, ) <
by induction on k£ =1,2,...,r — 1. First, we consider the case £k = 1. We have

(1)

lim d(2p;,y; ") = lim d(zy;, Un;,12n,)
Jj—o0o Jj—oo
= lim d(xp;, an; 1T12n; © (1 — ;1) Tn;)
J]—00 ' '
= lim o, d(T12n;, Tn;)
Jj—oo
=0.
On the other hand, by the calculation above we have

0 < liminf(cos d(zn;,p) — cos d(Up, 27n,, p))
j—o0

= 1i]n_1>ir01f(cos d(wn;,p) — cosd(an; 2ToUn; 1Zn; @ (1 — an; 2)Tn;, p))

< limsup(cos d(xy,, p) — cos d(an; 2ToUn; 1%n; & (1 — an; 2)Tn;,p))
j—00

<0.

Therefore

lim (cos d(:vn].,p) — cos d(anj,ngUnjylxnj ®(1- anj’g)xnj,p)) =0.

J—00
Using the inequality sup;cy d(7y;,p) < m/2, we also have

‘ cosd(xy.,p)
lim - =1
j—o0 cos d(an; 2ToUn; 1Tn; © (1 — anj2)Tn;, D)

By Lemma 3.2, and since lim;_, d(xnj,y§1)) =0,

lim d(Tay", i) < lim (AT, @) + dln,,557)) = 0.
j—o00 j—o0
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Hence we have that case k = 1, that is,
lim d(xp, ,yj( )) =0, lim d(TgyJ(.l),yJ(»l)) =0.
]% J]—00

holds. Next, assume the hypothesis with k£ = [, that is,

lim d(z,,,y") =0, Jim d(73. ") =0
]*)OO

holds. Then by assumption, we have
l
lim d(:vn],y( +1)) = lim d(@pn;, Un, 141%n;)
Jj—roo Jj—roo

= lm d(zn;, o, 1+1714+1Un; 1%n; © (1 — o, 141)Tn;)
j—00

= lim d(xn] ) anj,l+1,—rl+1y]( ) D (1 - an],lJrl)xn])
j—o0

= lim d(xn],anj7l+1yj( ) o) (1 — anj,l+l)xnj)
j—00

. !
= lim O[nj7l+1d($nj7y§ ))
J]—00 :

=0
and

0 < liminf(cos d(wn,, p) — cos d(Up, 1+2%n;,p))

]—)OO

= 11]11_1>1£f(008 d($n ,p) — cos d(anj,l+2ﬂ+2Unj,l+193nj @ (11— Oénj,l+1)$njap))

= limsup(cos d(zn,,p) — cosd(an, 1+2Ti12Un; 1417n; © (1 — an; 141)Tn;, D))
Jj—oo

<0.
Therefore

]lr{:O(COS d(ﬁn 5p) COs d(anj,l+2ﬂ+2Unj,l+lxnj 2] (1 - OZNj,l—‘y-l)xnj?p)) =0.

Using inequality sup,cy d(7n,p) < 7/2, we have

cos d(Tn;, ) _

lim
Jj—roo COS d(an],l+2Tl+2Un J+1Tn; D (1- Ctnj,l+1)$nj,p)

(l+1))

Since lim;_,o d(wn].,yj = 0 and by Lemma 3.2, we have

lim 0 d(Tayy Ty ™Y) = lim d(Tay) ™ 20,
]*)OO

= hm d(n+2Unj,l+1xnj7xnj) =0.
]1—
So, we have the hypothesis k =1 + 1, that is,

lim d(zy,,y ") =0, lim d(Toy{ "yt = 0
j—00 J—00

for k=1,2,...,r — 1. By induction, we obtain

lim d(xnj,yj(k)) =0, lim d(Tk+1y§k), yj(-k)) =0
j—o00 J—00
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forall k=1,2,...,r—1. By Lemma 2.4, let {zn, } be a A-convergent subsequence
of {zy;} with the A-limit z such that limj_ec d(u, z;, ) = liminf; o0 d(u, zn,).
Then, since 71 is A-demiclosed and lim; oo d(wyp,, T17,,;) = 0, the A-limit 2 of

{zn,, } belongs to F'(T1). Similarly, since T3 is A-demiclosed and lim;—,c d(2y, , y](. )) =

lim; o0 d(y](-l),TQyj(.l)) =0, {y](i)} is A-convergent to z and the A-limit z is belongs
to F(Tz). Using such techniques, we obtain z € F(T;) for all i = 1,2,...r, and
hence z € (),_, F(T;) = F. Using Lemma 2.5 and the definition of the metric
projection, we have
lim inf d(u, Wy, zy,) = liminf d(u, an, » TrUn; r— 170, © (1 — an, ) Tn;)
Jj—o0 j—oo
= liminf d(u, anj,rTryJ(»rfl) ® (1 — an,)Tn;)

J—00

— lim inf d(u, an, 5"V & (1 = ap,)an,)
]*)OO

= liminf d(u, an; +Tn; © (1 — an; )20, )
j—o0

= liminf d(u, z,,;)
J—00

= kl;rl;o d(u, Tn,, )

> d(u, z)

Therefore, we obtain

lim sup ¢,
j—roo ’
= limsup (1 — cos d(u, p)
j—ro0 sin d(u, Wy, ;) tan(271 8, d(u, Wy, xp,)) + cos d(u, Wy, @y,
) cos d(u, p)
—1 1
I?Liljp < 0 + cos d(u, Wy, l‘nj))
. cosd(u, p)
N cos(liminf; o d(u, Wy, 2n,))
~ cosd(u,p)
cosd(u, z)

<0.

By Lemma 2.3, we have that lim,,_,o s, = 0, that is, {z,,} converges to p = Pru,
and we finish the proof. O

Remark 3.2. By Lemma 2.2, a nonexpansive mapping defined on a CAT(1) space
having a fixed point is quasinonexpansive and A-demiclosed.

Remark 3.3. In general, if T1,T5, ..., T, are nonexpansive, then W-mapping gen-
erated by T1,Ts, ..., T, and a1, a9, ...,q, is not necessarily nonerpansive.
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4. APPLICATIONS

Let us recall some basic notation about functions on metric space. Let X be a
geodesic metric space and let f be a function from X into (—oo,o0]. We say f is
lower semicontinuous if the set {z € X | f(z) < a} is closed for all a € R. The
function f is said to be proper if the set {x € X | f(z) # oo} is nonempty. We say
f is convex if

Ftr ® (1—1)y) < 1) + (1 - 1))
for all z,y € X and t € (0,1). Let X be a complete CAT(1) space such that
d(v,v") < /2 for every v,v' € X. Let f be a proper lower semicontinuous convex
function from X into (—oo,00]. A resolvent of f is defined by

(4.1) Ryx := argmin{f(y) + tand(y, z) sind(y, )}
yeX
n [10]. Another type of the resolvent of f is defined by
(4.2) Rx := argmin { f(y) — logcosd(y, x)}
yeX

in [8]. Both resolvents are quasinonexpansive, A-demiclosed, and satisfy F(Ry) =
argminy f ([10, 8]). So, we can approximate a common minimizer of a finite number
of functions by the following theorem.

Theorem 4.1. Let X be a complete CAT(1) space such that d(v,v") < 7/2 for

every v,v' € X. Let fi,fo,..., fr be a finite number of convex function from X
into (—oo,00] such that F := (),_, argminy f; # 0, and let an1,an2,...,0n, be
real numbers for n € N such that ay; € [a,1 — a] for every i = 1,2,...,r, where

0 < a < 1/2. Let Ry, be a resolvent defined by either (4.1) or (4.2) for i =
1,2,...,r. Let W, be the W-mappings of X into itself generated by Ry, , Ry,, ..., Ry,
and a1, 0m2, ..., 0y forn € N. Let {B3,} be a sequence of real numbers such that
0 < B <1 for every n € N,limy, o0 B, = 0, and Y o2 B = o0. For given points
u,z1 € X, let {x,,} be a sequence in X generated by

Tnt1 = Bru® (1 — By) Wy,
for n € N. Suppose that one of the following conditions holds:
(a) sup, yex d(v,v") < 7/2;
(b) d(u, Pru) < w/4 and d(u, Pru) + d(x1, Pru) < 7/2;
() 2onti B = .

Then {z,} converges to Ppu.

Let us consider a more specialized situation. For a closed convex subset C' of a
complete CAT(1) space X, put

. 0 (ze0)
o) = { o (x¢QC).
This function i¢ is a proper lower semicontinuous convex function. Thus the resol-

vent R;. of ic is defined by either (4.1) or (4.2), and it is quasinonexpansive and
A-demiclosed. In fact, we know R;, = Pc and F(R;,) = argminic = C for both
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definitions (4.1) and (4.2). Thus we can apply Theorem 3.1 and have an approxima-
tion of the nearest point in the intersection of finite family of closed convex subsets
from a given point by using corresponding metric projection of each subset by the
following theorem.

Theorem 4.2. Let X be a complete CAT(1) space such that d(v,v") < w/2 for
every v,v' € X. Let C1,Cy,...,C, be a finite number of closed convex subset of X
such that C := (i_; C; # 0, and let o 1,an2,...,0n, be real numbers for n € N
such that o, ; € [a,1—a] for everyi=1,2,...,r, where 0 < a < 1/2. Let Wy, be the
W-mappings of X into itself generated by Pc,, Pc,,...,Pc, and an1,0n2,. .., 00
for n € N. Let {8,} be a sequence of real numbers such that 0 < (3, < 1 for every
n € N, limy o0 B = 0 and Y07 | B, = co. For a given points u,x1 € X, let {x,}
be a sequence in X generated by

Tn4+1 = ﬁnu ® (1 - Bn)ann
for n € N. Suppose that one of the following conditions holds:
(a) Supv,’u’GX d(U, UI) < 7T/2;
(b) d(u, Pou) < w/4 and d(u, Pou) + d(z1, Pou) < w/2;
(€) Yonty Br = oo

Then {z,} converges to Pcu.

In the introduction we mention that there exists an example which is quasinon-
expansive but not strongly quasinonexpansive. The following is such an example.

Example 4.1. A closed interval [—1,1] is a complete CAT(1) space. Let T :
[—1,1] — [—1,1] be defined by Tz := —z. Then F(T) = {0}. It is easy to obtain
that T is quasinonexpansive and A-demiclosed but it is not strongly quasinonex-
pansive.
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