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Halpern iteration using single strongly quasinonexpansive mapping in a CAT(1)
space. Remark that a CAT(1) space is not necessarily a convex metric space.

In this paper, we consider the Halpern iteration with W -mapping generated by a
finite family of quasinonexpansive mappings in a CAT(1) space, that is, we showed
the following theorem under the similar condition in the result of Kimura-Satô:

Theorem 1.1. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for
every v, v′ ∈ X. Let T1, T2, . . . , Tr be a finite number of quasinonexpansive and
∆-demiclosed mappings of X into itself such that F :=

∩r
i=1 F (Ti) ̸= ∅, and let

αn,1, an,2, . . . , αn,r be real numbers for n ∈ N such that αn,i ∈ [a, 1−a] for every i =
1, 2, . . . , r, where 0 < a < 1/2. Let Wn be the W-mappings of X into itself generated
by T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. Let {βn} be a sequence of real
numbers such that 0 < βn < 1 for every n ∈ N, limn→∞ βn = 0 and

∑∞
n=1 βn = ∞.

For a given points u, x1 ∈ X, let {xn} be a sequence in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PFu) < π/4 and d(u, PFu) + d(x1, PFu) < π/2;
(c)

∑∞
n=1 β

2
n = ∞.

Then {xn} converges to PFu.

The proof will be given in §3.
In §4, we give some applications of the main theorem. In Theorem 4.1, we give

an approximation of a minimizer of convex functions on a complete CAT(1) space.
A further application will be given in Theorem 4.2. We also give an example of
quasinonexpansive mappings which is not strongly quasinonexpansive in Example
4.1.

2. Preliminaries

Let (X, d) be a metric space. For x, y ∈ X, a mapping c : [0, l] → X is a geodesic
of x, y ∈ X if c(0) = x, c(l) = y and d(c(s), c(t)) = |s − t| for all s, t ∈ [0, l]. For
r > 0, if a geodesic exists for every x, y ∈ X with d(x, y) < r, then X is called
an r-geodesic metric space. If a geodesic is unique for every x, y ∈ X, we define
[x, y] := c([0, l]) and it is called a geodesic segment of x, y ∈ X. In what follows, a
metric space X is always assumed to be π-geodesic and every geodesic is unique.
For x, y ∈ X, let c : [0, l] → X be a geodesic of x, y ∈ X. For t ∈ [0, 1], we denote

tx⊕ (1− t)y := c((1− t)l).

In other words, z := tx ⊕ (1 − t)y satisfies d(x, z) = (1 − t)d(x, y). Let X be
a geodesic metric space. A geodesic triangle is defined by the union of segment
△(x, y, z) := [x, y] ∪ [y, z] ∪ [z, x]. Let S2 be the unit sphere of the Euclidean space
R3 and dS2 is the spherical metric on S2. Then, for x, y, z ∈ X satisfying d(x, y) +
d(y, z) + d(z, x) < 2π, there exist x, y, z ∈ S2 such that d(x, y) = dS2(x, y), d(y, z) =
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dS2(y, z) and d(z, x) = dS2(z, x). A point p ∈ [x, y] is called a comparison point
for p ∈ [x, y] if dS2(x, p) = d(x, p). If every p, q on the triangle △(x, y, z) with
d(x, y) + d(y, z) + d(z, x) < 2π and their comparison points p, q ∈ △(x, y, z) satisfy
that

d(p, q) ≤ dS2(p, q),

X is called a CAT(1) space. We refer details and examples of a CAT(1) space to
[2].

Theorem 2.1 (Kimura-Satô [11]). Let x, y, z be points in CAT(1) space such that
d(x, y) + d(y, z) + d(z, x) < 2π. Let v := tx⊕ (1− t)y for some t ∈ [0, 1]. Then

cos d(v, z) sin d(x, y) ≥ cos d(x, z) sin(td(x, y)) + cos d(y, z) sin((1− t)d(x, y)).

Corollary 2.1 (Kimura-Satô [12]). Let x, y, z be points in CAT(1) space such that
d(x, y) + d(y, z) + d(z, x) < 2π. Let v := tx⊕ (1− t)y for some t ∈ [0, 1]. Then

cos d(v, z) ≥ t cos d(x, z) + (1− t) cos d(y, z).

Let X be a complete CAT(1) space such that d(v, v′) < π/2 for all v, v′ ∈ X, and
let C be a nonempty closed convex subset of X. Then for any x ∈ X, there exists
a unique point PCx ∈ C such that

d(x, PCx) = inf
y∈C

d(x, y).

That is, using similar techniques to the case of Hilbert space, we can define metric
projection PC from X onto C such that PCx is the nearest point of C to x. Let
X be a metric space and {xn} a bounded sequence of X. The asymptotic center
AC({xn}) of {xn} is defined by

AC({xn}) :=
{
z | lim sup

n→∞
d(z, xn) = inf

x∈X
lim sup
n→∞

d(x, xn)

}
.

We say that {xn} is ∆-convergent to a point z if for all subsequences {xni} of {xn},
its asymptotic center consists only of z, that is, AC({xni}) = {z}. LetX be a metric
space. Let T be a mapping of X into itself. Then, T is said to be nonexpansive if
d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X. Hereafter we denote

F (T ) := {z | Tz = z}

the set of fixed points. Then T is said to be quasinonexpansive if d(Tx, p) ≤
d(x, p) for all x ∈ X and p ∈ F (T ). Using similar techniques to the case of
Hilbert space, we can prove that F (T ) is a closed convex subset of X. T is
said to be strongly quasinonexpansive if it is quasinonexpansive, and for every
p ∈ F (T ) and every sequence in X satisfying that supn∈N d(xn, p) < π/2 and
limn→∞(cos d(xn, p)/ cos d(Txn, p)) = 0, it follows that limn→∞ d(xn, Txn) = 0. T
is said to be ∆-demiclosed if for any ∆-convergent sequence {xn} in X, its ∆-limit
belongs to F (T ) whenever limn→∞ d(Txn, xn) = 0.

The notation of W -mapping is originally proposed by Takahashi. We use the
same notation in the setting of geodesic space as following:
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Definition 2.1 (Takahashi [17]). LetX be a geodesic metric space. Let T1, T2, . . . , Tr

be a finite number of mappings of X into itself and α1, α2, . . . , αr be real numbers
such that 0 ≤ αi ≤ 1 for every i = 1, 2, . . . , r. Then, we define a mapping W of X
into itself as follows:

U1 := α1T1 ⊕ (1− α1)I,

U2 := α2T2U1 ⊕ (1− α2)I,

· · ·
Ur := αrTrUr−1 ⊕ (1− αr)I,

W := Ur.

Such a mappingW is called aW -mapping generated by T1, T2, . . . , Tr and α1, α2, . . . , αr.

The following lemmas are important for our main result.

Lemma 2.1 (Kimura-Satô [12]). Let T be a quasinonexpansive mapping defined on
a CAT(1) space. For any real number α ∈ [0, 1], the mapping αT ⊕ (1 − α)I is
quasinonexpansive.

The proof of Lemma 2.1 is essentially obtained in [12], so we omit the proof.

Lemma 2.2 (Kimura-Satô [12]). Let T be a nonexpansive mapping on a CAT(1)
space. For a any real number α ∈ (0, 1], the mapping αT⊕(1−α)I is ∆-demiclosed.

Lemma 2.3 (Saejung-Yotkaew [15]). Let {sn}, {tn} be sequences of real numbers
such that sn ≥ 0 for every n ∈ N. Let {γn} be a sequence in (0, 1) such that∑∞

n=0 γn = ∞. Suppose that sn+1 ≤ (1 − γn)sn + γntn for every n ∈ N. If
lim supj→∞ tnj ≤ 0 for every subsequence {nj} of N satisfying lim infj→∞(snj+1 −
snj ) ≥ 0, then limn→∞ sn = 0.

Lemma 2.4 (Esṕınola-Fernández-León [4]). Let X be a complete CAT(1) space, and
{xn} be a sequence in X. If there exists x ∈ X such that lim supn→∞ d(xn, x) < π/2,
then {xn} has a ∆-convergent subsequence.

Lemma 2.5 (He-Fang-Lopez-Li [7]). Let X be a complete CAT(1) space and p ∈ X.
If a sequence {xn} in X satisfies that lim supn→∞ d(xn, p) < π/2 and that {xn} is
∆-convergent to x ∈ X, then d(x, p) ≤ lim infn→∞ d(xn, p).

Lemma 2.6 (Kimura-Satô [12]). Let X be a CAT(1) space such that d(v, v′) < π/2
for every v, v′ ∈ X. Let α ∈ [0, 1] and u, y, z ∈ X. Then

1− cos d(βu⊕ (1− β)y, z)

≤ (1− γ)(1− cos d(y, z)) + γ

(
1− cos d(u, z)

sin d(u, y) tan(2−1βd(u, y)) + cos d(u, y)

)
,

where

γ :=

 1− sin((1− β)d(u, y))

sin(βd(u, y))
(u ̸= y),

β (u = y).
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3. Main result

We begin this section with the following useful lemma.

Lemma 3.1. If δ ∈ [0, π/2] satisfies

sin δ ≥ sin(αδ) + sin((1− α)δ)

for some α ∈ (0, 1), then δ = 0.

Proof. It is obtained by an elementary calculation. □

Next we study the set of fixed points of a W -mapping.

Proposition 3.1. Let X be a CAT(1) space. Let T1, T2, . . . , Tr be quasinonex-
pansive mappings of X into itself such that

∩r
i=1 F (Ti) ≠ ∅ and let α1, α2, . . . , αr

be real numbers such that 0 < αi < 1 for every i = 1, 2, . . . , r. Let W be the
W -mapping of X into itself generated by T1, T2, . . . , Tr and α1, α2, . . . , αr. Then,
F (W ) =

∩r
i=1 F (Ti).

Proof. It is obvious that
∩r

i=1 F (Ti) ⊂ F (W ). So, we shall prove F (W ) ⊂
∩r

i=1 F (Ti).
Let z ∈ F (W ) and w ∈

∩r
i=1 F (Ti). Then it follows that

0 = d(z, z) = d(Wz, z) = d(αrTrUr−1z ⊕ (1− αr)z, z) = αrd(z, TrUr−1z).

Since 0 < αr ≤ 1, we obtain z = TrUr−1z and hence

cos d(z, w) = cos d(TrUr−1z, w)

≥ cos d(Ur−1z, w)

= cos d(αr−1Tr−1Ur−2z ⊕ (1− αr−1)z, w)

≥ αr−1 cos d(Tr−1Ur−2z, w) + (1− αr−1) cos d(z, w)

≥ αr−1 cos d(Ur−2z, w) + (1− αr−1) cos d(z, w)

≥ αr−1 cos d(αr−2Tr−2Ur−3z ⊕ (1− αr−2)z, w)

+ (1− αr−1) cos d(z, w)

≥ αr−1αr−2 cos d(Tr−2Ur−3z, w) + (1− αr−1αr−2) cos d(z, w)

≥ · · ·
≥ αr−1αr−2 · · ·α2 cos d(T2U1z, w)

+ (1− αr−1αr−2 · · ·α2) cos d(z, w)

≥ αr−1αr−2 · · ·α2 cos d(U1z, w)

+ (1− αr−1αr−2 · · ·α2) cos d(z, w)

≥ αr−1αr−2 · · ·α2 cos d(α1T1z ⊕ (1− α1)z, w)

+ (1− αr−1αr−2 · · ·α2) cos d(z, w)

≥ αr−1αr−2 · · ·α2α1 cos d(T1z, w)

+ (1− αr−1αr−2 · · ·α2α1) cos d(z, w)

≥ cos d(z, w).
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Then it follows that

d(z, w) = cos d(T1z, w) = d(U1z, w) = d(α1T1z ⊕ (1− α1)z, w).

By Theorem 2.1 and Lemma 3.1 with

cos d(α1T1z ⊕ (1− α1)z, w) sin d(T1z, z)

≥ cos d(T1z, w) sin(α1d(T1z, z)) + cos d(z, w) sin((1− α1)d(T1z, z)),

we obtain T1z = z. Similarly, we have

d(z, w) = d(T2U1z, w) = d(U2z, w) = d(α2T2U1z ⊕ (1− α2)z, w).

By Theorem 2.1 and Lemma 3.1 with

cos d(α2T2U1z ⊕ (1− α2)z, w) sin d(T2U1z, z)

≥ cos d(T2U1z, w) sin(α2d(T2U1z, z)) + cos d(z, w) sin((1− α2)d(T2U1z, z)),

we obtain T2U1z = z. Since U1z = z, we obtain T2z = z. Using such techniques, we
obtain Tiz = z and Uiz = z for all i = 1, 2, . . . , r, and hence z ∈

∩r
i=1 F (Ti). This

implies F (W ) ⊂
∩r

i=1 F (Ti). Therefore we have F (W ) =
∩r

i=1 F (Ti). □

Remark 3.1. LetWn be theW -mappings ofX into itself generated by T1, T2, . . . , Tr

and αn,1, αn,2, . . . , αn,r for n ∈ N. By Proposition 3.1, all the sets of fixed points
{F (Wn)} is identical.

The following Lemma 3.2 is essentially given by Kasahara [9]. For the sake of
completeness, we give the proof.

Lemma 3.2 (Kasahara [9]). Let {Sn} be a sequence of quasinonexpansive map-
pings of a CAT(1) space X into itself such that

∩∞
n=1 F (Sn) ̸= ∅. Then for given

real numbers αn ∈ [a, 1 − a] ⊂ (0, 1) and p ∈
∩∞

n=1 F (Sn), if {xn} satisfies that
supn∈N d(xn, p) < π/2 and

lim
n→∞

cos d(xn, p)

cos d(αnSnxn ⊕ (1− αn)xn, p)
= 1,

then limn→∞ d(Snxn, xn) = 0.

Proof. Let δn := d(Snxn, xn). Assume that {xn} ⊂ X and p ∈
∩∞

n=1 F (Sn)
such that supn∈N d(xn, p) < π/2 and limn→∞(cos d(xn, p)/ cos d(αnSnxn ⊕ (1 −
αn)xn, p)) = 1, by Theorem 2.1, we have

cos d(αnSnxn ⊕ (1− αn)xn, p) sin d(Snxn, xn)

≥ cos d(Snxn, p) sin(αd(Snxn, xn)) + cos d(xn, p) sin((1− αn)d(Snxn, xn))

≥ min{cos d(Snxn, p), cos d(xn, p)}(sin(αnd(Snxn, xn)) + sin((1− αn)d(Snxn, xn)))

= 2 cos d(xn, p) sin
d(Snxn, xn)

2
cos

(2αn − 1)d(Snxn, xn)

2
.

Hence

cos d(αnSnxn ⊕ (1− αn)xn, p) sin δn ≥ 2 cos d(xn, p) sin
δn
2

cos
(2αn − 1)δn

2
.
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We assume that δn ̸= 0. Dividing above by 2 sin(δn/2), we have

cos d(αnSnxn ⊕ (1− αn)xn, p) cos
δn
2

≥ cos d(xn, p) cos
(2αn − 1)δn

2

≥ cos d(xn, p) cos
(1− 2a)δn

2
.

Moreover, dividing above by cos((1 − 2a)δn/2), we have

cos d(xn, p) ≤ cos d(αSnxn ⊕ (1− αn)xn, p)
cos

δn
2

cos
(1− 2a)δn

2

.

Then

cos d(xn, p)

≤ cos d(αnSnxn ⊕ (1− αn)xn, p)
cos

(1− 2a)δn
2

cos(aδn)− sin
(1− 2a)δn

2
sin(aδn)

cos
(1− 2a)δn

2
≤ cos d(αnSnxn ⊕ (1− αn)xn, p) cos(aδn).

Thus we have that

cos d(aδn) ≥
cos d(xn, p)

cos d(αnSnxn ⊕ (1− αn)xn, p)
→ 1 (n → ∞),

which implies limn→∞ δn = 0, that is, limn→∞ d(Snxn, xn) = 0. □

Theorem 3.1. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for
every v, v′ ∈ X. Let T1, T2, . . . , Tr be a finite number of quasinonexpansive and
∆-demiclosed mappings of X into itself such that F :=

∩r
i=1 F (Ti) ̸= ∅, and let

αn,1, an,2, . . . , αn,r be real numbers for n ∈ N such that αn,i ∈ [a, 1−a] for every i =
1, 2, . . . , r, where 0 < a < 1/2. Let Wn be the W-mappings of X into itself generated
by T1, T2, . . . , Tr and αn,1, αn,2, . . . , αn,r for n ∈ N. Let {βn} be a sequence of real
numbers such that 0 < βn < 1 for every n ∈ N, limn→∞ βn = 0 and

∑∞
n=1 βn = ∞.

For a given points u, x1 ∈ X, let {xn} be a sequence in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PFu) < π/4 and d(u, PFu) + d(x1, PFu) < π/2;
(c)

∑∞
n=1 β

2
n = ∞.

Then {xn} converges to PFu.

Proof. Let p := PFu and let

sn := 1− cos d(xn, p),

tn := 1− cos d(u, p)

sin d(u,Wnxn) tan(2−1βnd(u,Wnxn)) + cos d(u,Wnxn)
,
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γn :=

 1− sin((1− βn)d(u,Wnxn))

sin(βnd(u,Wnxn))
(u ̸= Wnxn),

βn (u = Wnxn)

for n ∈ N. If {sn}, {tn} and {γn} satisfy the conditions of Lemma 2.3, then we
will have limn→∞ sn = 0, that is, {xn} converges to p = PFu. Thus the proof of
Theorem 3.1 will be completed. First, it is obvious that sn ≥ 0. By Lemma 2.1,
Wn is quasinonexpansive. Then, it follows from Lemma 2.6 that

sn+1 ≤ (1− γn)(1− cos d(Wnxn, p)) + γntn ≤ (1− γn)sn + γntn

for every n ∈ N. Now, it is also obvious that {γn} is a sequence in (0, 1). we show
that

∑∞
n=1 γn = ∞ holds under each condition (a),(b) and (c). We have

cos d(xn+1, p) = cos d(βnu⊕ (1− βn)Wnxn, p)

≥ βn cos d(u, p) + (1− βn) cos d(Wnxn, p)

≥ βn cos d(u, p) + (1− βn) cos d(xn, p)

≥ min{cos d(u, p), cos d(xn, p)}

for all n ∈ N. Thus we have

cos d(xn, p) ≥ min{cos d(u, p), cos d(x1, p)}
= cosmax{d(u, p), d(x1, p)}
> 0

for all n ∈ N and hence supn∈N d(xn, p) ≤ max{d(u, p), d(x1, p)} < π/2. For the
case of (a) and (b), let M = supn∈N d(u,Wnxn). Then we show that M < π/2. For
(a), it is trivial. For (b), since supn∈N d(xn, p) ≤ max{d(u, p), d(x1, p)}, we have

M = sup
n∈N

d(u,Wnxn)

≤ sup
n∈N

(d(u, p) + d(p,Wnxn))

≤ sup
n∈N

(d(u, p) + d(p, xn))

≤ max{2d(u, p), d(u, p) + d(x1, p)}

<
π

2
.

Thus, in each case of (a) and (b), we have

γn ≥ 1− sin((1− βn)M)

sinM

=
2

sinM
sin

(
βn
2
M

)
cos

((
1− βn

2

)
M

)
≥ βn cosM.

Since
∑∞

n=1 βn = ∞, it follows that
∑∞

n=1 γn = ∞. For the case of (c), we have

γn ≥ 1− sin
(1− βn)π

2
= 1− cos

βnπ

2
≥ β2

nπ
2

16
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for every n ∈ N. Therefore, in the case of (c) we also have
∑∞

n=1 γn = ∞.
Finally, we show that lim supj→∞ tnj ≤ 0 for any subsequence {nj} of N with
lim infj→∞(snj+1 − snj ) ≥ 0. Let {snj} be a subsequence of {sn} satisfying that
lim infj→∞(snj+1 − snj ) ≥ 0, and put

α := min
k=1,...,r

(
inf
n∈N

αn,k

)
.

Then we have

0 ≤ lim inf
j→∞

(snj+1 − snj )

= lim inf
j→∞

(cos d(xnj , p)− cos d(xnj+1, p))

= lim inf
j→∞

(cos d(xnj , p)− cos d(βnju⊕ (1− βnj )Wnjxnj , p))

≤ lim inf
j→∞

(cos d(xnj , p)− (βnj cos d(u, p)

+ (1− βnj ) cos d(Wnjxnj , p))

= lim inf
j→∞

(cos d(xnj , p)− cos d(Wnjxnj , p))

= lim inf
j→∞

(cos d(xnj , p)− cos d(αnj ,rTrUnj ,r−1xnj ⊕ (1− αnj ,r)xnj , p))

≤ lim inf
j→∞

(cos d(xnj , p)− (αnj ,r cos d(TrUnj ,r−1xnj , p)

+ (1− αnj ,r) cos d(xnj , p)))

= lim inf
j→∞

(αnj ,r cos d(xnj , p)− αnj ,r cos d(TrUnj ,r−1xnj , p))

≤ α lim inf
j→∞

(cos d(xnj , p)− cos d(TrUnj ,r−1xnj , p))

≤ α lim inf
j→∞

(cos d(xnj , p)− cos d(Unj ,r−1xnj , p))

= α lim inf
j→∞

(cos d(xnj , p)

− cos d(αnj ,r−1Tr−1Unj ,r−2xnj ⊕ (1− αnj ,r−1)xnj , p))

≤ α lim inf
j→∞

(cos d(xnj , p)− (αnj ,r−1 cos d(Tr−1Unj ,r−2xnj , p)

+ (1− αnj ,r−1) cos d(xnj , p)))

= α lim inf
j→∞

(αnj ,r−1 cos d(xnj , p)− αnj ,r−1 cos d(Tr−1Unj ,r−2xnj , p))

≤ α2 lim inf
j→∞

(cos d(xnj , p)− cos d(Tr−1Unj ,r−2xnj , p))

≤ · · ·
≤ αr−1 lim inf

j→∞
(cos d(xnj , p)− cos d(T2Unj ,1xnj , p))

≤ αr−1 lim inf
j→∞

(cos d(xnj , p)− cos d(Unj ,1xnj , p))

= αr−1 lim inf
j→∞

(cos d(xnj , p)− cos d(αnj ,1T1xnj ⊕ (1− αnj ,1)xnj , p))
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≤ αr−1 lim sup
j→∞

(cos d(xnj , p)− cos d(αnj ,1T1xnj ⊕ (1− αnj ,1)xnj , p))

≤ 0.

Thus we have

lim
j→∞

(cos d(xnj , p)− cos d(αnj ,1T1xnj ⊕ (1− αnj ,1)xnj , p)) = 0.

Using the inequality supj∈N d(xnj , p) < π/2, we also have

lim
j→∞

cos d(xnj , p)

cos d(αnj ,1T1xnj ⊕ (1− αnj ,1)xnj , p)
= 1.

By Lemma 3.2, it follows that

lim
j→∞

d(T1xnj , xnj ) = 0.

Put

y
(k)
j := Unj ,kxnj

for k = 1, 2, . . . , r − 1. We show that

lim
j→∞

d(xnj , y
(k)
j ) = 0, lim

j→∞
d(Tk+1y

(k)
j , y

(k)
j ) = 0

by induction on k = 1, 2, . . . , r − 1. First, we consider the case k = 1. We have

lim
j→∞

d(xnj , y
(1)
j ) = lim

j→∞
d(xnj , Unj ,1xnj )

= lim
j→∞

d(xnj , αnj ,1T1xnj ⊕ (1− αnj ,1)xnj )

= lim
j→∞

αnjd(T1xnj , xnj )

= 0.

On the other hand, by the calculation above we have

0 ≤ lim inf
j→∞

(cos d(xnj , p)− cos d(Unj ,2xnj , p))

= lim inf
j→∞

(cos d(xnj , p)− cos d(αnj ,2T2Unj ,1xnj ⊕ (1− αnj ,2)xnj , p))

≤ lim sup
j→∞

(cos d(xnj , p)− cos d(αnj ,2T2Unj ,1xnj ⊕ (1− αnj ,2)xnj , p))

≤ 0.

Therefore

lim
j→∞

(cos d(xnj , p)− cos d(αnj ,2T2Unj ,1xnj ⊕ (1− αnj ,2)xnj , p)) = 0.

Using the inequality supj∈N d(xnj , p) < π/2, we also have

lim
j→∞

cos d(xnj , p)

cos d(αnj ,2T2Unj ,1xnj ⊕ (1− αnj ,2)xnj , p)
= 1.

By Lemma 3.2, and since limj→∞ d(xnj , y
(1)
j ) = 0,

lim
j→∞

d(T2y
(1)
j , y

(1)
j ) ≤ lim

j→∞
(d(T2y

(1)
j , xnj ) + d(xnj , y

(1)
j )) = 0.
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Hence we have that case k = 1, that is,

lim
j→∞

d(xnj , y
(1)
j ) = 0, lim

j→∞
d(T2y

(1)
j , y

(1)
j ) = 0.

holds. Next, assume the hypothesis with k = l, that is,

lim
j→∞

d(xnj , y
(l)
j ) = 0, lim

j→∞
d(Tl+1y

(l)
j , y

(l)
j ) = 0

holds. Then by assumption, we have

lim
j→∞

d(xnj , y
(l+1)
j ) = lim

j→∞
d(xnj , Unj ,l+1xnj )

= lim
j→∞

d(xnj , αnj ,l+1Tl+1Unj ,lxnj ⊕ (1− αnj ,l+1)xnj )

= lim
j→∞

d(xnj , αnj ,l+1Tl+1y
(l)
j ⊕ (1− αnj ,l+1)xnj )

= lim
j→∞

d(xnj , αnj ,l+1y
(l)
j ⊕ (1− αnj ,l+1)xnj )

= lim
j→∞

αnj ,l+1d(xnj , y
(l)
j )

= 0

and

0 ≤ lim inf
j→∞

(cos d(xnj , p)− cos d(Unj ,l+2xnj , p))

= lim inf
j→∞

(cos d(xnj , p)− cos d(αnj ,l+2Tl+2Unj ,l+1xnj ⊕ (1− αnj ,l+1)xnj , p))

= lim sup
j→∞

(cos d(xnj , p)− cos d(αnj ,l+2Tl+2Unj ,l+1xnj ⊕ (1− αnj ,l+1)xnj , p))

≤ 0.

Therefore

lim
j→∞

(cos d(xnj , p)− cos d(αnj ,l+2Tl+2Unj ,l+1xnj ⊕ (1− αnj ,l+1)xnj , p)) = 0.

Using inequality supj∈N d(xnjp) < π/2, we have

lim
j→∞

cos d(xnj , p)

cos d(αnj ,l+2Tl+2Unj ,l+1xnj ⊕ (1− αnj ,l+1)xnj , p)
= 1.

Since limj→∞ d(xnj , y
(l+1)
j ) = 0 and by Lemma 3.2, we have

lim
j→∞

d(Tl+2y
(l+1)
j , y

(l+1)
j ) = lim

j→∞
d(Tl+2y

(l+1)
j , xnj )

= lim
j→

d(Tl+2Unj ,l+1xnj , xnj ) = 0.

So, we have the hypothesis k = l + 1, that is,

lim
j→∞

d(xnj , y
(l+1)
j ) = 0, lim

j→∞
d(Tl+2y

(l+1)
j , y

(l+1)
j ) = 0

for k = 1, 2, . . . , r − 1. By induction, we obtain

lim
j→∞

d(xnj , y
(k)
j ) = 0, lim

j→∞
d(Tk+1y

(k)
j , y

(k)
j ) = 0
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for all k = 1, 2, . . . , r−1. By Lemma 2.4, let {xnjk
} be a ∆-convergent subsequence

of {xnj} with the ∆-limit z such that limk→∞ d(u, xnjk
) = lim infj→∞ d(u, xnj ).

Then, since T1 is ∆-demiclosed and limj→∞ d(xnj , T1xnj ) = 0, the ∆-limit z of

{xnjk
} belongs to F (T1). Similarly, since T2 is ∆-demiclosed and limj→∞ d(xnj , y

(1)
j ) =

limj→∞ d(y
(1)
j , T2y

(1)
j ) = 0, {y(1)jk

} is ∆-convergent to z and the ∆-limit z is belongs

to F (T2). Using such techniques, we obtain z ∈ F (Ti) for all i = 1, 2, . . . r, and
hence z ∈

∩r
i=1 F (Ti) = F . Using Lemma 2.5 and the definition of the metric

projection, we have

lim inf
j→∞

d(u,Wnjxnj ) = lim inf
j→∞

d(u, αnj ,rTrUnj ,r−1xnj ⊕ (1− αnj )xnj )

= lim inf
j→∞

d(u, αnj ,rTry
(r−1)
j ⊕ (1− αnj )xnj )

= lim inf
j→∞

d(u, αnj ,ry
(r−1)
j ⊕ (1− αnj )xnj )

= lim inf
j→∞

d(u, αnj ,rxnj ⊕ (1− αnj )xnj )

= lim inf
j→∞

d(u, xnj )

= lim
k→∞

d(u, xnjk
)

≥ d(u, z)

≥ d(u, PFu).

Therefore, we obtain

lim sup
j→∞

tnj

= lim sup
j→∞

(
1− cos d(u, p)

sin d(u,Wnjxnj ) tan(2
−1βnjd(u,Wnjxnj )) + cos d(u,Wnjxnj )

)
= lim sup

j→∞

(
1− cos d(u, p)

0 + cos d(u,Wnjxnj )

)
= 1− cos d(u, p)

cos(lim infj→∞ d(u,Wnjxnj ))

≤ 1− cos d(u, p)

cos d(u, z)

≤ 0.

By Lemma 2.3, we have that limn→∞ sn = 0, that is, {xn} converges to p = PFu,
and we finish the proof. □

Remark 3.2. By Lemma 2.2, a nonexpansive mapping defined on a CAT(1) space
having a fixed point is quasinonexpansive and ∆-demiclosed.

Remark 3.3. In general, if T1, T2, . . . , Tr are nonexpansive, then W -mapping gen-
erated by T1, T2, . . . , Tr and α1, α2, . . . , αr is not necessarily nonexpansive.
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4. Applications

Let us recall some basic notation about functions on metric space. Let X be a
geodesic metric space and let f be a function from X into (−∞,∞]. We say f is
lower semicontinuous if the set {x ∈ X | f(x) ≤ a} is closed for all a ∈ R. The
function f is said to be proper if the set {x ∈ X | f(x) ̸= ∞} is nonempty. We say
f is convex if

f(tx⊕ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ X and t ∈ (0, 1). Let X be a complete CAT(1) space such that
d(v, v′) < π/2 for every v, v′ ∈ X. Let f be a proper lower semicontinuous convex
function from X into (−∞,∞]. A resolvent of f is defined by

Rfx := argmin
y∈X

{f(y) + tan d(y, x) sin d(y, x)}(4.1)

in [10]. Another type of the resolvent of f is defined by

Rfx := argmin
y∈X

{f(y)− log cos d(y, x)}(4.2)

in [8]. Both resolvents are quasinonexpansive, ∆-demiclosed, and satisfy F (Rf ) =
argminX f ([10, 8]). So, we can approximate a common minimizer of a finite number
of functions by the following theorem.

Theorem 4.1. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for
every v, v′ ∈ X. Let f1, f2, . . . , fr be a finite number of convex function from X
into (−∞,∞] such that F :=

∩r
i=1 argminX fi ̸= ∅, and let αn,1, an,2, . . . , αn,r be

real numbers for n ∈ N such that αn,i ∈ [a, 1 − a] for every i = 1, 2, . . . , r, where
0 < a < 1/2. Let Rfi be a resolvent defined by either (4.1) or (4.2) for i =
1, 2, . . . , r. Let Wn be the W-mappings of X into itself generated by Rf1 , Rf2 , . . . , Rfr

and αn,1, αn,2, . . . , αn,r for n ∈ N. Let {βn} be a sequence of real numbers such that
0 < βn < 1 for every n ∈ N, limn→∞ βn = 0, and

∑∞
n=1 βn = ∞. For given points

u, x1 ∈ X, let {xn} be a sequence in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PFu) < π/4 and d(u, PFu) + d(x1, PFu) < π/2;
(c)

∑∞
n=1 β

2
n = ∞.

Then {xn} converges to PFu.

Let us consider a more specialized situation. For a closed convex subset C of a
complete CAT(1) space X, put

iC(x) :=

{
0 (x ∈ C)
∞ (x /∈ C).

This function iC is a proper lower semicontinuous convex function. Thus the resol-
vent RiC of iC is defined by either (4.1) or (4.2), and it is quasinonexpansive and
∆-demiclosed. In fact, we know RiC = PC and F (RiC ) = argmin iC = C for both
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definitions (4.1) and (4.2). Thus we can apply Theorem 3.1 and have an approxima-
tion of the nearest point in the intersection of finite family of closed convex subsets
from a given point by using corresponding metric projection of each subset by the
following theorem.

Theorem 4.2. Let X be a complete CAT(1) space such that d(v, v′) < π/2 for
every v, v′ ∈ X. Let C1, C2, . . . , Cr be a finite number of closed convex subset of X
such that C :=

∩r
i=1Ci ̸= ∅, and let αn,1, an,2, . . . , αn,r be real numbers for n ∈ N

such that αn,i ∈ [a, 1−a] for every i = 1, 2, . . . , r, where 0 < a < 1/2. Let Wn be the
W-mappings of X into itself generated by PC1 , PC2 , . . . , PCr and αn,1, αn,2, . . . , αn,r

for n ∈ N. Let {βn} be a sequence of real numbers such that 0 < βn < 1 for every
n ∈ N, limn→∞ βn = 0 and

∑∞
n=1 βn = ∞. For a given points u, x1 ∈ X, let {xn}

be a sequence in X generated by

xn+1 = βnu⊕ (1− βn)Wnxn

for n ∈ N. Suppose that one of the following conditions holds:

(a) supv,v′∈X d(v, v′) < π/2;
(b) d(u, PCu) < π/4 and d(u, PCu) + d(x1, PCu) < π/2;
(c)

∑∞
n=1 β

2
n = ∞.

Then {xn} converges to PCu.

In the introduction we mention that there exists an example which is quasinon-
expansive but not strongly quasinonexpansive. The following is such an example.

Example 4.1. A closed interval [−1, 1] is a complete CAT(1) space. Let T :
[−1, 1] → [−1, 1] be defined by Tx := −x. Then F (T ) = {0}. It is easy to obtain
that T is quasinonexpansive and ∆-demiclosed but it is not strongly quasinonex-
pansive.
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[4] R. Esṕınola and A. Fernández-León, CAT(k)-space, weak convergence and fixed points, J.

Math. Anal. Appl. 353 (2009), 410–427.

[5] B. Halpern, Fixed points of nonexpanding maps, Bull. Am. Math. Soc. 73 (1967), 957–961.

[6] S. Ishikawa, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974), 147–150.



HALPERN ITERATION ON A GEODESIC SPACE 155

[7] J. S. He, H. D. Fang, G.López, and C. Li, Mann’s algorithm for nonexpansive mappings in

CAT(κ) spaces, Nonlinear Anal. 75 (2012), 445–452.

[8] T. Kajimura and Y. Kimura, A new definition of resolvents for convex functions on complete

geodesic space, J. Fixed Point Theory Appl. 16 (2019), 32–47.

[9] K. Kasahara, Iterative sequences for a finite number of mappings on a complete geodesic space,

Master thesis, Toho University, 2017.

[10] Y. Kimura and F. Kohsaka, Spherical nonspreadingness of resolvents of convex functions in

geodesic spaces, J. Fixed Point Theory Appl. 18 (2015), 93–115.
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