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Dedicated to Professor Hidetoshi Komiya on the occasion of his retirement

ABSTRACT. This paper establishes mean convergence theorems for finding at-
tractive and fixed points of generic 2-generalized hybrid mappings. First, Bail-
lon’s type nonlinear ergodic theorems that weakly approximate attractive and
fixed points are proved. The theorem is established under more general param-
eter conditions than the previous results. Second, we demonstrate mean conver-
gence theorems that weakly approximate attractive and fixed points by combining
Mann’s and Atsushiba and Takahashi’s type iterations. Finally, we present mean
convergence theorems that strongly approximate attractive and fixed points by
combining Halpern’s and Atsushiba and Takahashi’s type iterations. Our results
extend many existing theorems in the literature.

1. INTRODUCTION

Throughout this paper, we use H to denote a real Hilbert space with an inner
product (-, -) and the induced norm ||-||. The sets of natural and real numbers are
represented by N and R, respectively. Let T' be a mapping from C' into H, where
C'is a nonempty subset of H. The sets of fixed points and attractive points [37] of
T are denoted by the following:

F(T)={x€C:Tx ==z} and
A(T)={zeH:|Ty—z| <|y—=z| forall y € C},
respectively. A mapping T : C — H is called nonexpansive if
[Tz —Ty|| < ||z —yl| for all z,y € C.

Approximation methods for finding fixed points of nonexpansive mappings have
been intensively studied by many researchers. In 1998, Atsushiba and Takahashi
[3] introduced the following iteration:
1 n—1n—1 -
(1.1) Tpt1 = Aty + (1 — /\”)ﬁ ZZS Tz, for alln e N,
k=0 1=0

where 1 € C is given. They demonstrated weak convergence to a common fixed
point of S and T', where S and T" are nonexpansive commutative mappings. This it-
eration scheme (1.1) is derived from the ideas of Mann [28], Baillon [4], and Shimizu
and Takahashi [30, 31]. Wittmann [41] proved a strong convergence theorem for
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finding a fixed point of a nonexpansive mapping 7' by using Halpern’s type iteration
[6]

Tnt1 =z + (1= A\,) Tz, for alln €N,

where 1 =z € C' is given, and {\,} C [0, 1].

Successive studies have shown that the class of nonexpansive mappings can be
generalized to include many important mappings. In 2010, Kocourek et al. [14]
defined a wide class of mappings. A mapping T : C — H is called generalized
hybrid [14] if o, B € R exist such that

a|Te = Ty|* + (1 - a) o = Ty|* < BlITz — ylI* + (1 = B) |« —y*

for all z,y € C. A class of generalized hybrid mappings contains nonexpansive map-
pings as a special case, where « = 1 and 8 = 0. Similarly, this class of mappings
includes nonspreading mappings [15, 16|, hybrid mappings [36], and \-hybrid map-
pings [1]. For generalized hybrid mappings, various types of convergence theorems
for finding fixed and attractive points were established (see, e.g., Kocourek et al.
[14], Takahashi and Takeuchi [37], Hasegawa et al. [7], Takahashi et al. [40], and
Hojo and Takahashi [9].

In 2011, Maruyama et al. [29] further extended the class of generalized hybrid
mappings. A mapping T : C — C is called a 2-generalized hybrid mapping if
a1, 09, 81, 89 € R exist such that

2
a1 |[|[T% — Ty||” + ao | Tz — Tyl]> + (1 — a1 — a2) o — Tyl

< B HTQiU - yH2 + By I Tz —ylI> + (1 = By — Ba) |z — ylI?

for all z,y € C. A 2-generalized hybrid mapping with a3 = 8; = 0 is generalized
hybrid. Kondo and Takahashi [20] introduced the following class of nonlinear map-
pings. A mapping T : C — C'is called normally 2-generalized hybrid if there exist
ap, Bo, a1, B1, a2, By € R such that Ei:o (an+6,,) >0, as + a3 + ap > 0, and

az|| Tz — Ty|* + ea||Tx — Ty|* + aollz — Tyl
+ Bol| T2 — ylI* + 81Tz — yl|* + Bolle — yl* < 0

for all z,y € C. This class of mappings contains 2-generalized hybrid mappings,
in addition to normally generalized hybrid mappings [39]. Hojo et al. [11] and
Kondo [18, 19] presented examples of 2-generalized hybrid mappings and normally
2-generalized hybrid mappings that are not generalized hybrid or continuous.

In 2019, Kondo and Takahashi [22] introduced a wide class of mappings. A
mapping T': C' — C'is called generic 2-generalized hybrid if there exist oyj, 8;,7; €
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R (i,j = 0,1,2) such that
agollz — ylI* + aoillz — Tyl* + agellz — T?y||?
+ a0 [Tz = y|* + et [|Te = Ty|)* + a2 | Tz — T
(1.2) + s | T2z — || + e | T2 — Ty||” + ass || T2 — T
+ Bo llz — Ta|® + By | Tz — T?||” + B3 || 7%z — ||
+ 0 lly = Tyll” + 7 | Ty — T2||* + 72 | T — y||* < 0

for all x,y € C with some parameter conditions so that it contains normally 2-
generalized hybrid mappings. We also call such a mapping an (asj, 8;,7;; @, =
0,1,2)-generic 2-generalized hybrid mapping. Kondo and Takahashi [22] proved an
ergodic theorem for that class of mappings whereas they addressed Mann’s type and
Halpern’s type convergence theorems in another paper [24]. Although their results
uniformly extend the previous results in the literature, a mean convergence theorem
based on the iteration (1.1) has not yet been proved for generic 2-generalized hybrid
mappings.

This paper proves the mean convergence theorems for finding attractive and fixed
points of generic 2-generalized hybrid mappings. First, Baillon’s type nonlinear
ergodic theorems that weakly approximate attractive and fixed points are demon-
strated. The theorem is established under more general parameter conditions than
the previous result in [22]. Second, we demonstrate the mean convergence theorems
that weakly approximate attractive and fixed points by combining Mann’s and At-
sushiba and Takahashi’s type iterations. Finally, we show that mean convergence
theorems strongly approximate attractive and fixed points by combining Halpern’s
and Atsushiba and Takahashi’s type iterations. Our results extend many existing
theorems in the literature.

2. PRELIMINARIES AND LEMMAS

This section presents basic information and results. A systematic explanation is
found in work by Takahashi [34, 35]. In a real Hilbert space H, it is known that

(2.1) 2(x —y, y) < 2> = yll> < 2(z -y, )

for all x,y € H. For a sequence {z,} in H, strong and weak convergences of {z}
to a point = (€ H) are denoted by z,, — = and z,, — z, respectively. A closed and
convex subset C' of H is weakly closed. It is easily verified that z,, — «x is equivalent
to the following condition. For any subsequence {ay, } of {2, }, a subsequence {zy, }
of {x,,} exists such that z,, — z.

Let C' be a nonempty, closed, and convex subset of H. The metric projection
from H onto C' is denoted by Pg, that is, ||z — Pox| = inf.ec ||z — z|| for any
x € H. The metric projection Po from H onto C' is nonexpansive and satisfies
(x — Pox, Pox —z) > 0 for all x € H and z € C. A mapping T : C — H
with F (T) # 0 is called quasi-nonezpansive if ||Tx —ul|| < ||z —ul| for all z €
C and u € F(T). Itoh and Takahashi [13] proved that a set of fixed points of
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a quasi-nonexpansive mapping is closed and convex. Kondo and Takahashi [20]
demonstrated that a normally 2-generalized hybrid mapping with a fixed point is
quasi-nonexpansive.

Let T be a mapping from C' into H, where C is a nonempty subset of H. Taka-
hashi and Takeuchi [37] introduced the concept of an attractive point, and revealed
the basic properties of the set of attractive points A (T):

e A(T) is closed and convex, and A (T)NC C F (T) without any conditions on
T;

o '(T) C A(T) if T is quasi-nonexpansive;

e A(T) # 0 = F(T) # 0, if C is nonempty, closed, and convex, and T is a
self-mapping defined on C.

The following lemmas are necessary to establish our main theorems.

Lemma 2.1 ([38]). Let A be a nonempty, closed, and convex subset of H, let Py
be the metric projection from H onto A, and let {x,} be a sequence in H. If
|Znt1 — ¢l| < ||zn —q|| for all g € A and n € N, then {Pax,} is convergent in A.

Lemma 2.2 ([35]). Let z,y € H, and A € R. Then, it holds that
1Az + (1= A yll* = Mall® + (1 =2 flyl* = A1 =N [l = 5]

Let T be an (auj, 8;,7;; 4, = 0, 1,2)-generic 2-generalized hybrid mapping. The
next two lemmas assert that 7" and T2 with fixed points are quasi-nonexpansive.
We use the following notation:

(2.2) Qe = Qo + Qi1 + 2, Oej = Qo + 01 + 24, Clee = 5 aj,
§j=0,1,2

where i = 0,1, 2.

Lemma 2.3 ([22]). Let C be a nonempty subset of H, and let T be an (cvuj, B;,7vis
i,7 =0,1,2)-generic 2-generalized hybrid mapping from C' into itself with F (T') # (.
Suppose that T satisfies one of the following two conditions:

(I) Qe + (1 2 07 Q2e 2 07 le > O} 607/81762 Z 0;

(I1) teo + a1 > 0, a2 > 0, a1 > 0, vg,7v1,72 > 0.

Then, T is quasi-nonexrpansive.

Lemma 2.4 ([24]). Let C be a nonempty subset of H, and let T be an (ovuj, B;, ;s
i,7 =0,1,2)-generic 2-generalized hybrid mapping from C into itself with F (T2) #*
(. Suppose that T satisfies one of the following two conditions:

(1) oo + a2 + agp + a2 > 0, ap + ag2 > 0, apr, 11, @21 > 0, agy + agy >

0, By, B1,82 >0, vg+v1 > 0;
(ii) o + a0 + a2 + a2 > 0, agr + a1 > 0,10, @11, @12 > 0, a2 + a > 0,

Bo+B1 >0, v9,71,72 = 0.

Then, T? is quasi-nonexpansive.
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The following lemma is used to prove strong convergence theorems.

Lemma 2.5 ([2]; see also [42]). Let {X,,} be a sequence of nonnegative real numbers,
let {Y,} be a sequence of real numbers such that limsup,,_,. Y, <0, and let {Z,}
be a sequence of nonnegative real numbers such that Y 2| Z, < oo. Let {\,}
be a sequence of real numbers in the interval [0,1) such that Y > N\, = oco. If
Xnt1 < (1= Xp) Xpn + N, + Z,, for alln € N, then X,, — 0 as n — oo.

We list two sublemmas.

Sublemma 2.1. Let a, € R such that o+ 3 > 0, and let {a,} and {b,} be
sequences of nonnegative real numbers such that a, — b, — 0. Then, it holds that
liminf, ,~ (aa, + Bby) > 0.

The recent work by Kondo and Takahashi [24] introduced three types of attractive
points of T'. The sets of these attractive points are denoted as follows:

(2.3) A (M =AT) ={veH:|Ty—v| <|ly—ov| forall y e C};
A (1) =A(T*) ={ve H: ||[T?y —v|| < |ly—v| forally € C};
Ap (T)={ve H: ||T? —v| < ||Ty —v| forally € C}.

Notice that

(2.4) Ao (T) = A1o (T) N Ao (T) N Aa1 (T)).

This is because Ao (T') C Azo (T) N A21 (T) (see [24]). In the rest of this paper, we
use the notation Ay (1), Az (T'), and Ag; (T'). The following sublemma is useful.

Sublemma 2.2 ([24]; see also [20]). For T : C — C andv € H, the following hold:
(1) ve A (T) < [Ty —y|* +2(Ty —y, y—v) <0, ¥y € C;
(2) ve Ay (T) HTQy —yH2 +2<T2y—y, Yy —v> <0, vy € C;
(3) ve An (T) < || T?y — TyH2 +2(T?*y —Ty, Ty —v) <0,y eC.

The following two lemmas are important to prove our main theorems.

Lemma 2.6. Let C be a nonempty subset of H, and letT : C — C' be an (cuj, By, V4
i,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the following two
conditions:

(I) cge + 10 > 0, v2e > 0, 14 > 0, B¢, 31,82 >0, 79 +71 = 0, 79 > 0;

(IT) cvep + o1 > 0, ez > 0, ae1 >0, 79,715,772 = 0, Bp+ B4 >0, By > 0.

Suppose that Ao (T) # (. Let {w,} be a bounded sequence in C, and define

1 n—1
Swy, = EZTkw" € H.
k=0
Suppose that Swy, — v (€ H), where {Swy,} is a subsequence of {Swy}. Then,

v € Ao (T) N A (T) N A91 (T'). Additionally, if C is closed and convezx, then
ve F(T).
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Proof. First, because {w,} is bounded and Ao (T) # 0, sequences {T""'w,},
{T"™w,}, and {T'w,} are also bounded. Indeed, let ¢ € A1 (T). Then, the following
holds:

HTn—Hwn - (JH < < Twn — gl < Jwn — 4]

As {w,} is bounded, the sequences {T" " w, }, {T"w,}, and {Twy} are also bounded,
as claimed.

Case (I): Suppose that cpe + e > 0, a2 > 0, a1e > 0, B, 81,82 > 0, y9+7v1 =
0, and 75 > 0. Let y € C. From Sublemma 2.2-(1) and (2.4), it suffices to show
that

2
1Ty =yl +2(Ty —y, y —v) <0,

where v (€ H) is the weak limit of {Swy,}. As T'is (j, 5,745 1,7 = 0, 1,2)-generic
2-generalized hybrid, it holds that

2 2
aoolly — TkwnHQ + ao1 Hy - TkHwnH + o2 Hy - Tk“um”

2 2 2
+ aq HTy — Tkwn + a1 HTy — Tk+1wn + a9 HTy — Tk+2wnH

2 2
+ ag||T%y — TFw,|? + an Hsz — T" || + ag HTQy - Tk+2’LUnH
2 2
+ B lly = Tyll* + 81 |Ty — T2y||” + B2 || Ty — ||

2 2
+ Y0 HTkwn — TkHwnH + 71 HTkJrlwn — Tk+2wnH

2
+ vy HT’““wn ~Thw,|| <0

for all k € NU{0}. As v, > 0, we obtain the following:
i

2 2
+ ao1 Hy — Tk+1wn + a2 Hy — Tk+2wn

Qo Hy — T*w,

)

2
+ an <||Ty —ylI* +2 <Ty —y, Y- Tk+1wn> + Hy - T’““wnH )

+ anp (HTy —yl?+2(Ty—y, y—Thwn) + |y — Thw,

2
+ 12 (HT?J —yl* +2 <Ty -y, Y- Tk+2wn> + Hy — Tk+2wnH )
2
+ ago|| Ty — TFw,||? + an HTQy - Tk“wnH
2 2
+ Bolly — Tyl

+ 81 | Ty = T2|* + B | T2 — o

2 2
+ HT’f“wn . Tk+2wnH <0.

+ a2 HT2y — Tk+2wn

+ 7% HTkwn - Tk+1wn

Consequently,
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2 2

+ (o1 + a11) Hy — TFtay,

(o + @10) Hy — Thw,
k+2 2 k
-+mm+amwﬁ—7’ wﬂ‘+2mo@w—y,y—Tum>
+ 201y <Ty —y, Y- T’“Hwn> + 2019 <Ty —y, Y- T’“”wn>

2
+ azo[ 7% = Thwn 2 + aon | 1% = T 1w,

2 2
+ (one + o) lly = Ty
+ 01Ty =T + 8 | T — o

2 2
+74T“%W—T“%q’§0

)

+ a9 HT2y — TF+ 2y,

+ Yo HTk'wn — Tk+1wn

This yields the following:

2 2
(e + t10) ‘y — TFw, | + (a0 + a11) (Hy — TkHwnH - Hy — T*w,

)

+2 <Ty — Y, QleY — (amTkwn +an T w, + 0412Tk+2wn)>

2
+ (a2 + 12) <Hy - Tk+2wnH — Hy — T*w,

+ o, T2y — Tkwn

2 2
+ a9 <HT2y — Tk+1wn” — HT2y — Tkwn

)
+ (e + Bo) 1Ty =yl + By | Ty — T%|” + Ba | T2y — o|°

+ Yo HTkwn — Tk+1wn

)
2
+ a9 (HT2y — Tk+2wn — ‘

‘T2y — T*w,

2 2
+7wT“%m—T“%m <0.

As ape + 16 > 0 and ane > 0, we have the following:
)

2
+ (o2 + a12) <Hy — Tk+2wnH — Hy — T*w,

2
(o1 + a11) <Hy — T"““wnH — Hy — Thw,

)
+ 2<Ty — Y, 01eY — {aloTkwn + a1 (Tk+1wn - Tkwn)

+ a9 (Tk+2wn — Tkwn) }>
)

2
+ a1 (Hsz — T]H_l'wn — ’
2
- HTQy — T*w,

‘Iay—-T*wn

2
+ oo <HT2y—Tk+2wn >

+ (e + Bo) 1Ty — yl* + By | Ty — T2||” + B2 | T2y — |°
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2 2
+ Y0 HTkwn — Tk'HwnH + v ”Tk"'lwn — Tk+2wnH <0.

Summing these inequalities with respect to k from 0 to n — 1, and dividing by n,
we obtain

1
= (eor +an) (ly = T"wall = fly = wa?)

+ 2 (a0n + 012) (ly = T aa[* 4 1y — T
Iy~ Twal® ~ lly — wall?)
+2(Ty — y, a1ey — {a1eSwy, + %au (T"wy, — wy,)
+ %au (T w,, + T"wy, — Twy, — wn) })
¥y (7% = T~ ||7% — )
¥ Lan(|T% — T [P+ 7% — T |
= |72y = Twa* ~ | 7% = wa ")
+ (one + Bo) 1Ty = ylI* + By || Ty — T2

n—1
485 |2yl 470 S [T — 7|
k=0

1 n—1
+ ’yl; Z HT’“Hwn — Tk+2wnH <0.
k=0

As {T"wy,} and {T""wy,} are bounded,

1 n—1 9 1 n—1 9
- Z HTkwn B TkHwnH -~ Z HTk-i-lwn B TkHwnH 0
k= k=0

as n — 00. As 9+ v, > 0, from Sublemma 2.1, we have
1 &~ 2 1 2
T 3 L R S R D
k=0 k=0
Thus, replacing n by n;, and taking the liminf as i — oo in (2.5), we obtain

2016 (Ty —y, y— )
+ (e + Bo) 1Ty — yl* + By || Ty — Ty||” + B2 | T — y||* < 0.

Because (3, 81, B3 > 0, we have 2a1e (Ty — y, y — v)+aqe |Ty — y||* < 0. Tt follows
from aye > 0 that | Ty — y||*+2 (Ty —y, y —v) < 0for ally € C. From Sublemma
22—(1) and (24), we obtain v € Aqg (T) N Asg (T) N Asq (T)
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In addition to the other assumptions, suppose that C' is closed and convex. Then,
{Swy} is a sequence in C. As Swy, — v, it holds that v € C. Asv € A1 (T')NC C
F(T), we have v € F (T).

Case (II). Suppose that aep + aer > 0, a2 > 0, a1 > 0, 79,771,772 > 0,
Bo+ 51 = 0, and By > 0. We can obtain the desired results by replacing y and
T*w, in (2.5). O

Under condition (I) or (IT), the mapping 7" is quasi-nonexpansive if it has a fixed
point (see Lemma 2.3). The lemma slightly generalizes Lemma 5.2 by Kondo and
Takahashi [22] regarding the parameter conditions. For this point, see Theorem 3.2
in this paper, which is reproduced for convenience. The next lemma is employed to
prove Theorems 3.3, 4.2, and 5.2.

Lemma 2.7. Let C be a nonempty subset of H, and letT : C — C be an (cuj, By, 74
i,7 = 0,1,2)-generic 2-generalized hybrid mapping with one of the following two
condition:

(i) oo + a0 + a2 + a2 > 0, @i, 11,12, 01,001 > 0, @z + e > 0,
/807/817182770771772 Z 0;

(i) aoo + a0 + a2 + a2 > 0, g, 11,12, 01,21 > 0, gz + a2 > 0,

ﬁ07ﬁ13ﬁ2a’70371372 Z 0.
Suppose that Ay (T) # (). Let {w,} be a bounded sequence in C, and define

Suppose that S'w,, — v (€ H), where {S"wy,} is a subsequence of {S"wy}. Then,
v € Ago (T). Additionally, if C is closed and convex, then v € F (Tz).

Proof. Because {wy} is bounded and Ay (T) # () is assumed, a sequence {T*"wy, }
is also bounded. Indeed, let g € Agy (T). Then, the following holds:

7, = al < [ s =g < - < [P al < e — .

As {wy,} is bounded, the sequence {Tznwn} is also bounded, as claimed.

Case (i): Suppose that agg + oo + a2 + a2 > 0, aig, a11, 02, ao1, o1 > 0,
gy + age > 0, and By, B, B2, Yo, V1, V2 = 0. Let y € C. From Sublemma 2.2-(2), it
suffices to show that

172y — y||” +2 (T —y, y—v) <0,
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where v (€ H) is the weak limit of {S"wy, }. As T'is (aj, 84,743 4,4 = 0,1, 2)-generic
2-generalized hybrid, it follows that
2 2
aOOHy - Tkwn”2 + a1 Hy - Tk_HU)nH + a2 Hy - Tk+2wn )
2 2
+ a2 HTy — Tk+2’wnH

2
+ a1 HTZ/ — Trw,|| +an HTy — TFthw,

2 2
+ agol|T?y — TFw, || + aay HT2?J — T" M, || + ag ‘ T?y — Tk“wnH

(2.6)
+ By lly — Tyll> + 81 | Ty — T%y|)* + B | Ty — v

2 2
+ HTkwn _ TkHwnH g HTIH—IUM _ Tk”wnH

2
+ 79 HT"””wn — Trw,|| <0

for all k € NU{0}. As ajg, @11, 12, ap1, 21 > 0 and g, 71,79 > 0, we have

2
aoolly — TFwn||? + aoa Hy — T2y,

2
+ azo[ %y = Thw, |2 + ags | 1% = 72w,

+ By lly — Tyl + B, | Ty — T2y||* + 8, | 7% — y||” < 0.
This yields

2 2
+ g Hy — TF 2y,

Q00 Hy — T*w,

+ @20 (HT2y - yH2 + 2 <T2y - Y, Y- Tkwn> + Hy - Tkwn

)
vz (I7% ol +2(T% v,y = T2+ [y~ 7% )

+ By lly — Tyll> + 81 | Ty — T?y|)* + 82 | Ty — v||* < 0.

We obtain the following:
2

2
+ (0402 + 0122) Hy — Tk+2wn

(aoo + az()) Hy — Tkwn
+ 200 <T2y —y, Y- Tkwn> + 202 <T2y —y, Y- T’“+2wn>
2 2 112 9 2
+ Bolly = Tyll* + 51 | Ty — T?y||” + (20 + 22 + Bo) || Ty — y||” < 0;

thus,
2

(o + a2 + a2 + v22) Hy — T*w,

k+2 2 k
+ (a2 + a22) (Hy—T + w”” _ Hy—T w,,

)

+2 <T2y —y, (0 + ag)y — aTrw, — 0622Tk+2wn>
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+ Bo lly — TylI* + B, HT?J - T2yH2 + (ag0 + a2 + B5) HT2?/ - ?JH2 <0.

It follows that
2

(o + a0 + a2 + 22) Hy — T*w,

2 2
+ (0502 +a22) <Hy—Tk+2wnH — Hy—Tkwn )
+2 <T231 —y, (a9 + )y — {(a + ) TFw, + age (T 2w, — Tkwn)}>

+ Bolly = Tyll® + By |Ty — T2|” + (@20 + azs + B) | Ty — | ” < 0.
As o + g + a2 + a2 > 0, we have
)

+2 <T2y —y, (ag +an)y — {(a + ag) THw, + an (T 2w, — Tkwn)}>

2
(o2 + 92) <Hy —TF 20, — ‘

‘y—Tkwn

2 2
+ Bo lly — Ty||2 + b1 HT?J - T2?JH + (20 + o2 + ) HT23/ - yH <0.
Summing these inequalities with respect to kK = 0,2,4,---, 2(n — 1), and dividing
by n, we obtain

1
(002 ) (Jly = T2 |* = 1y = i)

1
+2 <T2y — vy, (a2 + az)y — {(a20 + az) S"w, + Q22 (T*"w,, — wn)>

+ B lly — Tyl* + B, HT?J - TQ?JHZ + (ag0 + a2 + B3) HTQy - yHZ <0.

As {T 2”wn} and {w,} are bounded, replacing n with n;, and taking the limit as
i — 00, we obtain

2 (az +an) (TPy —y, y —v)
+ Bolly — T?J”2 + 54 HTy - TQQHQ + (a0 + a2 + ) HTZy — yH2 <0.
As By, 81,82 > 0, we obtain

2 (g0 + 22) (Ty — y, y — v) + (a0 + ) | Ty — yH2 <0.

It holds from agg + a2 > 0 that 2 <T2y -y, Yy — v> + Hsz — yH2 <0OforallyeC.
From Sublemma 2.2-(2), v € Ay (T).

In addition to the other assumptions, suppose that C' is closed and convex. Then,
{S"wy,} is a sequence in C. As S"w,, — v, it holds that v € C. Asv € Ay (T)NC C
F (TQ), we have v € F (TQ).

Case (ii). Suppose that agy + a0 + a2 + @22 > 0, @19, 11, @12, o1, @21 > 0,
ap2 + aze > 0, and By, 81, B2, 70, V1, V2 = 0. We can obtain the desired results by
replacing y and T*w,, in (2.6). O

Under condition (i) or (ii), the mapping 77 is quasi-nonexpansive if it has a fixed
point (see Lemma 2.4).



126 ATSUMASA KONDO

3. BAILLON’S TYPE WEAK CONVERGENCE THEOREMS

This section presents nonlinear ergodic theorems. The elements of the proof were
developed by Takahashi [33] (see also [5, 14, 20, 27, 29, 37, 39]). First, we obtain
a theorem that weakly approximates the attractive and fixed points of a generic
2-generalized hybrid mapping. The theorem generalizes that in the previous work
[22].

Theorem 3.1. Let C be a nonempty subset of H, and let T : C — C be an
(auj, Bisvis 1,7 = 0,1,2)-generic 2-generalized hybrid mapping with Ay (T) # 0.
Let Py, (1) be the metric projection from H onto A1g (T'). Suppose that T' satisfies
one of the following two conditions:

(I) Qe + 16 > 0, (v2e > 0, 14 > 0, ﬁo,ﬁl,ﬁg >0, Yo + 71 >0, Yo = 0;

(I1) cvep + te1 > 0, a2 > 0, o1 >0, v9,71,72 =0, Bo+ 51 >0, By > 0.

Then, for any x € C, the sequence {Sna: = %ZZ;& Tkm} in H converges weakly
to a point T of A1o (T) N Az (T') N A1 (T) (C H), where T = limy, 00 Pa,o(m)T" .
Additionally, if C is closed and convex in H, then for any x € C, the sequence
{Snx = %ZZ;(% Tkx} in C converges weakly to a point of F (T).

Proof. From Takahashi and Takeuchi [37], we know that Ajq (7") is closed and convex
in H. As Ao (T) # 0 is assumed, the metric projection Py, ) from H onto A1q (T)
exists. Let z € C, and define S,z = %ZZ;(% TFz € H foralln € N. As Ay (T) # 0,
{T™z} is bounded in C. Indeed, it holds that

(3.1) 17"z — gl < |72 — 4|

for all ¢ € A9 (T') and n € N. This demonstrates that {7"z} is bounded. Conse-
quently, the sequence {S,z} is also bounded in H. From (3.1) and Lemma 2.1, the
sequence {PAlO(T)T”x} is convergent in Ay (T'). Define the following:

T = lim PAlo(T)Tnx € Ay (T).

n—oo

Our objective is to prove that S,z — Z. Let {S,,z} be a subsequence of {S,z}.
As {Sy,x} is bounded, a subsequence {Sy,x} of {Sy,z} exists such that S,z — u
for some u € H. It suffices to demonstrate that uw = Z. Applying Lemma 2.6 with
wy, = x, we have u € Ay (7).

The sequence {HT”m — PAlO(T)Tan} is monotone decreasing. Indeed, as
PaoyT"z € Ao (T'), from (3.1), it holds that

[T e = Py T || < || T = Py T
<||T"% = P,y T ||

for all n € NU{0}. Thus, the sequence {HT”x — PAlO(T)T”xH} is monotone de-
creasing, as claimed.
It follows from u € Ay (T) that

(The = PayynyTFe, Payyy Tz —u) 20
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for all £ € NU{0}, and therefore,
(The = Py T2, Payny T =7 +7—u) > 0.
As {HT "x — PAw(T)T”xH} is monotone decreasing, we have the following:
<Tka: - PAm(T)Tkl’a — (T — u)>
< <Tka; — PAlo(T)Tkl’a PAIO(T)Tkx — E>

< |7 = Payy T

[[Pair = -3
= Hx - PAlo(T)a:H HPAlo(T)Tkx _EH :

Summing these inequalities with respect to k from 0 to n — 1, we obtain

n—1
< o= Paoell - X || Pawiny Tz~ 3.
k=0

Dividing by n, we have

n—1
1
<Sn:n - Z PAIO(T)Tka:, — (T — u)>

k=0

n—1
1
< o= Payonyll -~ > HPAw(T)Tkw -z
k=0

F

Replacing n by nj, and taking the limit as j — oo, we obtain
(-7, —(Z—-u)) <0

as Sp;x — w and Py, ()T"x — T. Hence, it holds that u = 7. We obtain S,z —
7z = lim,, PAm(T)TnfU € Aqg (T) It follows from Aig (T) C Ay (T) N Agy (T)
that u € Aqg (T) N Agg (T) N Agy (T)

In addition to the other assumptions, suppose that C is closed and convex. Be-
cause Ao (T') # 0 is assumed, we have F' (T) # (). Consequently, under a condition
(I) or (IT), the mapping T is quasi-nonexpansive. In this case, {S,z} is a sequence in
C. As C is weakly closed and S,z — 7, T € C. Therefore, 7 € Ao (T)NC C F (T,
which completes the proof. O

Theorem 3.1 is a generalization of the previous result by Kondo and Takahashi
[22]:

Theorem 3.2 ([22]). Let C' be a nonempty subset of H, and let T : C — C be
a (ij, By, v 1,7 = 0,1,2)-generic 2-generalized hybrid mapping with Ao (T) # 0.
Let Py, (1) be the metric projection from H onto Ayg (T'). Suppose that T' satisfies
one of the following conditions:
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(I)i ape+a1e > 0, o, o1, 22 > 0, e > 0, By, 81,82 > 0, v9+71 = 0, 79 > 0;
(II)" cep+re1 > 0, g2, t12, 022 > 0, a1 > 0, Bo+51 >0, By >0, vg,71,72 > 0.

Then, for any x € C, the sequence {Snm = %ZZ;& Tkx} converges weakly to
7 € A1 (T), where T = limy, 00 Pa,o(ryT" . Additionally, suppose that C is closed

and convex. Then, for any x € C, the sequence {Spx} converges weakly to a fized
point T of T.

As we observe, the condition (I) (resp. (II)) is more general than (I)" (vep. (II)).
Next, we present a weak convergence theorem for Agy (7') and F' (T2).

Theorem 3.3. Let C be a nonempty subset of H, and let T : C — C be an
(e, Bisvis 4,7 = 0,1,2)-generic 2-generalized hybrid mapping with Aso (T) # 0.
Let Py, 1) be the metric projection from H onto Ag (T'). Suppose that T' satisfies
the following two conditions:

(i) aoo + a0 + o2 + aze > 0, aig, 11,012, 01,21 > 0, azo + aze > 0,
507517527707717’72 > 0;

(ii) aoo + a0 + o2 + aze > 0, aio, @11, 12,001, @21 > 0, g2 + a2 > 0,
Bo> B1: B2, Y0, 71,72 = 0.

Then, for any x € C, the sequence {S{lm =1 ZZ;& T%x} i H converges weakly

n

to a point T (€ H) of Ay (T), where T = limy, 00 PAQO(T)TZHI‘. Additionally, if C is
closed and convex in H, then for any x € C, the sequence {S;L:n = %ZZJ;& Tzk:z:}

in C converges weakly to a point of F (TQ).

Proof. As Ay (T') = Ao (T 2), it holds that Agg (7") is closed and convex in H. As

Ago (T) # 0 is assumed, the metric projection Py, ) from H onto Ag (T') exists.
Let z € C, and define S}z = %ZZ;& T?2 € H for all n € N. Because Ay (T) # 0)

is assumed, {TQ"Q:} is a bounded sequence in C'. Indeed, it holds that
(3.2) |72 05 — g < 720 o

for all ¢ € Ago (T) and n € NU{0}. This indicates that {T%"z} is bounded. Thus,
the sequence {S/,x} is also bounded in H. From (3.2) and Lemma 2.1, the sequence
{PA20(T)T2”:L‘} is convergent in Agg (7). Define T = lim,, o0 PA%(T)TQ”:E € Ay (T).
Our purpose is to prove that Sjz — Z. Let {5}, 2} be a subsequence of {S}z}.
As {S] x} is bounded, a subsequence {S;ij} of {S),z} and u € H exist such

that S,’ljx — u. It suffices to demonstrate that v = Z. Applying Lemma 2.7 with
wy, = x, we have u € A (7).

It is easy to verify that the sequence {HTQn,I — PAZO(T)T%@“H} is monotone de-
creasing. The proof is as follows. Because Py, )Tz € Ag (T), from (3.2), it
holds that

HTQ(n-i-l)x B PAQO(T)TQ(nH)ﬂ?H < HT2(n+1)x _ PAQO(T)T2n:BH

< || T2 — Payy(ry T |
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for all n € NU{0}. Thus, the sequence {HTQ"JJ - PA2O(T)T2”:EH} is monotone de-
creasing, as claimed.
As u € Ag (T), it follows that

<T2kx — Payoiry T, Py T — u> >0
for all £ € NU{0}. This yields
(T2 — Payy(ryT*e, PayyyT* 5 —7+7 —1u) > 0.
Using Schwarz’s inequality and (3.2), we have
<T2kx — PAQO(T)TQkI', — (T — u)>
< <T2kx — Payiry T, Py T — §>
< 7% = Paryry T3 | | Pasory T2 ~ 7

< lo = Pasycryz | | Pary 72~ .

Summing these inequalities with respect to k£ from 0 to n — 1 and dividing by n, we
obtain

n—1
1
<S’;l;1: - Z PAQO(T)TQkQS‘, — (T — u)>

k=0
1 n—1
< o= Pagoyl -~ > HPAQO(T)T%HJ - jH :
k=0

Replacing n with n;, and taking the limit as j — oo, we have

(u—z, —(x—u) <0
because S,’ljac — 1 and PAQO(T)T2n.%' — ¥, which implies that © = Z. We proved
that S,’lar — 7 =lim, 0o PAzo(T)TQn«T € Ay (T)

Suppose, in addition to the other assumptions, that C is closed and convex.
Because Asg (T) = Ajg (TZ) # () is assumed, it holds that F (TQ) # (. Under
a condition (i) or (ii), the mapping T2 is quasi-nonexpansive. Then, {S/z} is a
sequence in C. As C'is weakly closed and S],z — T, we have that T € C. Therefore,
T €Ay (T)NC CF (T2), which completes the proof. O

4. MANN’S TYPE WEAK CONVERGENCE THEOREMS

This section presents weak convergence theorems for finding attractive and fixed
points of a generic 2-generalized hybrid mapping. Many authors have developed
the proof (see [8, 9, 18, 19, 23, 25, 27]).

Theorem 4.1. Let C be a nonempty and convex subset of H. LetT : C — C be
an (auj, B, 745 1,7 = 0,1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(I) cpe + 10 >0, a2e >0, e >0, By, 1,82 > 0, 79 +71 >0, 75 > 0;
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(I1) crep + o1 > 0, a2 >0, o1 >0, vg,71,72 =0, Bg+ 51 >0, B3 > 0.

Suppose that Ao (T) is nonempty, and let Py, (1 be the metric projection from H
onto Ao (T'). Let {\,} be a sequence of real numbers such that 0 < a < A\, <b<'1
for all n € N, where a,b € R. Define a sequence {xy} in C as follows:

n—1
1
Tt = A + (1= An) — > Tra, (€ C)
k=0

foralln € N, where x1 € C' is given. Then, the sequence {x,} converges weakly to an
element T of Ao (T)N Az (T)NA21 (T), where T = limy, 00 Pa,o(7)Tn. Additionally,
if C is closed in H, then the sequence {x,} converges weakly to an element T of
F(T), where ¥ = limy, 00 Pp(7)Tn-

Proof. From Takahashi and Takeuchi [37], it is known that Ajo (7") is closed and
convex. As it is assumed that Ajg (7') is nonempty, the metric projection Py

from H onto Ay (T) exists. Define Sz, = %Ez;é T*z, (€ C). Then, we have
Tpt1 = A\nZn + (L = Ay) Sz, It is easy to show that

(4.1) 1520 — gl < [lan — 4l

for all ¢ € A19(T") and n € N. Indeed, using ¢ € Aio (T'), we have

1n—1 1 n—1
IS —all = | - 3 T —gl| = © [ S0 Than g
k=0 k=0
1 n—1 1n—1
= |2 (o =) [ < 2 X [
k=0 k=0

n—1

1
= ln —all = llzn —all.
n

k=0

This result reveals that (4.1) holds. Using this, we can demonstrate that

IN

(4.2) [2nt1 =gl < llan — 4l
for all ¢ € A19(T") and n € N. Indeed, it follows from (4.1) that

|1 = qll = [Anan + (1 = An) Szp — 4

= [|An (2n — @) + (1 = An) (Sz — )|

< Anllen =gl + (1= An) [[Szn — g

< A llzn —all + (1 = An) [z — 4

= l[zn —qll-
The relationship (4.2) means that {||z, —¢||} is monotone decreasing. Thus,
{||zrn, — ¢||} is convergent in R, and {z,} is bounded. From (4.2) and Lemma 2.1,
{P4,o(ryzn} is convergent in Ay (T). We denote the limit point by Z, that is,
7 = lim,, o PAIO(T)J:”.
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Next, we demonstrate that
(4.3) A (L= An) len = San)l? < llon =l = Jens — ql)®
for all ¢ € A1 (T") and n € N. Indeed, using Lemma 2.2 and (4.1), we have
|1 — al?
= [[An (20 — q) +
= Anllzn —al® +

(1= M) (Szn — @)
(1-

< Anllzn — gl + (1 -
1-

Sz, — C]H2 = A (=) ||z — SSUHHQ
|zn — qH2 — A (1= Ap) [|lzn — Smn”Q

An)
An)
A

= ||z — q]]* = A n) |20 — Sz,

which implies that (4.3) holds. As the sequence {||z, — ¢||} is convergent, from
(4.3), we have that z, — Sx,, — 0. Our goal is to demonstrate that z, —
T (E lim,, 00 PAlO(T)xn). Let {zy, } be a subsequence of {x,,}. As {z,,} is bounded,
a subsequence {:r:n]} of {zy,} and an element u € H exist such that Tp; — U. As
Ty — Szp — 0, it follows that Sz,; — u. From Lemma 2.6, u € Ao (T'). We prove
that u = Z. It follows from u € Ao (T) that

<1:n - PA10(T)¢TLJ PA10(T)£7L - ’I,L> > 0.
As xp; = uand Py r)Zn — T, we have (u — T, T —u) > 0. Therefore, we obtain
u = T. We have demonstrated that

Tp =T (E lim PAlO(T)$n> € Ao (T).

n—oo
Because Aqg (T) C Ay (T)ﬂAQl (T), we obtain x,, =~ T € Ajg (T)QAQO (T)ﬂAgl (T)
Additionally, suppose that C is closed in H. In this case, {Sx,} is a sequence
in C. As C is weakly closed and Sz, — 7, we have T € (. Therefore, T €
A (T)nC C F(T). Thus, F (T) is nonempty. Under condition (I) or (II), the
mapping 7' is quasi-nonexpansive. Thus, F(T') is closed and convex. Hence, the
metric projection Pg(p) from H onto F(T) exists. In the same way as the proof of
(4.2), we can obtain ||zp4+1 — ¢|| < ||zn — ¢|| for all ¢ € F(T) and n € N. It follows
from Lemma 2.1 that {Pp(yz,} converges strongly to an element 7 of F/(T'), that

is, ¥ = limy, 00 PF(T){L‘n. We show that

T (: lim PA(T)xn> = f(: lim PF(T)J:n) .
n—oo

n—oo
As 7 € F (T), it follows from a property of the metric projection that
(Tn — Pr(ryTn, Ppirytn —T) 20

for all n € N. As z,, = T and Pg(p)z, — T, we have (T -7,
that z = Z. This implies that {z,} converges weakly to Z = lim,_ PF(T)acn €
F(T ) This completes the proof. O

Z—7T) > 0, which means
T =1

The next theorem shows how to construct sequences that converge weakly to
points of Ay (T') and F (T?).
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Theorem 4.2. Let C be a nonempty and convexr subset of H. Let T : C' — C be
an (oij, By, V4 4,7 = 0,1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(i) aoo + a2 + o2 + 22 > 0, @19, 001,12, 01,021 > 0, g + a2 > 0,

507517527’707’717’72 > 05
(ii) apo + a0 + a2 + o2 > 0, aig, 11,002, 01, 01 > 0, g2 + aga > 0,

50?51)52770771)72 Z 0.
Suppose that Asg (T') is nonempty, and let Py, () be the metric projection from H

onto A9y (T). Let {\,} be a sequence of real numbers such that0 < a < A\, <b<1
for all n € N, where a,b € R. Define a sequence {x} in C as follows:

1 n—1

Tt = Antin + (1= An) ~ ;T%xn (e C)
for alln € N, where x1 € C is given. Then, the sequence {x,} converges weakly to
an element T of Ago (T'), where T = limy, 00 Payy(r)Tn. Additionally, if C' is closed
in H, then the sequence {x,} converges weakly to an element T of F (Tz), where
i'\ = hmn%oo PF(T2)1'n.
Proof. As Agg (T) = Ao (T?), Az (T) is closed and convex. As Ag (T) # 0 is
assumed, the metric projection Py, ) from H onto Agg (T') exists. Define S'z,, =
%ZZ;& T% 2, (€ C). Then, 21 = Ay + (1 — Ay) Sz, It is easily ascertained
that
(4.4) 19"z — q| < ll2n — qll
for all ¢ € Ay (T) and n € N. Indeed, as g € Ag (T') = Ayo (T?), it follows that

n—1

Z T%xn —ngq

k=0

1 n—1
<2 |7 =
k=0

1
|72~ al = :

IN
SR
e 3
Nag
N~
no
=
i
&
3
L
IN

1 n—1
<. D lzn =gl = llzn —qll -
k=0

Therefore, (4.4) holds, as claimed. Using (4.4), we have
(4.5) [#n41 —qll < llzn — 4l
for all ¢ € Ay (T) and n € N. Indeed, it holds that
[Znt1 = all = [[Anzn + (1 = Xn) Sz — 4|
= H)\n (xn—q)+ (1= A\p) (S’asn — q) H
< A lln = gll + (1= An) [[S'2z0n — q|
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< Anllzn =gl + (1= An) 20 — 4l
= llzn — 4l

Therefore, {||z,, — ¢||} is convergent in R, and {x, } is bounded. Furthermore, from
(4.5) and Lemma 2.1, {PAQO(T)xn} is convergent in Agg (7"). Denote the limit by Z,
in other words, T = limy, 00 Payy(7)Tn € A2o (T').

Next, we verify that

(4.6) A (1= ) [[2n = 8'2n|* < ll2n — gl” = 201 — glf?

for all ¢ € Ag (T) and n € N. Indeed, it follows from Lemma 2.2 and (4.4) that
|01 — qll”
= HAn (xn—q)+ (1= Ap) (S’:cn — q)
=M l2n — gl + (1= 20) |90 — || = An (1= M) [J2n — 2|
< llzn —al” + 1= Xa) |20 — gll* = Ao (1= M) [J2n — 'z
— Jln = gl = An (1= M) || — S

I

Thus, (4.6) holds, as claimed. As the sequence {|z,, — ¢||} is convergent, from (4.6),
it holds that z,, —S’z,, — 0. Our aim is to show that z,, = & (E limy, o0 PAQO(T):nn).
Let {xy,} be a subsequence of {z,}. As {xy,} is bounded, a subsequence {,;} of
{#n,} and an element v € H exist such that z,;, — u. As x, — Sz, — 0, we have
S'xp; — u. From Lemma 2.7, u € Agq (T)). We prove that u = 7. As u € Ag (T),
it follows that
<1In - PAQO(T)xn7 PAQO(T)xn - u> > 0.

As wp; — w and Py, (ryTn — T, we have (u — 7, T —u) > 0. We obtain u = T;
hence, z, =T (E lim,, oo PAQO(T)xn) € Ay (T).

In addition to the other assumptions, suppose that C is closed in H. As z,, —
T (€ A9y (T)), and C' is weakly closed, it holds that

T e CN Ay (T) =CnN Ay (T) A1 (TZ) CF (T2) .

Hence, F (T 2) is nonempty. Under condition (i) or (ii), the mapping T2 is quasi-
nonexpansive. Consequently, F’ (T 2) is closed and convex, and the metric projection
Pr(72) from H onto F (T?) exists. As in the proof of (4.4), it holds that

1520 = q| < llzn — gl
forallg e F (TZ) and n € N. Using this, we can obtain

[Zn1 = gl < llzn =4l

for all ¢ € F (TQ) and n € N in the same way as (4.5). Consequently, from
Lemma 2.1, {PF(T2)33n} converges strongly to an element Z of F (T2), that is,
Z = lim, 0 PF(Tz):rn. We prove that

? (= dm Pawnyen) =7 (= fim Prcryea).
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AsT e F (Tz), we have
<IL’n — PF(TQ).’L'n, PF(T2)‘T7’L - E> Z 0

for all n € N. As 2, — T and Pp(r2yzn, — 7, we have (T — 7, T —7) > 0; thus,
Z = Z. Therefore, {z,,} converges weakly to Z = lim,,_,~ Pp(72)Ty, which ends the
proof. O

5. HALPERN’S TYPE STRONG CONVERGENCE THEOREMS

This section presents strong convergence theorems for finding attractive and fixed
points of a generic 2-generalized hybrid mapping. The proof has been developed in
many studies (see [8, 9, 10, 17, 18, 19, 21, 26, 27, 32]).

Theorem 5.1. Let C be a nonempty and convexr subset of H. Let T : C' — C be
an (oij, By, V4 4,7 = 0,1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:
(I) cge + 10 >0, 12¢ >0, 10 >0, B, 81,82 >0, vg+71 =0, 75 > 0;

(II) crep + cve1 > 0, o2 > 0, o1 >0, 79, 71,72 2 0, Bg + 81 =20, By > 0.

Suppose that Ao (T') is nonempty, and let Py (1) be the metric projection from
H onto Ay (T). Let {\,} be a sequence of real numbers in the interval [0,1) that
satisfies A\p, — 0 and Y071 Ay = 00. Let {yn} be a sequence in C' such that y, —
y (€ H). Define a sequence {x,} in C as follows:

n—1
1
Tn+1 = An¥n + (1 - An) ; E Tkxn (6 C)
k=0

for all n € N, where 1 € C is given. Then, the sequence {x,} converges strongly
to an element Y of Ao (T) N A2o (T) N A21 (T'), where § = Py, (ryy. Additionally, if
C is closed in H, then {x,} converges strongly to a fived point j = Ppryy € F (T),
where Pp(ry is the metric projection from H onto F (T').

Proof. As Ajo (T) is a nonempty, closed, and convex subset of H, the metric projec-
tion Py, (1) from H onto Ay (T') exists. Define Sx,, = %ZZ;& T*z, (€ C). Then,
we have 11 = A\pyn + (1 — A\p) Sy It can be proved that

(5.1) 1520 — gll < lln — 4l

for all ¢ € A19(T") and n € N in the same way as the proof of (4.1).

Next, we prove that {x,} is bounded using mathematical induction. Let ¢ €
A0 (T), and define

M = max {sup lym—all, Jl1 — q||} -
neN

As {y,} is bounded, M is a real number. We show that ||z, — ¢|| < M for alln € N.
(i) It holds for n = 1. (ii) Assume that

(5.2) ok —qll < M



MEAN CONVERGENCE THEOREMS 135

for some k € N, where k is arbitrarily chosen. From (5.1) and (5.2), it follows that

[zk+1 — gl = [[Meyr + (1 — Ax) Sz — |
< Mellye — all + (1= Ae) [[Sz — gl
< AeM A+ (1= Ag) [z — g
SMM A+ (1= X)) M = M.
Therefore, {x,} is bounded, as claimed. From (5.1), {Sz,} is also bounded. Con-
sequently, it holds that
(5.3) |Znt1 — Sznl| = [[Anyn + (1 = Ap) Sz — Sy |
= Ao llyn — Sz = 0
as n — 0 because )\, — 0 is assumed.
Define X,, = ||z, — y||2, where §¥ = Py (r)y. Our aim is to prove that X,, — 0.
From (2.1) and (5.1), it holds that
Xp41 = [[@nt1 — 71
= [ Ayn + (1 = Ap) Sy — yH2
= [\ (o = ) + (1 = An) (S — )|
= (1 - )\n)z stn - ?H2 +2X\, <yn — Y, Tnt1 — y>
< (1= A) lzn = Fl* + 2Xn (Yo = Ty @nr1 —7)
=1 - M) X + 20 (Yn — 7, Tny1 —7) -
From Lemma 2.5, it suffices to demonstrate that

lim sup (yn — ¥, Tnp1 —7) < 0.

n—oo
From (5.3), it suffices to prove that limsup,,_,. (yn — 7, Szn —7) < 0. As {yn}
and {Sx,} are bounded, we assume, without loss of generality, that there are sub-
sequences {yn, } of {y,} and {Sxz,,} of {Sz,} such that
1—00

n—oo
and Sx,, — u for some v € H. From Lemma 2.6, u € A9 (T). As y, — y and
Y = Pa,o(1)Y, We obtain
limsup (yn — ¥, Sz, —7) = lim <yn¢ -9, Swp, — )
12— 00

n—oo

Thus, we obtain X;, — 0, and equivalently, z,, — 7. As Y = Py, )y € Ao (T) and
A1 (T) C Ay (T) N Agy (T), we obtain § € Ajg (T) N Asg (T) N A (T)

Additionally, suppose that C is closed in H. We demonstrate that x, —
ﬂ(z PF(T)y). Because x, — y = Py,,r)y and C is closed, it holds that y €
C N Pyy(ry- Thus, § € F(T); hence, F'(T) # 0. Because T is quasi-nonexpansive,
F(T) is closed and convex. Consequently, the metric projection Pp(p) from H onto
F(T) exists. We prove that (y =) Ppryy =7 (= PAm(T)y)- Because §y € F (T), it
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suffices to demonstrate that |y — ¥ < |ly — v| for all v € F'(T'). Let v € F'(T). As
T is quasi-nonexpansive, it holds that F' (") C Ajo (T"). Thus, we have

ly =yl = inf{lly—ql:q€ A (T)}
< inf{lly—qll:qe F(T)}
< lly—vll-
This result means that § = Pg(p)y (= ), which completes the proof. O

The following is a strong convergence theorem that approximate points of Ayg (77)
and F (T?).

Theorem 5.2. Let C be a nonempty and convex subset of H. LetT : C — C be
an (auj, B, 745 1,7 = 0,1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(1) oo + a2 + o2 + aze > 0, aig,a11, 12, 01,021 > 0, ago + gz > 0,

607161752770771772 2 O;
(ii) coo + @20 + a2 + a2 > 0, aig, 11,012, 201,021 > 0, ap2 + aze > 0,
Bo,> B1s B2, Y0, V1,72 = 0.

Suppose that Ago (T') is nonempty, and let Py, 1y be the metric projection from
H onto Aso (T). Let {\,} be a sequence of real numbers in the interval [0,1) that
satisfies A, — 0 and Y 02 1 Ay = 0. Let {yn} be a sequence in C' such that y, —
y (€ H). Define a sequence {x,} in C as follows:

Tnt1 = AnYn + (1 A)lnz_:lT%x (e O)
n+l — AnYn - \n) — n
n k=0
for all n € N, where 1 € C is given. Then, the sequence {x,} converges strongly
to an element § of Az (T'), where § = P, ryy. Additionally, if C is closed in H,
then {x,} converges strongly to a fixed point y = Ppr2yy € F (TQ), where Pp(r2)
is the metric projection from H onto F (TQ).

Proof. As Agy (T) = Aqo (TQ), Agg (T) is closed and convex. From the assumption

Ago (T) # 0, the metric projection Py, () from H onto Ay (T) exists. Define
Sz, = %Zz;é T?,, (€ C). Then, zny1 = Apyn + (1 — Ay) S'2,,. We can demon-

strate that
(5.4) |5 20 — q|| < [l2n — 4l

for all ¢ € Ay (T') and n € N in the same way as the proof of (4.4).
We prove that {z,} is bounded. For this aim, we use mathematical induction.
Taking g € Agg (T') arbitrarily, we define

3= max fsup o gl 1 —al |
neN

As {y,} is bounded, M is a real number. We show that ||z, — ¢|| < M for alln € N.

(i) It is true for n = 1. (ii) Assume that

(5.5) lzr —qll < M
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for k € N. From (5.4) and (5.5), we have
k1 — qll = || Ak + (1= M) S'zi — q|
< Ml = all + (1 =) || S'zx — g
< ANeM + (1= A) [z — 4l
<ANM A+ (1= M) M = M.

This shows that {x,} is bounded, as claimed. From (5.4), {S'z,} is also bounded.
Using this, we have

(5.6) Hxn+1 - S’mnH = H)\nyn + (1=, 82, — S’an
An Hyn — S'a:nH —0

as n — 0.
Denote X,, = |z, —g||*, where 7 = Pao(ryy- We prove that X,, — 0. From
(2.1) and (5.4), it holds that
X1 = ||zps1 — 7)1
= || Anyn + (1 = Aa) S’z — 7
= Ae W0 —7) + (1= Xa) (S'20 )|
= (1= ) [|Sen = * + 220 (g0 ~ T, @as1 — )
< (=) [&n =17 + 27 (Y = T, Tog1 —7)
=1-M\) X0 +20 (Yn — T, Tpt1—7) -

From Lemma 2.5, it suffices to demonstrate that

lim sup (yn — ¥, Tny1 —7) < 0.

n—oo

From (5.3), it suffices to show that

lim sup (yn =7, Tnt1 —7) = lim sup (y, — 7y, S'z, —7) <0.

n—oo n—oo
As {y,} and {S’x, } are bounded, we assume, without loss of generality, that sub-
sequences {yy, } of {yn} and {S'z,,} of {S'x,} exist such that
lim sup <yn -, Sy — y> = lim <ym -, Sll’m - ?>
1—00

n—oo
and S'z,, — u for some u € H. From Lemma 2.7, u € Ay (T). Because y, — y,
8"y, — u, and T = Py, 1)y, we obtain

n—o0
=(y—7 u-7) <0.
Therefore, it holds that X,, — 0, which means that z,, — 7.
Additionally, suppose that C' is closed in H. Our next purpose is to prove that
Ty — /y\(z PF(Tz)y). Because z,, = ¥ = Py, )y and C is closed, it holds that
Y€ CN Py CF (TQ). Consequently, F (TQ) # (). Under condition (i) or
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(i), T2 is quasi-nonexpansive. Therefore, F' (T2) is closed and convex, and the
metric projection Pp(r2) from H onto F (T2) exists. We prove that (§ =) Pp(r2)y =
Y (= Payoryy)- As y € F (T?), it suffices to demonstrate that ||y — 7| < |ly — v||
forall v € F (Tz). Choose v € F (T2) arbitrarily. As T2 is quasi-nonexpansive, it
follows that F' (T?) C Ag (T). Thus, we have

ly—yll = inf{lly—qll:q€ A0 (T)}
< inf{”y—q” 1q € F(T2)}
< lly—vll-
This implies that ¥ = Pg(p2)y (= 7). Thus, the proof is complete. O
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