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finding a fixed point of a nonexpansive mapping T by using Halpern’s type iteration
[6]

xn+1 = λnx+ (1− λn)Txn for all n ∈ N,

where x1 = x ∈ C is given, and {λn} ⊂ [0, 1].
Successive studies have shown that the class of nonexpansive mappings can be

generalized to include many important mappings. In 2010, Kocourek et al. [14]
defined a wide class of mappings. A mapping T : C → H is called generalized
hybrid [14] if α, β ∈ R exist such that

α ∥Tx− Ty∥2 + (1− α) ∥x− Ty∥2 ≤ β ∥Tx− y∥2 + (1− β) ∥x− y∥2

for all x, y ∈ C. A class of generalized hybrid mappings contains nonexpansive map-
pings as a special case, where α = 1 and β = 0. Similarly, this class of mappings
includes nonspreading mappings [15, 16], hybrid mappings [36], and λ-hybrid map-
pings [1]. For generalized hybrid mappings, various types of convergence theorems
for finding fixed and attractive points were established (see, e.g., Kocourek et al.
[14], Takahashi and Takeuchi [37], Hasegawa et al. [7], Takahashi et al. [40], and
Hojo and Takahashi [9].

In 2011, Maruyama et al. [29] further extended the class of generalized hybrid
mappings. A mapping T : C → C is called a 2-generalized hybrid mapping if
α1, α2, β1, β2 ∈ R exist such that

α1

∥∥T 2x− Ty
∥∥2 + α2 ∥Tx− Ty∥2 + (1− α1 − α2) ∥x− Ty∥2

≤ β1

∥∥T 2x− y
∥∥2 + β2 ∥Tx− y∥2 + (1− β1 − β2) ∥x− y∥2

for all x, y ∈ C. A 2-generalized hybrid mapping with α1 = β1 = 0 is generalized
hybrid. Kondo and Takahashi [20] introduced the following class of nonlinear map-
pings. A mapping T : C → C is called normally 2-generalized hybrid if there exist
α0, β0, α1, β1, α2, β2 ∈ R such that

∑2
n=0 (αn + βn) ≥ 0, α2 + α1 + α0 > 0, and

α2∥T 2x− Ty∥2 + α1∥Tx− Ty∥2 + α0∥x− Ty∥2

+ β2∥T 2x− y∥2 + β1∥Tx− y∥2 + β0∥x− y∥2 ≤ 0

for all x, y ∈ C. This class of mappings contains 2-generalized hybrid mappings,
in addition to normally generalized hybrid mappings [39]. Hojo et al. [11] and
Kondo [18, 19] presented examples of 2-generalized hybrid mappings and normally
2-generalized hybrid mappings that are not generalized hybrid or continuous.

In 2019, Kondo and Takahashi [22] introduced a wide class of mappings. A
mapping T : C → C is called generic 2-generalized hybrid if there exist αij , βi, γi ∈
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R (i, j = 0, 1, 2) such that

(1.2)

α00∥x− y∥2 + α01∥x− Ty∥2 + α02∥x− T 2y∥2

+ α10 ∥Tx− y∥2 + α11 ∥Tx− Ty∥2 + α12

∥∥Tx− T 2y
∥∥2

+ α20

∥∥T 2x− y
∥∥2 + α21

∥∥T 2x− Ty
∥∥2 + α22

∥∥T 2x− T 2y
∥∥2

+ β0 ∥x− Tx∥2 + β1

∥∥Tx− T 2x
∥∥2 + β2

∥∥T 2x− x
∥∥2

+ γ0 ∥y − Ty∥2 + γ1
∥∥Ty − T 2y

∥∥2 + γ2
∥∥T 2y − y

∥∥2 ≤ 0

for all x, y ∈ C with some parameter conditions so that it contains normally 2-
generalized hybrid mappings. We also call such a mapping an (αij , βi, γi; i, j =
0, 1, 2)-generic 2-generalized hybrid mapping. Kondo and Takahashi [22] proved an
ergodic theorem for that class of mappings whereas they addressed Mann’s type and
Halpern’s type convergence theorems in another paper [24]. Although their results
uniformly extend the previous results in the literature, a mean convergence theorem
based on the iteration (1.1) has not yet been proved for generic 2-generalized hybrid
mappings.

This paper proves the mean convergence theorems for finding attractive and fixed
points of generic 2-generalized hybrid mappings. First, Baillon’s type nonlinear
ergodic theorems that weakly approximate attractive and fixed points are demon-
strated. The theorem is established under more general parameter conditions than
the previous result in [22]. Second, we demonstrate the mean convergence theorems
that weakly approximate attractive and fixed points by combining Mann’s and At-
sushiba and Takahashi’s type iterations. Finally, we show that mean convergence
theorems strongly approximate attractive and fixed points by combining Halpern’s
and Atsushiba and Takahashi’s type iterations. Our results extend many existing
theorems in the literature.

2. Preliminaries and lemmas

This section presents basic information and results. A systematic explanation is
found in work by Takahashi [34, 35]. In a real Hilbert space H, it is known that

(2.1) 2 ⟨x− y, y⟩ ≤ ∥x∥2 − ∥y∥2 ≤ 2 ⟨x− y, x⟩

for all x, y ∈ H. For a sequence {xn} in H, strong and weak convergences of {xn}
to a point x (∈ H) are denoted by xn → x and xn ⇀ x, respectively. A closed and
convex subset C of H is weakly closed. It is easily verified that xn ⇀ x is equivalent
to the following condition. For any subsequence {xni} of {xn}, a subsequence

{
xnj

}
of {xni} exists such that xnj ⇀ x.

Let C be a nonempty, closed, and convex subset of H. The metric projection
from H onto C is denoted by PC , that is, ∥x− PCx∥ = infz∈C ∥x− z∥ for any
x ∈ H. The metric projection PC from H onto C is nonexpansive and satisfies
⟨x− PCx, PCx− z⟩ ≥ 0 for all x ∈ H and z ∈ C. A mapping T : C → H
with F (T ) ̸= ∅ is called quasi-nonexpansive if ∥Tx− u∥ ≤ ∥x− u∥ for all x ∈
C and u ∈ F (T ). Itoh and Takahashi [13] proved that a set of fixed points of
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a quasi-nonexpansive mapping is closed and convex. Kondo and Takahashi [20]
demonstrated that a normally 2-generalized hybrid mapping with a fixed point is
quasi-nonexpansive.

Let T be a mapping from C into H, where C is a nonempty subset of H. Taka-
hashi and Takeuchi [37] introduced the concept of an attractive point, and revealed
the basic properties of the set of attractive points A (T ):

• A (T ) is closed and convex, and A (T ) ∩ C ⊂ F (T ) without any conditions on
T ;

• F (T ) ⊂ A (T ) if T is quasi-nonexpansive;
• A (T ) ̸= ∅ =⇒ F (T ) ≠ ∅, if C is nonempty, closed, and convex, and T is a

self-mapping defined on C.

The following lemmas are necessary to establish our main theorems.

Lemma 2.1 ([38]). Let A be a nonempty, closed, and convex subset of H, let PA

be the metric projection from H onto A, and let {xn} be a sequence in H. If
∥xn+1 − q∥ ≤ ∥xn − q∥ for all q ∈ A and n ∈ N, then {PAxn} is convergent in A.

Lemma 2.2 ([35]). Let x, y ∈ H, and λ ∈ R. Then, it holds that

∥λx+ (1− λ) y∥2 = λ ∥x∥2 + (1− λ) ∥y∥2 − λ (1− λ) ∥x− y∥2 .

Let T be an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping. The
next two lemmas assert that T and T 2 with fixed points are quasi-nonexpansive.
We use the following notation:

(2.2) αi• ≡ αi0 + αi1 + αi2, α•i ≡ α0i + α1i + α2i, α•• ≡
∑

i,j=0,1,2

αij ,

where i = 0, 1, 2.

Lemma 2.3 ([22]). Let C be a nonempty subset of H, and let T be an (αij , βi, γi;
i, j = 0, 1, 2)-generic 2-generalized hybrid mapping from C into itself with F (T ) ̸= ∅.
Suppose that T satisfies one of the following two conditions:

(I) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0;
(II) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γ0, γ1, γ2 ≥ 0.

Then, T is quasi-nonexpansive.

Lemma 2.4 ([24]). Let C be a nonempty subset of H, and let T be an (αij , βi, γi;
i, j = 0, 1, 2)-generic 2-generalized hybrid mapping from C into itself with F

(
T 2
)
̸=

∅. Suppose that T satisfies one of the following two conditions:

(i) α00 + α02 + α20 + α22 ≥ 0, α10 + α12 ≥ 0, α01, α11, α21 ≥ 0, α20 + α22 >
0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0;

(ii) α00 + α20 + α02 + α22 ≥ 0, α01 + α21 ≥ 0, α10, α11, α12 ≥ 0, α02 + α22 > 0,
β0 + β1 ≥ 0, γ0, γ1, γ2 ≥ 0.

Then, T 2 is quasi-nonexpansive.
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The following lemma is used to prove strong convergence theorems.

Lemma 2.5 ([2]; see also [42]). Let {Xn} be a sequence of nonnegative real numbers,
let {Yn} be a sequence of real numbers such that lim supn→∞ Yn ≤ 0, and let {Zn}
be a sequence of nonnegative real numbers such that

∑∞
n=1 Zn < ∞. Let {λn}

be a sequence of real numbers in the interval [0, 1) such that
∑∞

n=1 λn = ∞. If
Xn+1 ≤ (1− λn)Xn + λnYn + Zn for all n ∈ N, then Xn → 0 as n → ∞.

We list two sublemmas.

Sublemma 2.1. Let α, β ∈ R such that α + β ≥ 0, and let {an} and {bn} be
sequences of nonnegative real numbers such that an − bn → 0. Then, it holds that
lim infn→∞ (αan + βbn) ≥ 0.

The recent work by Kondo and Takahashi [24] introduced three types of attractive
points of T . The sets of these attractive points are denoted as follows:

A10 (T ) ≡ A (T ) ≡ {v ∈ H : ∥Ty − v∥ ≤ ∥y − v∥ for all y ∈ C} ;(2.3)

A20 (T ) ≡ A
(
T 2
)
≡
{
v ∈ H :

∥∥T 2y − v
∥∥ ≤ ∥y − v∥ for all y ∈ C

}
;

A21 (T ) ≡
{
v ∈ H :

∥∥T 2y − v
∥∥ ≤ ∥Ty − v∥ for all y ∈ C

}
.

Notice that

(2.4) A10 (T ) = A10 (T ) ∩A20 (T ) ∩A21 (T ) .

This is because A10 (T ) ⊂ A20 (T )∩A21 (T ) (see [24]). In the rest of this paper, we
use the notation A10 (T ), A20 (T ), and A21 (T ). The following sublemma is useful.

Sublemma 2.2 ([24]; see also [20]). For T : C → C and v ∈ H, the following hold:

(1) v ∈ A10 (T ) ⇐⇒ ∥Ty − y∥2 + 2 ⟨Ty − y, y − v⟩ ≤ 0, ∀y ∈ C;

(2) v ∈ A20 (T ) ⇐⇒
∥∥T 2y − y

∥∥2 + 2
〈
T 2y − y, y − v

〉
≤ 0, ∀y ∈ C;

(3) v ∈ A21 (T ) ⇐⇒
∥∥T 2y − Ty

∥∥2 + 2
〈
T 2y − Ty, Ty − v

〉
≤ 0, ∀y ∈ C.

The following two lemmas are important to prove our main theorems.

Lemma 2.6. Let C be a nonempty subset of H, and let T : C → C be an (αij , βi, γi;
i, j = 0, 1, 2)-generic 2-generalized hybrid mapping with one of the following two
conditions:

(I) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;
(II) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γ0, γ1, γ2 ≥ 0, β0 + β1 ≥ 0, β2 ≥ 0.
Suppose that A10 (T ) ̸= ∅. Let {wn} be a bounded sequence in C, and define

Swn ≡ 1

n

n−1∑
k=0

T kwn ∈ H.

Suppose that Swni ⇀ v (∈ H), where {Swni} is a subsequence of {Swn}. Then,
v ∈ A10 (T ) ∩ A20 (T ) ∩ A21 (T ). Additionally, if C is closed and convex, then
v ∈ F (T ).
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Proof. First, because {wn} is bounded and A10 (T ) ̸= ∅, sequences
{
Tn+1wn

}
,

{Tnwn}, and {Twn} are also bounded. Indeed, let q ∈ A10 (T ). Then, the following
holds: ∥∥Tn+1wn − q

∥∥ ≤ · · · ≤ ∥Twn − q∥ ≤ ∥wn − q∥ .

As {wn} is bounded, the sequences
{
Tn+1wn

}
, {Tnwn}, and {Twn} are also bounded,

as claimed.
Case (I): Suppose that α0•+α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0+γ1 ≥

0, and γ2 ≥ 0. Let y ∈ C. From Sublemma 2.2-(1) and (2.4), it suffices to show
that

∥Ty − y∥2 + 2 ⟨Ty − y, y − v⟩ ≤ 0,

where v (∈ H) is the weak limit of {Swni}. As T is (αij , βi, γi; i, j = 0, 1, 2)-generic
2-generalized hybrid, it holds that

α00∥y − T kwn∥2 + α01

∥∥∥y − T k+1wn

∥∥∥2 + α02

∥∥∥y − T k+2wn

∥∥∥2
+ α10

∥∥∥Ty − T kwn

∥∥∥2 + α11

∥∥∥Ty − T k+1wn

∥∥∥2 + α12

∥∥∥Ty − T k+2wn

∥∥∥2
+ α20∥T 2y − T kwn∥2 + α21

∥∥∥T 2y − T k+1wn

∥∥∥2 + α22

∥∥∥T 2y − T k+2wn

∥∥∥2
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2

+ γ0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1

∥∥∥T k+1wn − T k+2wn

∥∥∥2
+ γ2

∥∥∥T k+2wn − T kwn

∥∥∥2 ≤ 0

for all k ∈ N∪{0}. As γ2 ≥ 0, we obtain the following:

α00

∥∥∥y − T kwn

∥∥∥2 + α01

∥∥∥y − T k+1wn

∥∥∥2 + α02

∥∥∥y − T k+2wn

∥∥∥2
+ α10

(
∥Ty − y∥2 + 2

〈
Ty − y, y − T kwn

〉
+
∥∥∥y − T kwn

∥∥∥2)
+ α11

(
∥Ty − y∥2 + 2

〈
Ty − y, y − T k+1wn

〉
+
∥∥∥y − T k+1wn

∥∥∥2)
+ α12

(
∥Ty − y∥2 + 2

〈
Ty − y, y − T k+2wn

〉
+
∥∥∥y − T k+2wn

∥∥∥2)
+ α20∥T 2y − T kwn∥2 + α21

∥∥∥T 2y − T k+1wn

∥∥∥2
+ α22

∥∥∥T 2y − T k+2wn

∥∥∥2 + β0 ∥y − Ty∥2

+ β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2

+ γ0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1

∥∥∥T k+1wn − T k+2wn

∥∥∥2 ≤ 0.

Consequently,
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(α00 + α10)
∥∥∥y − T kwn

∥∥∥2 + (α01 + α11)
∥∥∥y − T k+1wn

∥∥∥2
+ (α02 + α12)

∥∥∥y − T k+2wn

∥∥∥2 + 2α10

〈
Ty − y, y − T kwn

〉
+ 2α11

〈
Ty − y, y − T k+1wn

〉
+ 2α12

〈
Ty − y, y − T k+2wn

〉
+ α20∥T 2y − T kwn∥2 + α21

∥∥∥T 2y − T k+1wn

∥∥∥2
+ α22

∥∥∥T 2y − T k+2wn

∥∥∥2 + (α1• + β0) ∥y − Ty∥2

+ β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2

+ γ0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1

∥∥∥T k+1wn − T k+2wn

∥∥∥2 ≤ 0.

This yields the following:

(α0• + α1•)
∥∥∥y − T kwn

∥∥∥2 + (α01 + α11)

(∥∥∥y − T k+1wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ (α02 + α12)

(∥∥∥y − T k+2wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ 2

〈
Ty − y, α1•y −

(
α10T

kwn + α11T
k+1wn + α12T

k+2wn

)〉
+ α2•

∥∥∥T 2y − T kwn

∥∥∥2 + α21

(∥∥∥T 2y − T k+1wn

∥∥∥2 − ∥∥∥T 2y − T kwn

∥∥∥2)
+ α22

(∥∥∥T 2y − T k+2wn

∥∥∥2 − ∥∥∥T 2y − T kwn

∥∥∥2)
+ (α1• + β0) ∥Ty − y∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2

+ γ0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1

∥∥∥T k+1wn − T k+2wn

∥∥∥2 ≤ 0.

As α0• + α1• ≥ 0 and α2• ≥ 0, we have the following:

(α01 + α11)

(∥∥∥y − T k+1wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ (α02 + α12)

(∥∥∥y − T k+2wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ 2
〈
Ty − y, α1•y −

{
α1•T

kwn + α11

(
T k+1wn − T kwn

)
+ α12

(
T k+2wn − T kwn

)}〉
+ α21

(∥∥∥T 2y − T k+1wn

∥∥∥2 − ∥∥∥T 2y − T kwn

∥∥∥2)
+ α22

(∥∥∥T 2y − T k+2wn

∥∥∥2 − ∥∥∥T 2y − T kwn

∥∥∥2)
+ (α1• + β0) ∥Ty − y∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2
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+ γ0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1

∥∥∥T k+1wn − T k+2wn

∥∥∥2 ≤ 0.

Summing these inequalities with respect to k from 0 to n − 1, and dividing by n,
we obtain

(2.5)

1

n
(α01 + α11)

(
∥y − Tnwn∥2 − ∥y − wn∥2

)
+

1

n
(α02 + α12) (

∥∥y − Tn+1wn

∥∥2 + ∥y − Tnwn∥2

− ∥y − Twn∥2 − ∥y − wn∥2)

+ 2⟨Ty − y, α1•y − {α1•Swn +
1

n
α11 (T

nwn − wn)

+
1

n
α12

(
Tn+1wn + Tnwn − Twn − wn

)
}⟩

+
1

n
α21

(∥∥T 2y − Tnwn

∥∥2 − ∥∥T 2y − wn

∥∥2)
+

1

n
α22(

∥∥T 2y − Tn+1wn

∥∥2 + ∥∥T 2y − Tnwn

∥∥2
−
∥∥T 2y − Twn

∥∥2 − ∥∥T 2y − wn

∥∥2)
+ (α1• + β0) ∥Ty − y∥2 + β1

∥∥Ty − T 2y
∥∥2

+ β2

∥∥T 2y − y
∥∥2 + γ0

1

n

n−1∑
k=0

∥∥∥T kwn − T k+1wn

∥∥∥2
+ γ1

1

n

n−1∑
k=0

∥∥∥T k+1wn − T k+2wn

∥∥∥ ≤ 0.

As {Tnwn} and
{
Tn+1wn

}
are bounded,

1

n

n−1∑
k=0

∥∥∥T kwn − T k+1wn

∥∥∥2 − 1

n

n−1∑
k=0

∥∥∥T k+1wn − T k+2wn

∥∥∥2 → 0

as n → ∞. As γ0 + γ1 ≥ 0, from Sublemma 2.1, we have

lim inf
n→∞

(
γ0

1

n

n−1∑
k=0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1
1

n

n−1∑
k=0

∥∥∥T k+1wn − T k+2wn

∥∥∥2) ≥ 0.

Thus, replacing n by ni, and taking the lim inf as i → ∞ in (2.5), we obtain

2α1• ⟨Ty − y, y − v⟩

+ (α1• + β0) ∥Ty − y∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2 ≤ 0.

Because β0, β1, β2 ≥ 0, we have 2α1• ⟨Ty − y, y − v⟩+α1• ∥Ty − y∥2 ≤ 0. It follows

from α1• > 0 that ∥Ty − y∥2+2 ⟨Ty − y, y − v⟩ ≤ 0 for all y ∈ C. From Sublemma
2.2-(1) and (2.4), we obtain v ∈ A10 (T ) ∩A20 (T ) ∩A21 (T ).
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In addition to the other assumptions, suppose that C is closed and convex. Then,
{Swn} is a sequence in C. As Swni ⇀ v, it holds that v ∈ C. As v ∈ A10 (T )∩C ⊂
F (T ), we have v ∈ F (T ).

Case (II). Suppose that α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γ0, γ1, γ2 ≥ 0,
β0 + β1 ≥ 0, and β2 ≥ 0. We can obtain the desired results by replacing y and
T kwn in (2.5). □

Under condition (I) or (II), the mapping T is quasi-nonexpansive if it has a fixed
point (see Lemma 2.3). The lemma slightly generalizes Lemma 5.2 by Kondo and
Takahashi [22] regarding the parameter conditions. For this point, see Theorem 3.2
in this paper, which is reproduced for convenience. The next lemma is employed to
prove Theorems 3.3, 4.2, and 5.2.

Lemma 2.7. Let C be a nonempty subset of H, and let T : C → C be an (αij , βi, γi;
i, j = 0, 1, 2)-generic 2-generalized hybrid mapping with one of the following two
condition:

(i) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α20 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0;

(ii) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α02 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0.

Suppose that A20 (T ) ̸= ∅. Let {wn} be a bounded sequence in C, and define

S′wn ≡ 1

n

n−1∑
k=0

T 2kwn ∈ H.

Suppose that S′wni ⇀ v (∈ H), where {S′wni} is a subsequence of {S′wn}. Then,
v ∈ A20 (T ). Additionally, if C is closed and convex, then v ∈ F

(
T 2
)
.

Proof. Because {wn} is bounded and A20 (T ) ̸= ∅ is assumed, a sequence
{
T 2nwn

}
is also bounded. Indeed, let q ∈ A20 (T ). Then, the following holds:

∥∥T 2nwn − q
∥∥ ≤

∥∥∥T 2(n−1)wn − q
∥∥∥ ≤ · · · ≤

∥∥T 2wn − q
∥∥ ≤ ∥wn − q∥ .

As {wn} is bounded, the sequence
{
T 2nwn

}
is also bounded, as claimed.

Case (i): Suppose that α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0,
α20 + α22 > 0, and β0, β1, β2, γ0, γ1, γ2 ≥ 0. Let y ∈ C. From Sublemma 2.2-(2), it
suffices to show that

∥∥T 2y − y
∥∥2 + 2

〈
T 2y − y, y − v

〉
≤ 0,
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where v (∈ H) is the weak limit of {S′wni}. As T is (αij , βi, γi; i, j = 0, 1, 2)-generic
2-generalized hybrid, it follows that

(2.6)

α00∥y − T kwn∥2 + α01

∥∥∥y − T k+1wn

∥∥∥2 + α02

∥∥∥y − T k+2wn

∥∥∥2
+ α10

∥∥∥Ty − T kwn

∥∥∥2 + α11

∥∥∥Ty − T k+1wn

∥∥∥2 + α12

∥∥∥Ty − T k+2wn

∥∥∥2
+ α20∥T 2y − T kwn∥2 + α21

∥∥∥T 2y − T k+1wn

∥∥∥2 + α22

∥∥∥T 2y − T k+2wn

∥∥∥2
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2

+ γ0

∥∥∥T kwn − T k+1wn

∥∥∥2 + γ1

∥∥∥T k+1wn − T k+2wn

∥∥∥2
+ γ2

∥∥∥T k+2wn − T kwn

∥∥∥2 ≤ 0

for all k ∈ N∪{0}. As α10, α11, α12, α01, α21 ≥ 0 and γ0, γ1, γ2 ≥ 0, we have

α00∥y − T kwn∥2 + α02

∥∥∥y − T k+2wn

∥∥∥2
+ α20∥T 2y − T kwn∥2 + α22

∥∥∥T 2y − T k+2wn

∥∥∥2
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2 ≤ 0.

This yields

α00

∥∥∥y − T kwn

∥∥∥2 + α02

∥∥∥y − T k+2wn

∥∥∥2
+ α20

(∥∥T 2y − y
∥∥2 + 2

〈
T 2y − y, y − T kwn

〉
+
∥∥∥y − T kwn

∥∥∥2)
+ α22

(∥∥T 2y − y
∥∥2 + 2

〈
T 2y − y, y − T k+2wn

〉
+
∥∥∥y − T k+2wn

∥∥∥2)
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + β2

∥∥T 2y − y
∥∥2 ≤ 0.

We obtain the following:

(α00 + α20)
∥∥∥y − T kwn

∥∥∥2 + (α02 + α22)
∥∥∥y − T k+2wn

∥∥∥2
+ 2α20

〈
T 2y − y, y − T kwn

〉
+ 2α22

〈
T 2y − y, y − T k+2wn

〉
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + (α20 + α22 + β2)

∥∥T 2y − y
∥∥2 ≤ 0;

thus,

(α00 + α20 + α02 + α22)
∥∥∥y − T kwn

∥∥∥2
+ (α02 + α22)

(∥∥∥y − T k+2wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ 2

〈
T 2y − y, (α20 + α22) y − α20T

kwn − α22T
k+2wn

〉
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+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + (α20 + α22 + β2)

∥∥T 2y − y
∥∥2 ≤ 0.

It follows that

(α00 + α20 + α02 + α22)
∥∥∥y − T kwn

∥∥∥2
+ (α02 + α22)

(∥∥∥y − T k+2wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ 2

〈
T 2y − y, (α20 + α22) y − {(α20 + α22)T

kwn + α22(T
k+2wn − T kwn)}

〉
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + (α20 + α22 + β2)

∥∥T 2y − y
∥∥2 ≤ 0.

As α00 + α20 + α02 + α22 ≥ 0, we have

(α02 + α22)

(∥∥∥y − T k+2wn

∥∥∥2 − ∥∥∥y − T kwn

∥∥∥2)
+ 2

〈
T 2y − y, (α20 + α22) y − {(α20 + α22)T

kwn + α22(T
k+2wn − T kwn)}

〉
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + (α20 + α22 + β2)

∥∥T 2y − y
∥∥2 ≤ 0.

Summing these inequalities with respect to k = 0, 2, 4, · · · , 2(n − 1), and dividing
by n, we obtain

1

n
(α02 + α22)

(∥∥y − T 2nwn

∥∥2 − ∥y − wn∥2
)

+ 2

〈
T 2y − y, (α20 + α22) y − {(α20 + α22)S

′wn +
1

n
α22

(
T 2nwn − wn

)〉
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + (α20 + α22 + β2)

∥∥T 2y − y
∥∥2 ≤ 0.

As
{
T 2nwn

}
and {wn} are bounded, replacing n with ni, and taking the limit as

i → ∞, we obtain

2 (α20 + α22)
〈
T 2y − y, y − v

〉
+ β0 ∥y − Ty∥2 + β1

∥∥Ty − T 2y
∥∥2 + (α20 + α22 + β2)

∥∥T 2y − y
∥∥2 ≤ 0.

As β0, β1, β2 ≥ 0, we obtain

2 (α20 + α22)
〈
T 2y − y, y − v

〉
+ (α20 + α22)

∥∥T 2y − y
∥∥2 ≤ 0.

It holds from α20+α22 > 0 that 2
〈
T 2y − y, y − v

〉
+
∥∥T 2y − y

∥∥2 ≤ 0 for all y ∈ C.
From Sublemma 2.2-(2), v ∈ A20 (T ).

In addition to the other assumptions, suppose that C is closed and convex. Then,
{S′wn} is a sequence in C. As S′wni ⇀ v, it holds that v ∈ C. As v ∈ A20 (T )∩C ⊂
F
(
T 2
)
, we have v ∈ F

(
T 2
)
.

Case (ii). Suppose that α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0,
α02 + α22 > 0, and β0, β1, β2, γ0, γ1, γ2 ≥ 0. We can obtain the desired results by
replacing y and T kwn in (2.6). □

Under condition (i) or (ii), the mapping T 2 is quasi-nonexpansive if it has a fixed
point (see Lemma 2.4).
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3. Baillon’s type weak convergence theorems

This section presents nonlinear ergodic theorems. The elements of the proof were
developed by Takahashi [33] (see also [5, 14, 20, 27, 29, 37, 39]). First, we obtain
a theorem that weakly approximates the attractive and fixed points of a generic
2-generalized hybrid mapping. The theorem generalizes that in the previous work
[22].

Theorem 3.1. Let C be a nonempty subset of H, and let T : C → C be an
(αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping with A10 (T ) ̸= ∅.
Let PA10(T ) be the metric projection from H onto A10 (T ). Suppose that T satisfies
one of the following two conditions:

(I) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;
(II) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γ0, γ1, γ2 ≥ 0, β0 + β1 ≥ 0, β2 ≥ 0.

Then, for any x ∈ C, the sequence
{
Snx ≡ 1

n

∑n−1
k=0 T

kx
}

in H converges weakly

to a point x of A10 (T ) ∩ A20 (T ) ∩ A21 (T ) (⊂ H), where x ≡ limn→∞ PA10(T )T
nx.

Additionally, if C is closed and convex in H, then for any x ∈ C, the sequence{
Snx ≡ 1

n

∑n−1
k=0 T

kx
}

in C converges weakly to a point of F (T ).

Proof. From Takahashi and Takeuchi [37], we know that A10 (T ) is closed and convex
in H. As A10 (T ) ̸= ∅ is assumed, the metric projection PA10(T ) from H onto A10 (T )

exists. Let x ∈ C, and define Snx ≡ 1
n

∑n−1
k=0 T

kx ∈ H for all n ∈ N. As A10 (T ) ̸= ∅,
{Tnx} is bounded in C. Indeed, it holds that

(3.1) ∥Tnx− q∥ ≤
∥∥Tn−1x− q

∥∥
for all q ∈ A10 (T ) and n ∈ N. This demonstrates that {Tnx} is bounded. Conse-
quently, the sequence {Snx} is also bounded in H. From (3.1) and Lemma 2.1, the
sequence

{
PA10(T )T

nx
}
is convergent in A10 (T ). Define the following:

x ≡ lim
n→∞

PA10(T )T
nx ∈ A10 (T ) .

Our objective is to prove that Snx ⇀ x. Let {Snix} be a subsequence of {Snx}.
As {Snix} is bounded, a subsequence

{
Snjx

}
of {Snix} exists such that Snjx ⇀ u

for some u ∈ H. It suffices to demonstrate that u = x. Applying Lemma 2.6 with
wn = x, we have u ∈ A10 (T ).

The sequence
{∥∥Tnx− PA10(T )T

nx
∥∥} is monotone decreasing. Indeed, as

PA10(T )T
nx ∈ A10 (T ), from (3.1), it holds that∥∥Tn+1x− PA10(T )T

n+1x
∥∥ ≤

∥∥Tn+1x− PA10(T )T
nx
∥∥

≤
∥∥Tnx− PA10(T )T

nx
∥∥

for all n ∈ N∪{0}. Thus, the sequence
{∥∥Tnx− PA10(T )T

nx
∥∥} is monotone de-

creasing, as claimed.
It follows from u ∈ A10 (T ) that〈

T kx− PA10(T )T
kx, PA10(T )T

kx− u
〉
≥ 0
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for all k ∈ N∪{0}, and therefore,〈
T kx− PA10(T )T

kx, PA10(T )T
kx− x+ x− u

〉
≥ 0.

As
{∥∥Tnx− PA10(T )T

nx
∥∥} is monotone decreasing, we have the following:〈

T kx− PA10(T )T
kx, − (x− u)

〉
≤
〈
T kx− PA10(T )T

kx, PA10(T )T
kx− x

〉
≤
∥∥∥T kx− PA10(T )T

kx
∥∥∥ ∥∥∥PA10(T )T

kx− x
∥∥∥

≤
∥∥x− PA10(T )x

∥∥ ∥∥∥PA10(T )T
kx− x

∥∥∥ .
Summing these inequalities with respect to k from 0 to n− 1, we obtain〈

n−1∑
k=0

T kx−
n−1∑
k=0

PA10(T )T
kx, − (x− u)

〉

≤
∥∥x− PA10(T )x

∥∥ · n−1∑
k=0

∥∥∥PA10(T )T
kx− x

∥∥∥ .
Dividing by n, we have〈

Snx− 1

n

n−1∑
k=0

PA10(T )T
kx, − (x− u)

〉

≤
∥∥x− PA10(T )x

∥∥ · 1
n

n−1∑
k=0

∥∥∥PA10(T )T
kx− x

∥∥∥ .
Replacing n by nj , and taking the limit as j → ∞, we obtain

⟨u− x, − (x− u)⟩ ≤ 0

as Snjx ⇀ u and PA10(T )T
nx → x. Hence, it holds that u = x. We obtain Snx ⇀

x ≡ limn→∞ PA10(T )T
nx ∈ A10 (T ). It follows from A10 (T ) ⊂ A20 (T ) ∩ A21 (T )

that u ∈ A10 (T ) ∩A20 (T ) ∩A21 (T ).
In addition to the other assumptions, suppose that C is closed and convex. Be-

cause A10 (T ) ̸= ∅ is assumed, we have F (T ) ̸= ∅. Consequently, under a condition
(I) or (II), the mapping T is quasi-nonexpansive. In this case, {Snx} is a sequence in
C. As C is weakly closed and Snx ⇀ x, x ∈ C. Therefore, x ∈ A10 (T )∩C ⊂ F (T ),
which completes the proof. □

Theorem 3.1 is a generalization of the previous result by Kondo and Takahashi
[22]:

Theorem 3.2 ([22]). Let C be a nonempty subset of H, and let T : C → C be
a (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping with A10 (T ) ̸= ∅.
Let PA10(T ) be the metric projection from H onto A10 (T ). Suppose that T satisfies
one of the following conditions:
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(I)′ α0•+α1• ≥ 0, α20, α21, α22 ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0+γ1 ≥ 0, γ2 ≥ 0;
(II)′ α•0+α•1 ≥ 0, α02, α12, α22 ≥ 0, α•1 > 0, β0+β1 ≥ 0, β2 ≥ 0, γ0, γ1, γ2 ≥ 0.

Then, for any x ∈ C, the sequence
{
Snx ≡ 1

n

∑n−1
k=0 T

kx
}

converges weakly to

x ∈ A10 (T ), where x ≡ limn→∞ PA10(T )T
nx. Additionally, suppose that C is closed

and convex. Then, for any x ∈ C, the sequence {Snx} converges weakly to a fixed
point x of T .

As we observe, the condition (I) (resp. (II)) is more general than (I)′ (rep. (II)′).
Next, we present a weak convergence theorem for A20 (T ) and F

(
T 2
)
.

Theorem 3.3. Let C be a nonempty subset of H, and let T : C → C be an
(αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping with A20 (T ) ̸= ∅.
Let PA20(T ) be the metric projection from H onto A20 (T ). Suppose that T satisfies
the following two conditions:

(i) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α20 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0;

(ii) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α02 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0.

Then, for any x ∈ C, the sequence
{
S′
nx ≡ 1

n

∑n−1
k=0 T

2kx
}
in H converges weakly

to a point x (∈ H) of A20 (T ), where x ≡ limn→∞ PA20(T )T
2nx. Additionally, if C is

closed and convex in H, then for any x ∈ C, the sequence
{
S′
nx ≡ 1

n

∑n−1
k=0 T

2kx
}

in C converges weakly to a point of F
(
T 2
)
.

Proof. As A20 (T ) = A10

(
T 2
)
, it holds that A20 (T ) is closed and convex in H. As

A20 (T ) ̸= ∅ is assumed, the metric projection PA20(T ) from H onto A20 (T ) exists.

Let x ∈ C, and define S′
nx ≡ 1

n

∑n−1
k=0 T

2kx ∈ H for all n ∈ N. Because A20 (T ) ̸= ∅
is assumed,

{
T 2nx

}
is a bounded sequence in C. Indeed, it holds that

(3.2)
∥∥∥T 2(n+1)x− q

∥∥∥ ≤
∥∥T 2nx− q

∥∥
for all q ∈ A20 (T ) and n ∈ N∪{0}. This indicates that

{
T 2nx

}
is bounded. Thus,

the sequence {S′
nx} is also bounded in H. From (3.2) and Lemma 2.1, the sequence{

PA20(T )T
2nx
}
is convergent in A20 (T ). Define x ≡ limn→∞ PA20(T )T

2nx ∈ A20 (T ).

Our purpose is to prove that S′
nx ⇀ x. Let

{
S′
ni
x
}
be a subsequence of {S′

nx}.
As

{
S′
ni
x
}

is bounded, a subsequence
{
S′
nj
x
}

of
{
S′
ni
x
}

and u ∈ H exist such

that S′
nj
x ⇀ u. It suffices to demonstrate that u = x. Applying Lemma 2.7 with

wn = x, we have u ∈ A20 (T ).
It is easy to verify that the sequence

{∥∥T 2nx− PA20(T )T
2nx
∥∥} is monotone de-

creasing. The proof is as follows. Because PA20(T )T
2nx ∈ A20 (T ), from (3.2), it

holds that ∥∥∥T 2(n+1)x− PA20(T )T
2(n+1)x

∥∥∥ ≤
∥∥∥T 2(n+1)x− PA20(T )T

2nx
∥∥∥

≤
∥∥T 2nx− PA20(T )T

2nx
∥∥
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for all n ∈ N∪{0}. Thus, the sequence
{∥∥T 2nx− PA20(T )T

2nx
∥∥} is monotone de-

creasing, as claimed.
As u ∈ A20 (T ), it follows that〈

T 2kx− PA20(T )T
2kx, PA20(T )T

2kx− u
〉
≥ 0

for all k ∈ N∪{0}. This yields〈
T 2kx− PA20(T )T

2kx, PA20(T )T
2kx− x+ x− u

〉
≥ 0.

Using Schwarz’s inequality and (3.2), we have〈
T 2kx− PA20(T )T

2kx, − (x− u)
〉

≤
〈
T 2kx− PA20(T )T

2kx, PA20(T )T
2kx− x

〉
≤
∥∥∥T 2kx− PA20(T )T

2kx
∥∥∥ ∥∥∥PA20(T )T

2kx− x
∥∥∥

≤
∥∥x− PA20(T )x

∥∥ ∥∥∥PA20(T )T
2kx− x

∥∥∥ .
Summing these inequalities with respect to k from 0 to n− 1 and dividing by n, we
obtain 〈

S′
nx− 1

n

n−1∑
k=0

PA20(T )T
2kx, − (x− u)

〉

≤
∥∥x− PA20(T )x

∥∥ · 1
n

n−1∑
k=0

∥∥∥PA20(T )T
2kx− x

∥∥∥ .
Replacing n with nj , and taking the limit as j → ∞, we have

⟨u− x, − (x− u)⟩ ≤ 0

because S′
nj
x ⇀ u and PA20(T )T

2nx → x, which implies that u = x. We proved

that S′
nx ⇀ x ≡ limn→∞ PA20(T )T

2nx ∈ A20 (T ).
Suppose, in addition to the other assumptions, that C is closed and convex.

Because A20 (T ) = A10

(
T 2
)
̸= ∅ is assumed, it holds that F

(
T 2
)
̸= ∅. Under

a condition (i) or (ii), the mapping T 2 is quasi-nonexpansive. Then, {S′
nx} is a

sequence in C. As C is weakly closed and S′
nx ⇀ x, we have that x ∈ C. Therefore,

x ∈ A20 (T ) ∩ C ⊂ F
(
T 2
)
, which completes the proof. □

4. Mann’s type weak convergence theorems

This section presents weak convergence theorems for finding attractive and fixed
points of a generic 2-generalized hybrid mapping. Many authors have developed
the proof (see [8, 9, 18, 19, 23, 25, 27]).

Theorem 4.1. Let C be a nonempty and convex subset of H. Let T : C → C be
an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(I) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;
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(II) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γ0, γ1, γ2 ≥ 0, β0 + β1 ≥ 0, β2 ≥ 0.

Suppose that A10 (T ) is nonempty, and let PA10(T ) be the metric projection from H
onto A10 (T ). Let {λn} be a sequence of real numbers such that 0 < a ≤ λn ≤ b < 1
for all n ∈ N, where a, b ∈ R. Define a sequence {xn} in C as follows:

xn+1 = λnxn + (1− λn)
1

n

n−1∑
k=0

T kxn (∈ C)

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges weakly to an
element x of A10 (T )∩A20 (T )∩A21 (T ), where x ≡ limn→∞ PA10(T )xn. Additionally,
if C is closed in H, then the sequence {xn} converges weakly to an element x̂ of
F (T ), where x̂ ≡ limn→∞ PF (T )xn.

Proof. From Takahashi and Takeuchi [37], it is known that A10 (T ) is closed and
convex. As it is assumed that A10 (T ) is nonempty, the metric projection PA10(T )

from H onto A10 (T ) exists. Define Sxn ≡ 1
n

∑n−1
k=0 T

kxn (∈ C). Then, we have
xn+1 = λnxn + (1− λn)Sxn. It is easy to show that

(4.1) ∥Sxn − q∥ ≤ ∥xn − q∥

for all q ∈ A10 (T ) and n ∈ N. Indeed, using q ∈ A10 (T ), we have

∥Sxn − q∥ =

∥∥∥∥∥ 1n
n−1∑
k=0

T kxn − q

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n−1∑
k=0

T kxn − nq

∥∥∥∥∥
=

1

n

∥∥∥∥∥
n−1∑
k=0

(
T kxn − q

)∥∥∥∥∥ ≤ 1

n

n−1∑
k=0

∥∥∥T kxn − q
∥∥∥

≤ 1

n

n−1∑
k=0

∥xn − q∥ = ∥xn − q∥ .

This result reveals that (4.1) holds. Using this, we can demonstrate that

(4.2) ∥xn+1 − q∥ ≤ ∥xn − q∥

for all q ∈ A10 (T ) and n ∈ N. Indeed, it follows from (4.1) that

∥xn+1 − q∥ = ∥λnxn + (1− λn)Sxn − q∥
= ∥λn (xn − q) + (1− λn) (Sxn − q)∥
≤ λn ∥xn − q∥+ (1− λn) ∥Sxn − q∥
≤ λn ∥xn − q∥+ (1− λn) ∥xn − q∥
= ∥xn − q∥ .

The relationship (4.2) means that {∥xn − q∥} is monotone decreasing. Thus,
{∥xn − q∥} is convergent in R, and {xn} is bounded. From (4.2) and Lemma 2.1,{
PA10(T )xn

}
is convergent in A10 (T ). We denote the limit point by x, that is,

x ≡ limn→∞ PA10(T )xn.
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Next, we demonstrate that

(4.3) λn (1− λn) ∥xn − Sxn∥2 ≤ ∥xn − q∥2 − ∥xn+1 − q∥2

for all q ∈ A10 (T ) and n ∈ N. Indeed, using Lemma 2.2 and (4.1), we have

∥xn+1 − q∥2

= ∥λn (xn − q) + (1− λn) (Sxn − q)∥2

= λn ∥xn − q∥2 + (1− λn) ∥Sxn − q∥2 − λn (1− λn) ∥xn − Sxn∥2

≤ λn ∥xn − q∥2 + (1− λn) ∥xn − q∥2 − λn (1− λn) ∥xn − Sxn∥2

= ∥xn − q∥2 − λn (1− λn) ∥xn − Sxn∥2 ,

which implies that (4.3) holds. As the sequence {∥xn − q∥} is convergent, from
(4.3), we have that xn − Sxn → 0. Our goal is to demonstrate that xn ⇀
x
(
≡ limn→∞ PA10(T )xn

)
. Let {xni} be a subsequence of {xn}. As {xni} is bounded,

a subsequence
{
xnj

}
of {xni} and an element u ∈ H exist such that xnj ⇀ u. As

xn − Sxn → 0, it follows that Sxnj ⇀ u. From Lemma 2.6, u ∈ A10 (T ). We prove
that u = x. It follows from u ∈ A10 (T ) that〈

xn − PA10(T )xn, PA10(T )xn − u
〉
≥ 0.

As xnj ⇀ u and PA10(T )xn → x, we have ⟨u− x, x− u⟩ ≥ 0. Therefore, we obtain
u = x. We have demonstrated that

xn ⇀ x
(
≡ lim

n→∞
PA10(T )xn

)
∈ A10 (T ) .

Because A10 (T ) ⊂ A20 (T )∩A21 (T ), we obtain xn ⇀ x ∈ A10 (T )∩A20 (T )∩A21 (T ).
Additionally, suppose that C is closed in H. In this case, {Sxn} is a sequence

in C. As C is weakly closed and Sxn ⇀ x, we have x ∈ C. Therefore, x ∈
A10 (T ) ∩ C ⊂ F (T ). Thus, F (T ) is nonempty. Under condition (I) or (II), the
mapping T is quasi-nonexpansive. Thus, F (T ) is closed and convex. Hence, the
metric projection PF (T ) from H onto F (T ) exists. In the same way as the proof of
(4.2), we can obtain ∥xn+1 − q∥ ≤ ∥xn − q∥ for all q ∈ F (T ) and n ∈ N. It follows
from Lemma 2.1 that {PF (T )xn} converges strongly to an element x̂ of F (T ), that
is, x̂ ≡ limn→∞ PF (T )xn. We show that

x
(
= lim

n→∞
PA(T )xn

)
= x̂

(
= lim

n→∞
PF (T )xn

)
.

As x ∈ F (T ), it follows from a property of the metric projection that

⟨xn − PF (T )xn, PF (T )xn − x⟩ ≥ 0

for all n ∈ N. As xn ⇀ x and PF (T )xn → x̂, we have ⟨x− x̂, x̂−x⟩ ≥ 0, which means
that x̂ = x. This implies that {xn} converges weakly to x̂ = limn→∞ PF (T )xn ∈
F (T ). This completes the proof. □

The next theorem shows how to construct sequences that converge weakly to
points of A20 (T ) and F

(
T 2
)
.
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Theorem 4.2. Let C be a nonempty and convex subset of H. Let T : C → C be
an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(i) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α20 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0;

(ii) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α02 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0.

Suppose that A20 (T ) is nonempty, and let PA20(T ) be the metric projection from H
onto A20 (T ). Let {λn} be a sequence of real numbers such that 0 < a ≤ λn ≤ b < 1
for all n ∈ N, where a, b ∈ R. Define a sequence {xn} in C as follows:

xn+1 = λnxn + (1− λn)
1

n

n−1∑
k=0

T 2kxn (∈ C)

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges weakly to
an element x of A20 (T ), where x ≡ limn→∞ PA20(T )xn. Additionally, if C is closed

in H, then the sequence {xn} converges weakly to an element x̂ of F
(
T 2
)
, where

x̂ ≡ limn→∞ PF (T 2)xn.

Proof. As A20 (T ) = A10

(
T 2
)
, A20 (T ) is closed and convex. As A20 (T ) ̸= ∅ is

assumed, the metric projection PA20(T ) from H onto A20 (T ) exists. Define S′xn ≡
1
n

∑n−1
k=0 T

2kxn (∈ C). Then, xn+1 = λnxn + (1− λn)S
′xn. It is easily ascertained

that

(4.4)
∥∥S′xn − q

∥∥ ≤ ∥xn − q∥

for all q ∈ A20 (T ) and n ∈ N. Indeed, as q ∈ A20 (T ) = A10

(
T 2
)
, it follows that∥∥S′xn − q

∥∥ =

∥∥∥∥∥ 1n
n−1∑
k=0

T 2kxn − q

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n−1∑
k=0

T 2kxn − nq

∥∥∥∥∥
=

1

n

∥∥∥∥∥
n−1∑
k=0

(T 2kxn − q)

∥∥∥∥∥ ≤ 1

n

n−1∑
k=0

∥∥∥T 2kxn − q
∥∥∥

≤ 1

n

n−1∑
k=0

∥∥∥T 2(k−1)xn − q
∥∥∥ ≤ · · ·

≤ 1

n

n−1∑
k=0

∥xn − q∥ = ∥xn − q∥ .

Therefore, (4.4) holds, as claimed. Using (4.4), we have

(4.5) ∥xn+1 − q∥ ≤ ∥xn − q∥
for all q ∈ A20 (T ) and n ∈ N. Indeed, it holds that

∥xn+1 − q∥ =
∥∥λnxn + (1− λn)S

′xn − q
∥∥

=
∥∥λn (xn − q) + (1− λn)

(
S′xn − q

)∥∥
≤ λn ∥xn − q∥+ (1− λn)

∥∥S′xn − q
∥∥
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≤ λn ∥xn − q∥+ (1− λn) ∥xn − q∥
= ∥xn − q∥ .

Therefore, {∥xn − q∥} is convergent in R, and {xn} is bounded. Furthermore, from
(4.5) and Lemma 2.1,

{
PA20(T )xn

}
is convergent in A20 (T ). Denote the limit by x,

in other words, x ≡ limn→∞ PA20(T )xn ∈ A20 (T ).
Next, we verify that

(4.6) λn (1− λn)
∥∥xn − S′xn

∥∥2 ≤ ∥xn − q∥2 − ∥xn+1 − q∥2

for all q ∈ A20 (T ) and n ∈ N. Indeed, it follows from Lemma 2.2 and (4.4) that

∥xn+1 − q∥2

=
∥∥λn (xn − q) + (1− λn)

(
S′xn − q

)∥∥2
= λn ∥xn − q∥2 + (1− λn)

∥∥S′xn − q
∥∥2 − λn (1− λn)

∥∥xn − S′xn
∥∥2

≤ λn ∥xn − q∥2 + (1− λn) ∥xn − q∥2 − λn (1− λn)
∥∥xn − S′xn

∥∥2
= ∥xn − q∥2 − λn (1− λn)

∥∥xn − S′xn
∥∥2 .

Thus, (4.6) holds, as claimed. As the sequence {∥xn − q∥} is convergent, from (4.6),
it holds that xn−S′xn → 0. Our aim is to show that xn ⇀ x

(
≡ limn→∞ PA20(T )xn

)
.

Let {xni} be a subsequence of {xn}. As {xni} is bounded, a subsequence
{
xnj

}
of

{xni} and an element u ∈ H exist such that xnj ⇀ u. As xn − S′xn → 0, we have
S′xnj ⇀ u. From Lemma 2.7, u ∈ A20 (T ). We prove that u = x. As u ∈ A20 (T ),
it follows that 〈

xn − PA20(T )xn, PA20(T )xn − u
〉
≥ 0.

As xnj ⇀ u and PA20(T )xn → x, we have ⟨u− x, x− u⟩ ≥ 0. We obtain u = x;

hence, xn ⇀ x
(
≡ limn→∞ PA20(T )xn

)
∈ A20 (T ).

In addition to the other assumptions, suppose that C is closed in H. As xn ⇀
x (∈ A20 (T )), and C is weakly closed, it holds that

x ∈ C ∩A20 (T ) = C ∩A20 (T )A10

(
T 2
)
⊂ F

(
T 2
)
.

Hence, F
(
T 2
)
is nonempty. Under condition (i) or (ii), the mapping T 2 is quasi-

nonexpansive. Consequently, F
(
T 2
)
is closed and convex, and the metric projection

PF (T 2) from H onto F
(
T 2
)
exists. As in the proof of (4.4), it holds that∥∥S′xn − q

∥∥ ≤ ∥xn − q∥

for all q ∈ F
(
T 2
)
and n ∈ N. Using this, we can obtain

∥xn+1 − q∥ ≤ ∥xn − q∥

for all q ∈ F
(
T 2
)
and n ∈ N in the same way as (4.5). Consequently, from

Lemma 2.1, {PF (T 2)xn} converges strongly to an element x̂ of F
(
T 2
)
, that is,

x̂ = limn→∞ PF (T 2)xn. We prove that

x
(
= lim

n→∞
PA20(T )xn

)
= x̂

(
= lim

n→∞
PF (T 2)xn

)
.
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As x ∈ F
(
T 2
)
, we have

⟨xn − PF (T 2)xn, PF (T 2)xn − x⟩ ≥ 0

for all n ∈ N. As xn ⇀ x and PF (T 2)xn → x̂, we have ⟨x − x̂, x̂ − x⟩ ≥ 0; thus,
x̂ = x. Therefore, {xn} converges weakly to x̂ = limn→∞ PF (T 2)xn, which ends the
proof. □

5. Halpern’s type strong convergence theorems

This section presents strong convergence theorems for finding attractive and fixed
points of a generic 2-generalized hybrid mapping. The proof has been developed in
many studies (see [8, 9, 10, 17, 18, 19, 21, 26, 27, 32]).

Theorem 5.1. Let C be a nonempty and convex subset of H. Let T : C → C be
an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(I) α0• + α1• ≥ 0, α2• ≥ 0, α1• > 0, β0, β1, β2 ≥ 0, γ0 + γ1 ≥ 0, γ2 ≥ 0;
(II) α•0 + α•1 ≥ 0, α•2 ≥ 0, α•1 > 0, γ0, γ1, γ2 ≥ 0, β0 + β1 ≥ 0, β2 ≥ 0.

Suppose that A10 (T ) is nonempty, and let PA10(T ) be the metric projection from
H onto A10 (T ). Let {λn} be a sequence of real numbers in the interval [0, 1) that
satisfies λn → 0 and

∑∞
n=1 λn = ∞. Let {yn} be a sequence in C such that yn →

y (∈ H). Define a sequence {xn} in C as follows:

xn+1 = λnyn + (1− λn)
1

n

n−1∑
k=0

T kxn (∈ C)

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges strongly
to an element y of A10 (T )∩A20 (T )∩A21 (T ), where y ≡ PA10(T )y. Additionally, if
C is closed in H, then {xn} converges strongly to a fixed point ŷ = PF (T )y ∈ F (T ),
where PF (T ) is the metric projection from H onto F (T ).

Proof. As A10 (T ) is a nonempty, closed, and convex subset of H, the metric projec-

tion PA10(T ) from H onto A10 (T ) exists. Define Sxn ≡ 1
n

∑n−1
k=0 T

kxn (∈ C). Then,
we have xn+1 = λnyn + (1− λn)Sxn. It can be proved that

(5.1) ∥Sxn − q∥ ≤ ∥xn − q∥

for all q ∈ A10 (T ) and n ∈ N in the same way as the proof of (4.1).
Next, we prove that {xn} is bounded using mathematical induction. Let q ∈

A10 (T ), and define

M ≡ max

{
sup
n∈N

∥yn − q∥ , ∥x1 − q∥
}
.

As {yn} is bounded, M is a real number. We show that ∥xn − q∥ ≤ M for all n ∈ N.
(i) It holds for n = 1. (ii) Assume that

(5.2) ∥xk − q∥ ≤ M
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for some k ∈ N, where k is arbitrarily chosen. From (5.1) and (5.2), it follows that

∥xk+1 − q∥ = ∥λkyk + (1− λk)Sxk − q∥
≤ λk ∥yk − q∥+ (1− λk) ∥Sxk − q∥
≤ λkM + (1− λk) ∥xk − q∥
≤ λkM + (1− λk)M = M.

Therefore, {xn} is bounded, as claimed. From (5.1), {Sxn} is also bounded. Con-
sequently, it holds that

∥xn+1 − Sxn∥ = ∥λnyn + (1− λn)Sxn − Sxn∥(5.3)

= λn ∥yn − Sxn∥ → 0

as n → 0 because λn → 0 is assumed.
Define Xn ≡ ∥xn − y∥2, where y ≡ PA10(T )y. Our aim is to prove that Xn → 0.

From (2.1) and (5.1), it holds that

Xn+1 ≡ ∥xn+1 − y∥2

≡ ∥λnyn + (1− λn)Sxn − y∥2

= ∥λn (yn − y) + (1− λn) (Sxn − y)∥2

= (1− λn)
2 ∥Sxn − y∥2 + 2λn ⟨yn − y, xn+1 − y⟩

≤ (1− λn) ∥xn − y∥2 + 2λn ⟨yn − y, xn+1 − y⟩
≡ (1− λn)Xn + 2λn ⟨yn − y, xn+1 − y⟩ .

From Lemma 2.5, it suffices to demonstrate that

lim sup
n→∞

⟨yn − y, xn+1 − y⟩ ≤ 0.

From (5.3), it suffices to prove that lim supn→∞ ⟨yn − y, Sxn − y⟩ ≤ 0. As {yn}
and {Sxn} are bounded, we assume, without loss of generality, that there are sub-
sequences {yni} of {yn} and {Sxni} of {Sxn} such that

lim sup
n→∞

⟨yn − y, Sxn − y⟩ = lim
i→∞

⟨yni − y, Sxni − y⟩

and Sxni ⇀ u for some u ∈ H. From Lemma 2.6, u ∈ A10 (T ). As yn → y and
y ≡ PA10(T )y, we obtain

lim sup
n→∞

⟨yn − y, Sxn − y⟩ = lim
i→∞

⟨yni − y, Sxni − y⟩

= ⟨y − y, u− y⟩ ≤ 0.

Thus, we obtain Xn → 0, and equivalently, xn → y. As y ≡ PA10(T )y ∈ A10 (T ) and
A10 (T ) ⊂ A20 (T ) ∩A21 (T ), we obtain y ∈ A10 (T ) ∩A20 (T ) ∩A21 (T ).

Additionally, suppose that C is closed in H. We demonstrate that xn →
ŷ
(
≡ PF (T )y

)
. Because xn → y ≡ PA10(T )y and C is closed, it holds that y ∈

C ∩ PA10(T ). Thus, y ∈ F (T ); hence, F (T ) ̸= ∅. Because T is quasi-nonexpansive,
F (T ) is closed and convex. Consequently, the metric projection PF (T ) from H onto

F (T ) exists. We prove that (ŷ ≡)PF (T )y = y
(
≡ PA10(T )y

)
. Because y ∈ F (T ), it
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suffices to demonstrate that ∥y − y∥ ≤ ∥y − v∥ for all v ∈ F (T ). Let v ∈ F (T ). As
T is quasi-nonexpansive, it holds that F (T ) ⊂ A10 (T ). Thus, we have

∥y − y∥ = inf {∥y − q∥ : q ∈ A10 (T )}
≤ inf {∥y − q∥ : q ∈ F (T )}
≤ ∥y − v∥ .

This result means that y = PF (T )y (≡ ŷ), which completes the proof. □
The following is a strong convergence theorem that approximate points of A20 (T )

and F
(
T 2
)
.

Theorem 5.2. Let C be a nonempty and convex subset of H. Let T : C → C be
an (αij , βi, γi; i, j = 0, 1, 2)-generic 2-generalized hybrid mapping that satisfies one
of the following two conditions:

(i) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α20 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0;

(ii) α00 + α20 + α02 + α22 ≥ 0, α10, α11, α12, α01, α21 ≥ 0, α02 + α22 > 0,
β0, β1, β2, γ0, γ1, γ2 ≥ 0.

Suppose that A20 (T ) is nonempty, and let PA20(T ) be the metric projection from
H onto A20 (T ). Let {λn} be a sequence of real numbers in the interval [0, 1) that
satisfies λn → 0 and

∑∞
n=1 λn = ∞. Let {yn} be a sequence in C such that yn →

y (∈ H). Define a sequence {xn} in C as follows:

xn+1 = λnyn + (1− λn)
1

n

n−1∑
k=0

T 2kxn (∈ C)

for all n ∈ N, where x1 ∈ C is given. Then, the sequence {xn} converges strongly
to an element y of A20 (T ), where y ≡ PA20(T )y. Additionally, if C is closed in H,

then {xn} converges strongly to a fixed point ŷ = PF (T 2)y ∈ F
(
T 2
)
, where PF (T 2)

is the metric projection from H onto F
(
T 2
)
.

Proof. As A20 (T ) = A10

(
T 2
)
, A20 (T ) is closed and convex. From the assumption

A20 (T ) ̸= ∅, the metric projection PA20(T ) from H onto A20 (T ) exists. Define

S′xn ≡ 1
n

∑n−1
k=0 T

2kxn (∈ C). Then, xn+1 = λnyn + (1− λn)S
′xn. We can demon-

strate that

(5.4)
∥∥S′xn − q

∥∥ ≤ ∥xn − q∥
for all q ∈ A20 (T ) and n ∈ N in the same way as the proof of (4.4).

We prove that {xn} is bounded. For this aim, we use mathematical induction.
Taking q ∈ A20 (T ) arbitrarily, we define

M ≡ max

{
sup
n∈N

∥yn − q∥ , ∥x1 − q∥
}
.

As {yn} is bounded, M is a real number. We show that ∥xn − q∥ ≤ M for all n ∈ N.
(i) It is true for n = 1. (ii) Assume that

(5.5) ∥xk − q∥ ≤ M
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for k ∈ N. From (5.4) and (5.5), we have

∥xk+1 − q∥ =
∥∥λkyk + (1− λk)S

′xk − q
∥∥

≤ λk ∥yk − q∥+ (1− λk)
∥∥S′xk − q

∥∥
≤ λkM + (1− λk) ∥xk − q∥
≤ λkM + (1− λk)M = M.

This shows that {xn} is bounded, as claimed. From (5.4), {S′xn} is also bounded.
Using this, we have∥∥xn+1 − S′xn

∥∥ =
∥∥λnyn + (1− λn)S

′xn − S′xn
∥∥(5.6)

= λn

∥∥yn − S′xn
∥∥→ 0

as n → 0.
Denote Xn ≡ ∥xn − y∥2, where y ≡ PA20(T )y. We prove that Xn → 0. From

(2.1) and (5.4), it holds that

Xn+1 ≡ ∥xn+1 − y∥2

≡
∥∥λnyn + (1− λn)S

′xn − y
∥∥2

=
∥∥λn (yn − y) + (1− λn)

(
S′xn − y

)∥∥2
= (1− λn)

2
∥∥S′xn − y

∥∥2 + 2λn ⟨yn − y, xn+1 − y⟩

≤ (1− λn) ∥xn − y∥2 + 2λn ⟨yn − y, xn+1 − y⟩
≡ (1− λn)Xn + 2λn ⟨yn − y, xn+1 − y⟩ .

From Lemma 2.5, it suffices to demonstrate that

lim sup
n→∞

⟨yn − y, xn+1 − y⟩ ≤ 0.

From (5.3), it suffices to show that

lim sup
n→∞

⟨yn − y, xn+1 − y⟩ = lim sup
n→∞

〈
yn − y, S′xn − y

〉
≤ 0.

As {yn} and {S′xn} are bounded, we assume, without loss of generality, that sub-
sequences {yni} of {yn} and {S′xni} of {S′xn} exist such that

lim sup
n→∞

〈
yn − y, S′xn − y

〉
= lim

i→∞

〈
yni − y, S′xni − y

〉
and S′xni ⇀ u for some u ∈ H. From Lemma 2.7, u ∈ A20 (T ). Because yn → y,
S′xni ⇀ u, and y ≡ PA20(T )y, we obtain

lim sup
n→∞

〈
yn − y, S′xn − y

〉
= lim

i→∞

〈
yni − y, S′xni − y

〉
= ⟨y − y, u− y⟩ ≤ 0.

Therefore, it holds that Xn → 0, which means that xn → y.
Additionally, suppose that C is closed in H. Our next purpose is to prove that

xn → ŷ
(
≡ PF (T 2)y

)
. Because xn → y ≡ PA20(T )y and C is closed, it holds that

y ∈ C ∩ PA20(T ) ⊂ F
(
T 2
)
. Consequently, F

(
T 2
)
̸= ∅. Under condition (i) or
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(ii), T 2 is quasi-nonexpansive. Therefore, F
(
T 2
)
is closed and convex, and the

metric projection PF (T 2) from H onto F
(
T 2
)
exists. We prove that (ŷ ≡)PF (T 2)y =

y
(
≡ PA20(T )y

)
. As y ∈ F

(
T 2
)
, it suffices to demonstrate that ∥y − y∥ ≤ ∥y − v∥

for all v ∈ F
(
T 2
)
. Choose v ∈ F

(
T 2
)
arbitrarily. As T 2 is quasi-nonexpansive, it

follows that F
(
T 2
)
⊂ A20 (T ). Thus, we have

∥y − y∥ = inf {∥y − q∥ : q ∈ A20 (T )}
≤ inf

{
∥y − q∥ : q ∈ F

(
T 2
)}

≤ ∥y − v∥ .

This implies that y = PF (T 2)y (≡ ŷ). Thus, the proof is complete. □
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