Volume 7, Number 1, 2021, 103-113

TWO TYPES FIXED POINTS OF SET-VALUED MAPPINGS AND ITERATIONS WITH ALLOWABLE RANGES

YUKIO TAKEUCHI
Dedicated to Professor Hidetoshi Komiya on the occasion of his 65th birthday
as a mark of longstanding friendship

Abstract

In this note, from a new perspective, we introduce some concepts related to fixed points of set-valued mappings. By considering them, we revisit existing results and present new results for set-valued mappings. Specifically, we study not only fixed points but also intrinsic fixed points of set-valued mappings. Then, under suitable conditions, we find such fixed points by using some iterations with allowable ranges.

1. Introduction and preliminaries

In 1969, Nadler [7] proved the following theorem.
Theorem 1.1. Let (X, d) be a complete metric space and T be a mapping from X into the class $\mathrm{CB}(X)$ of all nonempty closed bounded subsets of X. Assume that there is $r \in[0,1)$ satisfying the following:

$$
\begin{equation*}
H(T x, T y) \leq r d(x, y) \quad \text { for all } \quad x, y \in X, \tag{Ns}
\end{equation*}
$$

where H is the Hausdorff metric. Then, there is $z \in X$ satisfying $z \in T z$.
In 1989, Mizoguchi-Takahashi [6] proved a generalization of Theorem 1.1 as a partial answer of Problem 9 in Reich [9]. After the remarkable works, many researches appeared in this study area. For example, some extensions of the Banach contraction principle are translated to assertions about set-valued mappings; see, for instance, Du and co-authors [3] and its references.

Inspired by the works, we present some concepts related to fixed points of setvalued mappings from a new perspective. Then, by considering them, we reconsider existing results and present new results for set-valued mappings.

In advance, we prepare some notations, some concepts and two lemmas as it is needed in our study. Then, sometimes we use them without notice.

[^0]N and R denote the set of all positive integers and the set of all real numbers, respectively. (X, d) denotes a metric space and 2^{X} denotes the class of all subsets of X. For a subset C of X, \bar{C} denotes the closure of C. Avoiding confusions, we denote by $\{x\}^{s}$ the set which consists of only one point $x \in X$.

Let T be a mapping from X into 2^{X}. Then, T is called a set-valued mapping from X into itself. A point $z \in X$ is called a fixed point of T if $z \in T z$. In this note, a fixed point $z \in X$ of T satisfying $T z=\{z\}^{s}$ is called an intrinsic fixed point of T. Then, $F(T)$ and $F_{I}(T)$ denote the set of all fixed points of T and the set of all intrinsic fixed points of T, respectively. Depending on how T is determined, every $x \in X$ may be a fixed point of T. In such cases, an intrinsic fixed point of T is often important. For reference, we present a trivial assertion which is derived from the Banach contraction principle.
Assertion 1.2. Let (X, d) be a metric space and S be a contraction on X in the sense of Banach. Define a mapping T from X into 2^{X} by

$$
T x=\overline{\left\{S^{n-1} x: n \in N\right\}} \quad \text { for each } x \in X .
$$

Suppose Tx is compact for all $x \in X$. Then, there is the unique intrinsic fixed point z of T. Of course, $T z=\{z\}^{s}=\{S z\}^{s}$.
Remark. In this assertion, $T x$ is compact for all $x \in X$ if X is complete.
Let $u \in X$ and $C \in 2^{X}$. For simplicity, we assume that C is non-empty. Set $d(u, C)=\inf _{x \in C} d(u, x)$. Then, $d(u, C)$ is called the distance from u to $C . \mathrm{CB}(X)$ denotes the class of all non-empty closed bounded subsets of X. For each $A, B \in$ $\mathrm{CB}(X)$, define $H(A, B)$ by

$$
H(A, B)=\max \{\sup \{d(x, B): x \in A\}, \sup \{d(y, A): y \in B\}\} .
$$

Since both A and B are non-empty and bounded, $H(A, B) \in[0, \infty)$ is immediate. Furthermore, H is a metric on $\mathrm{CB}(X)$; this fact will be present later as Lemma 1.4. H is called the Hausdorff metric on $\operatorname{CB}(X)$ with respect to d.

Let (X, d) be a complete metric space and T be a mapping from X into $\mathrm{CB}(X)$. Then, we consider to find a fixed point of T. Some researchers presented iterative sequences which converge strongly to a fixed point of T under the conditions they had set. For $u \in X$, we do not know whether there is $v \in C$ satisfying $d(u, v)=d(u, C)$ even if $C \in \mathrm{CB}(X)$. This fact may cause some difficulties for our problem. Furthermore, when we consider a corresponding numerical calculation procedure, some more difficulties may appear. Then, to capture such situations in a reasonable way, we will briefly explain the concept of allowable ranges of approximation methods presented in Takeuchi [14].
Let $z_{1} \in X$ and $z_{2} \in T z_{1}$. Observing existing results, we see the following: Under their assumptions, it is relatively easy to check that $\left\{z_{n}\right\}$ converges strongly to some $z_{*} \in T z_{*}$ if we can generate a sequence $\left\{z_{n}\right\}$ in X such that

$$
z_{n+1} \in T z_{n}, \quad z_{n+1} \neq z_{n}, \quad d\left(z_{n+1}, z_{n+2}\right)=d\left(z_{n+1}, T z_{n+1}\right)
$$

for each $n \in N$. Note that $z_{n} \in T z_{n}$ is derived from $z_{n+1} \in T z_{n}$ if $z_{n+1}=z_{n}$.

We now consider a corresponding numerical calculation procedure and errors caused by the procedure and a selected computer. Let $z_{1}=y_{1}=x_{1} \in X$ and $z_{2}=y_{2}=x_{2} \in T z_{1}$. Then, we face difficulties as below:

- In general, we do not know whether z_{3} as above exists.
- It may not be easy to calculate z_{3} exactly even if z_{3} exists.

So, by actual restrictions, we merely get x_{3} which is slightly different from $z_{3}\left(=y_{3}\right)$ even if z_{3} exists. We cannot get z_{4} by using z_{3} because we only have x_{3}. Then, by using x_{3}, we try to get $y_{4} \in X$ such that $y_{4} \in T x_{3}$ and $d\left(y_{4}, x_{3}\right)=d\left(x_{3}, T x_{3}\right)$. However, again we merely get $x_{4} \in X$ which is slightly different from y_{4} even if y_{4} exists. In addition, we know neither the size of $d\left(x_{4}, y_{4}\right)$ nor the size of $d\left(x_{4}, z_{4}\right)$ even if y_{4} and z_{4} exist.

Then, in this way, we can only get a sequence $\left\{x_{n}\right\}$ practically. Sequences $\left\{z_{n}\right\}$ and $\left\{y_{n}\right\}$ are just imaginary. Then, we face again a difficulty whether $\left\{x_{n}\right\}$ converges strongly. So, it is not guaranteed that $\left\{x_{n}\right\}$ converges strongly even if $\left\{z_{n}\right\}$ as above exists and converges strongly. From these reasons, we consider allowable ranges in the sense of Takeuchi [14].

In this context, an allowable range A_{n} for step n is a subset of X associated with the procedure. Then, in theory, the sequence $\left\{x_{n}\right\}$ which consists of $x_{n} \in A_{n}$ is required to converge strongly to some $x_{*} \in X$ satisfying $x_{*} \in T x_{*}$. In general, we cannot get $\left\{A_{n}\right\}$ in advance, because usually A_{n+1} depends on x_{n} and A_{n}. Suppose we cannot get $x_{n_{0}+1} \in A_{n_{0}+1}$ by actual restrictions. Then, the procedure will be stopped. For example, the procedure has to be stopped if the size of $A_{n_{0}+1}$ is smaller than the size of error caused by our equipment. Nevertheless, since $\left\{d\left(x_{n}, x_{*}\right)\right\}$ converges to 0 in theory, we can assume that we are on the right track until step n_{0}. So, for the procedure, we may consider that $x_{n_{0}}$ is a best approximate point of $x_{*} \in F(T)$ even if $d\left(x_{n_{0}}, x_{*}\right)$ is unknown.

Finally, we show the following well-known lemmas without proofs.
Lemma 1.3. Let (X, d) be a metric space and let T be a mapping from X into 2^{X}. Suppose $z \in X$ satisfy $T z \neq \varnothing$. Then, the following holds:

$$
|d(u, T z)-d(v, T z)| \leq d(u, v) \quad \text { for any } \quad u, v \in X
$$

Lemma 1.4. Let (X, d) be a metric space. Then, so is $(\mathrm{CB}(X), H)$.

2. Some fined point theorems for set-valued mappings

Let a be a function from $[0, \infty)$ into $[0,1)$ satisfying $\limsup _{s \rightarrow t+0} a(s)<1$ for all $t \in[0, \infty)$. The expression $\limsup _{s \rightarrow t+0} a(s)<1$ is a little difficult to make sense of, so it might be better to use $\lim _{\varepsilon \rightarrow 0} \sup _{s \in(t, t+\varepsilon]} a(s)<1$. Of course, $\varepsilon>0$. Let $c \in(0,1)$ and define a function b_{c} from $[0, \infty)$ into $(0,1)$ by $b_{c}(t)=c \times 1+(1-c) a(t)$ for each $t \in[0, \infty)$. Then the following are immediate:

$$
\begin{aligned}
& \circ a(t)<b_{c}(t) \text { for all } t \in[0, \infty) \text {. } \\
& \circ \lim \sup _{s \rightarrow t+0} a(s) \leq \lim \sup _{s \rightarrow t+0} b_{c}(s)<1 \text { for all } t \in[0, \infty) \text {. }
\end{aligned}
$$

For simplicity, we use $b=b_{\frac{1}{2}}$, that is, $b(t)=\frac{1}{2}(1+a(t))$ for each $t \in[0, \infty)$.

We show a version of the Mizoguchi-Takahashi's theorem. We note that the following proof is essentially due to Suzuki [10].

Theorem 2.1. Let (X, d) be a complete metric space and T be a mapping from X into $\mathrm{CB}(X)$. Let a be a function from $[0, \infty)$ into $[0,1)$ satisfying $\lim \sup _{s \rightarrow t+0} a(s)<$ 1 for all $t \in[0, \infty)$. Assume

$$
\begin{equation*}
H(T x, T y) \leq a(d(x, y)) d(x, y) \quad \text { for all } \quad x, y \in X \tag{MT}
\end{equation*}
$$

Let b be the function as mentioned above. Let $x_{1} \in X=A_{1}$ and $A_{2}=T x_{1}$. For each $n \in N$, generate x_{n+1} and A_{n+2} by the following procedure:
(i) $x_{n+1} \in A_{n+1}$.
(ii) This procedure will be stopped if $x_{n+1}=x_{n}$.
(iii) A_{n+2} is the set which consists of $y \in T x_{n+1}$ satisfying

$$
d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, y\right) \leq b\left(d\left(x_{n}, x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right)
$$

Then the following hold:
(a) There is $l \in N$ satisfying $x_{l} \in F(T)$, if the procedure stops.
(b) There is $u \in F(T)$ such that $\left\{x_{n}\right\}$ converges strongly to u, if the procedure does not stop.

Proof. We know $A_{2}=T x_{1} \neq \emptyset$. Then, we can choose an $x_{2} \in A_{2} \subset T x_{1}$. Suppose $x_{2} \neq x_{1}$. Then, by $x_{2} \in T x_{1},(\mathrm{MT})$ and the definition of H, we see

$$
\begin{aligned}
d\left(x_{2}, T x_{2}\right) & \leq \sup \left\{d\left(z, T x_{2}\right): z \in T x_{1}\right\} \leq H\left(T x_{1}, T x_{2}\right) \\
& \leq a\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)<b\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)<d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

This is summarized as below:

$$
d\left(x_{2}, T x_{2}\right)<b\left(d\left(x_{1}, x_{2}\right)\right) d\left(x_{1}, x_{2}\right)<d\left(x_{1}, x_{2}\right)
$$

By $d\left(x_{2}, T x_{2}\right)=\inf _{y \in T x_{2}} d\left(x_{2}, y\right)$, this implies $A_{3} \neq \varnothing$. That is, we can choose an $x_{3} \in A_{3} \subset T x_{2}$. Then, in this way, $x_{n+1}, T x_{n+1}$ and A_{n+2} can be generated until $l \in N$ satisfying $x_{l+1}=x_{l}$ appears.

We show (b). Suppose $x_{n+1} \neq x_{n}$ for all $n \in N$. Then, by the argument so far, we have $\left\{x_{n}\right\},\left\{T x_{n}\right\}$ and $\left\{A_{n}\right\}$. Also, we know the following:

$$
\begin{align*}
& x_{n+1} \in A_{n+1} \subset T x_{n}, \quad x_{n+1} \neq x_{n}, \quad d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, x_{n+2}\right) \tag{1}\\
& d\left(x_{n+1}, x_{n+2}\right) \leq b\left(d\left(x_{n}, x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right)<d\left(x_{n}, x_{n+1}\right) \text { for all } n \in N
\end{align*}
$$

Then, $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a monotonically decreasing sequence in $[0, \infty)$. So, $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ converges to some $\tau \in[0, \infty)$. Since $\limsup _{s \rightarrow \tau+0} b(s)<1$ and $b(\tau) \in(0,1)$, there are $r \in(0,1)$ and $\varepsilon \in(0, \infty)$ such that $b(t)<r$ for all $t \in[\tau, \tau+\varepsilon]$. Furthermore, there is $n_{0} \in N$ such that $d\left(x_{n}, x_{n+1}\right) \in[\tau, \tau+\varepsilon]$ for all $n \geq n_{0}$. Then, $b\left(d\left(x_{n}, x_{n+1}\right)\right)<r$ for all $n \geq n_{0}$. So, for all $n \geq n_{0}$,

$$
d\left(x_{n+1}, x_{n+2}\right) \leq b\left(d\left(x_{n}, x_{n+1}\right)\right) d\left(x_{n}, x_{n+1}\right)<r d\left(x_{n}, x_{n+1}\right)
$$

By $r \in[0,1)$, we know $\lim _{m} \frac{r^{m}}{1-r}=0$. Also, for all $m, k \in N$, we see

$$
d\left(x_{n_{0}+m}, x_{n_{0}+m+k}\right) \leq \sum_{j=m}^{m+k-1} d\left(x_{n_{0}+j}, x_{n_{0}+j+1}\right)
$$

$$
<\sum_{j=m}^{m+k-1} r^{j} d\left(x_{n_{0}}, x_{n_{0}+1}\right)<\frac{r^{m}}{1-r} d\left(x_{n_{0}}, x_{n_{0}+1}\right)
$$

These imply that $\left\{x_{n}\right\}$ is a Cauchy sequence. Then, since X is complete, $\left\{x_{n}\right\}$ converges to some $u \in X$. To complete the proof of (b), we show $u \in T u$.

By Lemma $1.3,\left|d(u, T u)-d\left(x_{n}, T u\right)\right| \leq d\left(x_{n}, u\right)$. Then, by $\lim _{n} d\left(x_{n}, u\right)=0$, we see $d(u, T u)=\lim _{n} d\left(x_{n}, T u\right)$. By $x_{n+1} \in T x_{n},(\mathrm{MT})$, and the definition of H,

$$
\begin{aligned}
d(u, T u) & =\lim _{n} d\left(x_{n+1}, T u\right) \leq \lim _{n} H\left(T x_{n}, T u\right) \\
& \leq \lim _{n} b\left(d\left(x_{n}, u\right)\right) d\left(x_{n}, u\right) \leq \lim _{n} d\left(x_{n}, u\right)=0
\end{aligned}
$$

Thus, since $T u$ is closed, we see $u \in T u$.
We show (a). Suppose A_{l+1} was generated and $x_{l+1}=x_{l}$. Then, we immediately see that $x_{l}=x_{l+1} \in A_{l+1} \subset T x_{l}$.

Remark 2.2. Refer to Theorem 2.1. Suppose we can easily confirm whether $x_{n} \in$ $T x_{n}$ or not. In this case, we may stop the procedure when $l \in N$ satisfying $x_{l} \in T x_{l}$ appears. Of course, $x_{n+1}=x_{n}$ implies $x_{n} \in T x_{n}$. It may not be easy to check whether $x_{n} \in T x_{n}$ if x_{n} is close to the boundary of $T x_{n}$.

In Mizoguchi-Takahashi's original theorem, the domain of a is ($0, \infty$), and (MT) holds for all $x, y \in X$ with $x \neq y$. However, we may consider the domain of a as $[0, \infty)$ by setting $a(0)=t_{0} \in[0,1$), and then (MT) holds for all $x, y \in X$ because $d(x, y)=0$ implies $H(T x, T y)=0$. Also, they assumed $\limsup _{s \rightarrow t+0} a(s)<1$ for all $t \in[0, \infty)$ replacing $(0, \infty)$ in Problem 9 by $[0, \infty)$. Therefore, their theorem is a partial answer of Problem 9 in Reich [9], however, it is an almost complete answer. The original proof of Mizoguchi-Takahashi's theorem is not simple. Another proof due to Duffer-Kaneko [2] is not yet simple. Then, Suzuki replaced a by b and regarded (MT) as the following:
$\left(\mathrm{MT}^{\prime}\right) \quad H(T x, T y)<b(d(x, y)) d(x, y) \quad$ for all $x, y \in X$ with $x \neq y$.
The simple idea of using b to create the small gap is main point of his proof.
A typical example of a in Theorem 2.1 is a monotonically non-decreasing (nonincreasing) function from $[0, \infty)$ to $[0,1)$. Let $r \in[0,1)$ and a be the mapping from $[0, \infty)$ to $[0,1)$ such that $a(s)=r$ for all $s \in[0, \infty)$. Choose such an a in Theorem 2.1. Then, we have Theorem 1.1 due to Nadler.

Also, we show a version of Kannan's theorem [5] for a set-valued mapping.
Theorem 2.3. Let (X, d) be a complete metric space and T be a mapping from X into $\mathrm{CB}(X)$. Suppose there are $r, s \in[0,1)$ satisfying $r+s \in[0,1)$ and

$$
\begin{equation*}
H(T x, T y) \leq r d(x, T x)+s d(y, T y) \quad \text { for all } \quad x, y \in X \tag{Ks}
\end{equation*}
$$

Set $\delta=\frac{1}{2}\left(1+\frac{r}{1-s}\right) \in\left(\frac{r}{1-s}, 1\right)$. Let $x_{1} \in X=A_{1}$ and $A_{2}=T x_{1}$. For each $n \in N$, generate x_{n+1} and A_{n+2} by the following procedure:
(i) $x_{n+1} \in A_{n+1}$.
(ii) This procedure will be stopped if $x_{n+1}=x_{n}$.
(iii) $A_{n+2}=\left\{y \in T x_{n+1}: d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, y\right) \leq \delta d\left(x_{n}, x_{n+1}\right)\right\}$.

Then the following hold:
(a) There is $l \in N$ satisfying $x_{l} \in F(T)$, if the procedure stops.
(b) There is $u \in F(T)$ such that $\left\{x_{n}\right\}$ converges strongly to u, if the procedure does not stop.

Proof. Note the following: By $r+s \in[0,1)$, we know $1=\frac{r}{r}>\frac{r}{1-s} \geq 0$, that is, $\frac{r}{1-s} \in[0,1)$. From this, we immediately see $\delta=\frac{1}{2}\left(1+\frac{r}{1-s}\right) \in\left(\frac{r}{1-s}, 1\right)$.

We know $A_{2}=T x_{1} \neq \varnothing$. Then, we can choose an $x_{2} \in A_{2} \subset T x_{1}$. Suppose $x_{2} \neq x_{1}$. Then, by $x_{2} \in T x_{1}$, (Ks) and the definition of H, we see

$$
\begin{aligned}
d\left(x_{2}, T x_{2}\right) & \leq \sup \left\{d\left(z, T x_{2}\right): z \in T x_{1}\right\} \\
& \leq H\left(T x_{1}, T x_{2}\right) \leq r d\left(x_{1}, T x_{1}\right)+\operatorname{sd}\left(x_{2}, T x_{2}\right) .
\end{aligned}
$$

So, by $\delta \in\left(\frac{r}{1-s}, 1\right), x_{2} \in T x_{1}$ and $x_{2} \neq x_{1}$, it follows that

$$
d\left(x_{2}, T x_{2}\right) \leq \frac{r}{1-s} d\left(x_{1}, T x_{1}\right)<\delta d\left(x_{1}, x_{2}\right)<d\left(x_{1}, x_{2}\right) .
$$

By $d\left(x_{2}, T x_{2}\right)=\inf _{y \in T x_{2}} d\left(x_{2}, y\right)$, this implies $A_{3} \neq \varnothing$. That is, we can choose an $x_{3} \in A_{3} \subset T x_{2}$. Then, in this way, $x_{n+1}, T x_{n+1}$ and A_{n+2} can be generated until $l \in N$ satisfying $x_{l+1}=x_{l}$ appears.

We show (b). Suppose $x_{n+1} \neq x_{n}$ for all $n \in N$. Then, by the argument so far, we have $\left\{x_{n}\right\},\left\{T x_{n}\right\}$ and $\left\{A_{n}\right\}$. Also, we know the following:

$$
\begin{align*}
& x_{n+1} \in A_{n+1} \subset T x_{n}, \quad x_{n+1} \neq x_{n}, \quad d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, x_{n+2}\right), \tag{2}\\
& d\left(x_{n+1}, x_{n+2}\right) \leq \delta d\left(x_{n}, x_{n+1}\right)<d\left(x_{n}, x_{n+1}\right) \quad \text { for all } n \in N .
\end{align*}
$$

So, we see $d\left(x_{m+1}, x_{m+2}\right) \leq \delta^{m} d\left(x_{1}, x_{2}\right)$. Also, by $\delta \in\left(\frac{r}{1-s}, 1\right), \lim _{m} \frac{\delta^{m}}{1-\delta}=0$. Then, by (2), we see that, for all $m, k \in N$,

$$
\begin{aligned}
d\left(x_{m+1}, x_{m+k+1}\right) & \leq \sum_{j=1}^{k} d\left(x_{m+j}, x_{m+j+1}\right) \\
& <\sum_{j=m}^{m+k-1} \delta^{j} d\left(x_{1}, x_{2}\right)<\frac{\delta^{m}}{1-\delta} d\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

These imply that $\left\{x_{n}\right\}$ is a Cauchy sequence. Then, since X is complete, $\left\{x_{n}\right\}$ converges to some $u \in X$. To complete the proof of (b), we show $u \in T u$.

By Lemma 1.3, we know $\left|d(u, T u)-d\left(x_{n}, T u\right)\right| \leq d\left(x_{n}, u\right)$. Then, by $\lim _{n} d\left(x_{n}, u\right)=$ 0 , we see $d(u, T u)=\lim _{n} d\left(x_{n}, T u\right)$. So, by $x_{n+1} \in T x_{n},(2),(\mathrm{Ks})$, and the definition of H, we see

$$
\begin{aligned}
d(u, T u) & =\lim _{n} d\left(x_{n+1}, T u\right) \leq \lim _{n} \sup \left\{d(z, T u): z \in T x_{n}\right\} \\
& \leq \lim _{n} H\left(T x_{n}, T u\right) \leq \lim _{n}\left(r d\left(x_{n}, T x_{n}\right)+\operatorname{sd}(u, T u)\right) \\
& \leq r \lim _{n} d\left(x_{n}, x_{n+1}\right)+\operatorname{sd}(u, T u)=\operatorname{sd}(u, T u) .
\end{aligned}
$$

So, by $s \in[0,1), d(u, T u)=0$. Thus, since $T u$ is closed, we see $u \in T u$.
We show (a). Suppose A_{l+1} was generated and $x_{l+1}=x_{l}$. Then, we immediately see that $x_{l}=x_{l+1} \in A_{l+1} \subset T x_{l}$.

We present a version of Berinde's theorem; see Berinde-Berinde [1].
Theorem 2.4. Let (X, d) be a complete metric space and T be a mapping from X into $\mathrm{CB}(X)$. Suppose there are $r \in[0,1)$ and $s \in[0, \infty)$ satisfying

$$
\begin{equation*}
H(T x, T y) \leq r d(x, y)+\operatorname{sd}(y, T x) \quad \text { for all } \quad x, y \in X . \tag{Bs}
\end{equation*}
$$

Set $\delta=\frac{1}{2}(1+r) \in(r, 1)$. Let $x_{1} \in X=A_{1}$ and $A_{2}=T x_{1}$. For each $n \in N$, generate x_{n+1} and A_{n+2} by the following procedure:
(i) $x_{n+1} \in A_{n+1}$.
(ii) This procedure will be stopped if $x_{n+1}=x_{n}$.
(iii) $A_{n+2}=\left\{y \in T x_{n+1}: d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, y\right) \leq \delta d\left(x_{n}, x_{n+1}\right)\right\}$.

Then the following hold:
(a) There is $l \in N$ satisfying $x_{l} \in F(T)$, if the procedure stops.
(b) There is $u \in F(T)$ such that $\left\{x_{n}\right\}$ converges strongly to u, if the procedure does not stop.

Proof. We know $A_{2}=T x_{1} \neq \emptyset$. Then, we can choose an $x_{2} \in A_{2} \subset T x_{1}$. Suppose $x_{2} \neq x_{1}$. Then, by $x_{2} \in T x_{1},(\mathrm{Bs})$ and the definition of H, we see

$$
\begin{aligned}
d\left(x_{2}, T x_{2}\right) & \leq \sup \left\{d\left(z, T x_{2}\right): z \in T x_{1}\right\} \leq H\left(T x_{1}, T x_{2}\right) \\
& \leq r d\left(x_{1}, x_{2}\right)+\operatorname{sd}\left(x_{2}, T x_{1}\right)=r d\left(x_{1}, x_{2}\right)<\delta d\left(x_{1}, x_{2}\right)<d\left(x_{1}, x_{2}\right)
\end{aligned}
$$

By $d\left(x_{2}, T x_{2}\right)=\inf _{y \in T x_{2}} d\left(x_{2}, y\right)$, this implies $A_{3} \neq \varnothing$. That is, we can choose an $x_{3} \in A_{3} \subset T x_{2}$. Then, in this way, $x_{n+1}, T x_{n+1}$ and A_{n+2} can be generated until $l \in N$ satisfying $x_{l+1}=x_{l}$ appears.

We show (b). Suppose $x_{n+1} \neq x_{n}$ for all $n \in N$. Then, by the argument so far, we have $\left\{x_{n}\right\},\left\{T x_{n}\right\}$ and $\left\{A_{n}\right\}$. Also, we know the following:

$$
\begin{align*}
& x_{n+1} \in A_{n+1} \subset T x_{n}, \quad x_{n+1} \neq x_{n}, \quad d\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, x_{n+2}\right) \tag{3}\\
& d\left(x_{n+1}, x_{n+2}\right) \leq \delta d\left(x_{n}, x_{n+1}\right)<d\left(x_{n}, x_{n+1}\right) \quad \text { for all } n \in N
\end{align*}
$$

By $\delta \in(r, 1), \lim _{m} \frac{\delta^{m}}{1-\delta}=0$ holds. Then, the rest of the proof is similar to as in the proof of Theorem 2.3. So, we have the following:

$$
\begin{aligned}
& \circ\left\{x_{n}\right\} \text { is a Cauchy sequence and then }\left\{x_{n}\right\} \text { converges to some } u \in X \text {, } \\
& \circ d(u, T u)=0
\end{aligned}
$$

Thus, since $T u$ is closed, we see $u \in T u$.
We show (a). Suppose A_{l+1} was generated and $x_{l+1}=x_{l}$. Then, we immediately see that $x_{l}=x_{l+1} \in A_{l+1} \subset T x_{l}$.

3. An intrinsic fixed point theorem and applications

The contents of this section is closely related to what is discussed in Takahashi and Takeuchi [13]. In advance, we prepare some concepts and basic facts as it is needed in our study. Then, we use them without notice.

For simplicity, let (X, d) be a complete metric space. Let f be a function from X into $(-\infty, \infty]$. Then, the set $D(f)=\{x \in X: f(x)<\infty\}$ is called the domain of f. For each $a \in R, L_{\leq a}(f)$ denotes a level set of f such that $L_{\leq a}(f)=\{x \in$ $D(f): f(x) \leq a\} . f$ is called proper if $D(f) \neq \emptyset . f$ is called lower semi-continuous if $L_{\leq a}(f)$ is closed for all $a \in R . \gamma^{l}(X)$ denotes the set of all proper lower semicontinuous functions from X into $(-\infty, \infty]$. In subsequent argument, K always denotes a non-empty closed subset of X.

Let $f \in \gamma^{l}(X)$ and $b \in(0, \infty)$. For each $x \in X$, define g_{x} by $g_{x}(y)=f(y)+b d(x, y)$ for each $y \in X$. Then, $g_{x} \in \gamma^{l}(X)$. $D_{K}(f)$ denotes $D(f) \cap K$. Define a mapping T from K into 2^{X} by

$$
\begin{equation*}
T x=\{y \in K: f(y)+b d(x, y) \leq f(x)\} \quad \text { for each } \quad x \in K \tag{ET}
\end{equation*}
$$

Recall $g_{x} \in \gamma^{l}(X)$ and note $f(x)+b d(x, x)=f(x)$ for all $x \in X$. Then, by (ET) and properties of infimum, the following basic facts are immediate.

- Suppose $\inf _{y \in K} f(y) \in R$. Then, $\inf _{y \in K} f(y)=\inf _{y \in D_{K}(f)} f(y)$ and $D_{K}(f) \neq$ \emptyset hold. Furthermore, let K^{\prime} be a non-empty subset of $D_{K}(f)$. Then, $\inf _{y \in K} f(y) \leq \inf _{y \in K^{\prime}} f(y)$ and $\inf _{y \in K^{\prime}} f(y) \in R$ hold.
- $x \in T x$ for all $x \in K$.
- $T x \subset D_{K}(f) \subset K$ for all $x \in D_{K}(f)$ and $T x=K$ for all $x \in K \backslash D(f)$.
- $T x$ is non-empty and closed for all $x \in K$.
- Suppose $z \in D_{K}(f)$ and $w \in T z$. Then, $w \in T w \subset T z$. Suppose further $w \neq z$. Then, $f(w)<f(z)$.
Here we confirm only the last assertion. We already know $w \in T w$. By $w \in T z$, $b d(z, w) \leq f(z)-f(w)$. Also, for any $y \in T w, f(y)+b d(w, y) \leq f(w)$. Then,

$$
\begin{aligned}
f(y)+b d(z, y) & \leq f(y)+b d(w, y)+b d(z, w) \\
& \leq f(w)+(f(z)-f(w))=f(z) \quad \text { for all } y \in T w
\end{aligned}
$$

Thus, we see $T w \subset T z$. In the case of $w \neq z$, obviously $b d(z, w)>0$. By $f(w)+$ $b d(z, w) \leq f(z)$, we have $f(w)<f(z)$.

We present an intrinsic fixed point theorem.
Theorem 3.1. Let (X, d) be a complete metric space and $b \in(0, \infty)$. Let K be a non-empty closed subset of X. Let $f \in \gamma^{l}(X)$ satisfy $\inf _{y \in K} f(y) \in R$. Let $x_{1} \in D_{K}(f)=A_{1}$. Let T be the mapping from K into 2^{X} defined by (ET):

$$
T x=\{y \in K: f(y)+b d(x, y) \leq f(x)\} \quad \text { for each } \quad x \in K
$$

For each $n \in N$, generate A_{n+1} and x_{n+1} by the following procedure:
(i) This procedure will be stopped, if $T x_{n}=\left\{x_{n}\right\}^{s}\left(T x_{n} \backslash\left\{x_{n}\right\}^{s}=\varnothing\right)$.
(ii) $A_{n+1}=\left\{y \in T x_{n}: f(y) \leq \frac{1}{2} f\left(x_{n}\right)+\frac{1}{2} \inf _{z \in T x_{n}} f(z)\right\}$.
(iii) $x_{n+1} \in A_{n+1}$.

Then the following hold:
(a) There is $l \in N$ satisfying $x_{l} \in F_{I}(T)$, if the procedure stops.
(b) There is $\hat{v} \in F_{I}(T)$ such that $\left\{x_{n}\right\}$ converges strongly to \hat{v}, if the procedure does not stop.

Proof. By $\inf _{y \in K} f(y) \in R$, we know $D_{K}(f) \neq \varnothing$. Then, we can choose an $x_{1} \in$ $A_{1}=D_{K}(f)$. We know that $x_{1} \in T x_{1} \subset D_{K}(f)$ and $T x_{1}$ is a non-empty closed set. Since X is complete, so is $T x_{1}$. By $\inf _{y \in K} f(y) \in R$ and $T x_{1} \subset D_{K}(f)$, we see $\inf _{y \in K} f(y) \leq \inf _{y \in T x_{1}} f(y)$ and $\inf _{y \in T x_{1}} f(y) \in R$.

Suppose $T x_{1} \neq\left\{x_{1}\right\}^{s}$. Then, there is $w \in T x_{1}$ satisfying $w \neq x_{1}$. So, $\inf _{y \in T x_{1}} f(y) \leq$ $f(w)<f\left(x_{1}\right)$. By $\inf _{y \in T x_{1}} f(y) \in R$, the following holds:

$$
\begin{equation*}
\inf _{y \in T x_{1}} f(y)<\frac{1}{2} \inf _{y \in T x_{1}} f(y)+\frac{1}{2} f\left(x_{1}\right)<f\left(x_{1}\right) \tag{4}
\end{equation*}
$$

This implies $A_{2} \neq \varnothing$. Then, we can choose an $x_{2} \in A_{2} \subset T x_{1}$. So, we know that $x_{2} \in T x_{2} \subset T x_{1} \subset D_{K}(f)$ and

$$
\circ T x_{2} \text { is complete, } \inf _{y \in T x_{1}} f(y) \leq \inf _{y \in T x_{2}} f(y), \text { and }^{\inf } y_{y \in T x_{2}} f(y) \in R \text {. }
$$

Then, in this way, A_{n+1}, x_{n+1} and $T x_{n+1}$ can be generated until $l \in N$ satisfying $T x_{l}=\left\{x_{l}\right\}^{s}$ appears.

We show (b). Suppose $T x_{n} \neq\left\{x_{n}\right\}^{s}$ for all $n \in N$. By the argument so far, we have $\left\{x_{n}\right\},\left\{T x_{n}\right\}$ and $\left\{A_{n}\right\}$. Also, we know the following: For all $n \in N$,
(A) $x_{n+1} \in T x_{n+1} \subset T x_{n} \subset D_{K}(f)$ and $T x_{n}$ is complete,
(B) $\inf _{y \in T x_{n}} f(y) \leq f\left(x_{n+1}\right) \leq \frac{1}{2} f\left(x_{n}\right)+\frac{1}{2} \inf _{y \in T x_{n}} f(y)<f\left(x_{n}\right)$.

Note $x_{1} \in T x_{1}$. Then, by (A), $\left\{x_{n}\right\}$ is a sequence in $T x_{1}$. By (B), $\left\{f\left(x_{n}\right)\right\}$ is monotonically decreasing. Of course, $\inf _{y \in K} f(y)$ is a lower bound of $\left\{f\left(x_{n}\right)\right\}$. Then $\left\{f\left(x_{n}\right)\right\}$ converges to some $c \in R$. By (A) and (ET), for all $n, m \in N$,

$$
\begin{aligned}
b d\left(x_{n+m}, x_{n}\right) & \leq \sum_{j=0}^{m-1} b d\left(x_{n+j+1}, x_{n+j}\right) \\
& \leq \sum_{j=0}^{m-1}\left(f\left(x_{n+j}\right)-f\left(x_{n+j+1}\right)\right)=f\left(x_{n}\right)-f\left(x_{n+m}\right)
\end{aligned}
$$

So, since $\left\{f\left(x_{n}\right)\right\}$ converges, by $b>0,\left\{x_{n}\right\}$ is a Cauchy sequence in $T x_{1}$. Then, since $T x_{1}$ is complete, $\left\{x_{n}\right\}$ converges strongly to some $\hat{v} \in T x_{1} \subset D_{K}(f)$.

By (A), for any $j \in N,\left\{x_{n}\right\}_{n \geq j}$ is a sequence in the complete set $T x_{j}$. Then, $\hat{v} \in \cap_{n \in N} T x_{n} \subset D_{K}(f)$, that is, $\hat{v} \in T \hat{v} \subset \cap_{n \in N} T x_{n} \subset D_{K}(f)$. Furthermore, by $f \in \gamma^{l}(X)$, we know $f(\hat{v}) \leq \liminf _{n} f\left(x_{n}\right)=\lim _{n} f\left(x_{n}\right)$.

To complete the proof of (b), we may show $T \hat{v}=\{\hat{v}\}^{s}$. Arguing by contradiction, assume $T \hat{v} \neq\{\hat{v}\}^{s}$. Then, there is $\hat{w} \in T \hat{v}$ satisfying $\hat{w} \neq \hat{v}$. So, $\hat{w} \in T \hat{v} \subset \cap_{n \in N} T x_{n}$ and $f(\hat{w})<f(\hat{v})$. By $\hat{w} \in \cap_{n \in N} T x_{n}$ and (B), we see

$$
2 f\left(x_{n+1}\right)-f\left(x_{n}\right) \leq \inf \left\{f(y): y \in T x_{n}\right\} \leq f(\hat{w}) \quad \text { for all } n \in N .
$$

So, $\lim _{n} f\left(x_{n}\right) \leq f(\hat{w})$. We already know $f(\hat{v}) \leq \lim _{n} f\left(x_{n}\right)$ and $f(\hat{w})<f(\hat{v})$. Thus, we meet a contradiction: $f(\hat{v}) \leq \lim _{n} f\left(x_{n}\right) \leq f(\hat{w})<f(\hat{v})$.

Suppose x_{l} was generated and $T x_{l}=\left\{x_{l}\right\}^{s}$. Then, obviously (a) holds.
We apply Theorem 3.1 to prove two theorems. The following is referred to as Takahashi's minimization theorem; see Takahashi [11, 12].
Theorem 3.2. Let (X, d) be a complete metric space and $b \in(0, \infty)$. Let K be a non-empty closed subset of X. Let $f \in \gamma^{l}(X)$ satisfy $\inf _{y \in K} f(y) \in R$. Suppose, for each $x \in K$, either $f(x)=\inf _{y \in K} f(y)$ or $A_{x} \neq\{x\}^{s}$ holds, where $A_{x}=\{y \in K$: $f(y)+b d(x, y) \leq f(x)\}$. Then, there is $\hat{v} \in K$ satisfying $f(\hat{v})=\inf _{y \in K} f(y)$.

Proof. Let T be as in Theorem 3.1. Then, there is $\hat{v} \in D_{K}(f) \subset K$ satisfying $A_{\hat{v}}=T \hat{v}=\{\hat{v}\}^{s}$. That is, $f(\hat{v})=\inf _{y \in K} f(y)$.

The following is the Ekeland variational principle; see Ekeland [4].

Theorem 3.3. Let (X, d) be a complete metric space and $b \in(0, \infty)$. Let $f \in \gamma^{l}(X)$ satisfy $\inf _{y \in X} f(y) \in R$. Let $u \in X$ and $A_{u}=\{y \in X: f(y)+b d(u, y) \leq f(u)\}$. Then, there is $\hat{v} \in A_{u}$ satisfying the following:

$$
\begin{align*}
& f(\hat{v})<f(y)+b d(\hat{v}, y) \quad \text { for all } y \in X \text { with } y \neq \hat{v} \tag{E}\\
& f(\hat{v})=\inf _{y \in E}\{f(y)+b d(\hat{v}, y)\} \\
& f(\hat{v}) \leq f(u)-b d(\hat{v}, u) \quad(f(\hat{v}) \leq f(u), f(\hat{v})<f(u) \text { if } u \neq \hat{v})
\end{align*}
$$

Proof. By $\inf _{y \in X} f(y) \in R, D(f) \neq \emptyset$. Let S be the mapping from X into 2^{X} defined by (ET): $S x=\{y \in E: f(y)+b d(x, y) \leq f(x)\}$ for each $x \in X$.

We consider the case of $u \in D(f)$. Obviously $S u=A_{u}$. Then, we know that A_{u} is non-empty and closed. We also know that $\inf _{y \in A_{u}} f(y) \in R$ and $A_{u} \subset D_{X}(f)=$ $D(f)$. Let T be a mapping from A_{u} into 2^{X} defined by (ET):

$$
T x=\left\{y \in A_{u}: f(y)+b d(x, y) \leq f(x)\right\} \quad \text { for each } x \in A_{u}
$$

We know $D_{A_{u}}(f)=A_{u}$ by $A_{u} \subset D(f)$. By Theorem 3.1, we also know that there is $\hat{v} \in D_{A_{u}}(f)=A_{u}$ satisfying $T \hat{v}=\{\hat{v}\}^{s}$. Note that $\hat{v} \in A_{u}$ implies $f(\hat{v}) \leq$ $f(u)-b d(\hat{v}, u)$. Of course, $f(\hat{v})=f(\hat{v})+b d(\hat{v}, \hat{v})$.

Suppose $y \notin A_{u}$. Then, $f(u)<f(y)+b d(u, y)$. So,

$$
f(y)+b d(\hat{v}, y) \geq f(y)+b d(u, y)-b d(\hat{v}, u)>f(u)-b d(\hat{v}, u) \geq f(\hat{v})
$$

Suppose $y \in A_{u}$ and $y \neq \hat{v}$. Then, by $T \hat{v}=\{v\}^{s}$, we immediately see $y \notin T \hat{v}$, that is, $f(\hat{v})<f(y)+b d(\hat{v}, y)$. Thus, we confirmed that $\hat{v} \in A_{u}$ satisfies (E).

We consider the case of $u \notin D(f)$. In this case, $A_{u}=X$ and $f(u)=\infty$. Fix any $u^{\prime} \in D(f)$. We already know that there is $\hat{v} \in A_{u^{\prime}} \subset A_{u}$ which satisfies (E) as $u=u^{\prime}$. By $f(u)=\infty$, it is trivial that $\hat{v} \in A_{u}$ satisfies (E).

Remark 3.4. We note that there are some representations of the Ekeland variational principle; for example, refer to Phelps [8]. By the argument in this section, the Ekeland variational principle can be regarded as one of useful interpretations of the intrinsic fixed point theorem (Theorem 3.1).

Let $b \in(0, \infty), u \in X$ and $f \in \gamma^{l}(X)$ satisfy $\inf _{y \in X} f(y) \in R$. Then, by Theorem 3.3, there is $\hat{v} \in A_{u}$ satisfying (E). Note that we do not know whether f has a minimum point. By considering the perturbation caused by \hat{v}, define a mapping $g_{\hat{v}} \in \gamma^{l}(X)$ by $g_{\hat{v}}(y)=f(y)+b d(\hat{v}, y)$ for each $y \in X$. Then, $g_{\hat{v}}$ has the unique minimum point \hat{v} even if f has no minimum point.

Acknowledgement

The author would like to thank anonymous referees who read the manuscript carefully and provided valuable comments to help complete this note.

References

[1] M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), 772-782.
[2] P. Z. Daffer and H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl. 192 (1995), 655-666.
[3] W.-S. Du, E. Karap 脹 nar and N. Shahzad, The study of fixed point theory for various multivalued non-self-maps, Abst. Appl. Anal. 2013 (2013): Article ID 938724.
[4] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
[5] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1996), 405-408.
[6] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
[7] S. B. Nadler Jr, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475-488.
[8] R. R. Phelps. Convex Functions, Monotone Operators and Differentiability, 1364, Lecture Notes in Mathematics. Springer-Verlag, Berlin, second edition, 1993.
[9] S. Reich, Some fixed point problems, Atri. Acad. Nuz. Lincei 57 (1974), 194-198.
[10] T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340 (2008), 752-755.
[11] W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, in: Fixed Point Theory and its Applications, J. B. Baillon and M. Thera (eds.), Pitman Res. Notes in Math. Ser. 252, Longman, Harlow, 1991, pp. 397-406.
[12] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000.
[13] W. Takahashi and Y. Takeuchi, The Fenchel duality formula, The Ekeland variational principle, and Rockafellar's Theorem for maximal monotonicity of subdifferentials, Optimization (2021) 1-19.
[14] Y. Takeuchi, Shrinking projection method with allowable ranges, J. Nonlinear Anal. Optim. 10 (2019), 83-94.

Manuscript received 6 April 2021
revised 6 December 2021

Yukio Takeuchi

Takahashi Institute for Nonlinear Analysis, 1-11-11 Nakazato, Minami-ku Yokohama 232-0063, Japan

E-mail address: aho314159@yahoo.co.jp

[^0]: 2020 Mathematics Subject Classification. 47H10, 47J26, 47H14, 4708.
 Key words and phrases. Fixed points of set-valued mappings, intrinsic fixed points of set-valued mappings, iteration with allowable ranges, Nadler's theorem, Mizoguchi-Takahashi's theorem, the Ekeland variational principle.

