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N and R denote the set of all positive integers and the set of all real numbers,
respectively. (X, d) denotes a metric space and 2X denotes the class of all subsets
of X. For a subset C of X, C denotes the closure of C. Avoiding confusions, we
denote by {x}s the set which consists of only one point x ∈ X.

Let T be a mapping from X into 2X . Then, T is called a set-valued mapping
from X into itself. A point z ∈ X is called a fixed point of T if z ∈ Tz. In this note,
a fixed point z ∈ X of T satisfying Tz = {z}s is called an intrinsic fixed point of
T . Then, F (T ) and FI(T ) denote the set of all fixed points of T and the set of all
intrinsic fixed points of T , respectively. Depending on how T is determined, every
x ∈ X may be a fixed point of T . In such cases, an intrinsic fixed point of T is
often important. For reference, we present a trivial assertion which is derived from
the Banach contraction principle.

Assertion 1.2. Let (X, d) be a metric space and S be a contraction on X in the
sense of Banach. Define a mapping T from X into 2X by

Tx = {Sn−1x : n ∈ N} for each x ∈ X.

Suppose Tx is compact for all x ∈ X. Then, there is the unique intrinsic fixed point
z of T . Of course, Tz = {z}s = {Sz}s.
Remark. In this assertion, Tx is compact for all x ∈ X if X is complete.

Let u ∈ X and C ∈ 2X . For simplicity, we assume that C is non–empty. Set
d(u,C) = infx∈C d(u, x). Then, d(u,C) is called the distance from u to C. CB(X)
denotes the class of all non–empty closed bounded subsets of X. For each A,B ∈
CB(X), define H(A,B) by

H(A,B) = max
{
sup{d(x,B) : x ∈ A}, sup{d(y,A) : y ∈ B}

}
.

Since both A and B are non–empty and bounded, H(A,B) ∈ [0,∞) is immediate.
Furthermore, H is a metric on CB(X); this fact will be present later as Lemma 1.4.
H is called the Hausdorff metric on CB(X) with respect to d.

Let (X, d) be a complete metric space and T be a mapping from X into CB(X).
Then, we consider to find a fixed point of T . Some researchers presented iterative se-
quences which converge strongly to a fixed point of T under the conditions they had
set. For u ∈ X, we do not know whether there is v ∈ C satisfying d(u, v) = d(u,C)
even if C ∈ CB(X). This fact may cause some difficulties for our problem. Fur-
thermore, when we consider a corresponding numerical calculation procedure, some
more difficulties may appear. Then, to capture such situations in a reasonable way,
we will briefly explain the concept of allowable ranges of approximation methods
presented in Takeuchi [14].

Let z1 ∈ X and z2 ∈ Tz1. Observing existing results, we see the following: Under
their assumptions, it is relatively easy to check that {zn} converges strongly to some
z∗ ∈ Tz∗ if we can generate a sequence {zn} in X such that

zn+1 ∈ Tzn, zn+1 ̸= zn, d(zn+1, zn+2) = d(zn+1, T zn+1)

for each n ∈ N . Note that zn ∈ Tzn is derived from zn+1 ∈ Tzn if zn+1 = zn.
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We now consider a corresponding numerical calculation procedure and errors
caused by the procedure and a selected computer. Let z1 = y1 = x1 ∈ X and
z2 = y2 = x2 ∈ Tz1. Then, we face difficulties as below:

◦ In general, we do not know whether z3 as above exists.
◦ It may not be easy to calculate z3 exactly even if z3 exists.

So, by actual restrictions, we merely get x3 which is slightly different from z3(= y3)
even if z3 exists. We cannot get z4 by using z3 because we only have x3. Then,
by using x3, we try to get y4 ∈ X such that y4 ∈ Tx3 and d(y4, x3) = d(x3, Tx3).
However, again we merely get x4 ∈ X which is slightly different from y4 even if y4
exists. In addition, we know neither the size of d(x4, y4) nor the size of d(x4, z4)
even if y4 and z4 exist.

Then, in this way, we can only get a sequence {xn} practically. Sequences {zn}
and {yn} are just imaginary. Then, we face again a difficulty whether {xn} converges
strongly. So, it is not guaranteed that {xn} converges strongly even if {zn} as above
exists and converges strongly. From these reasons, we consider allowable ranges in
the sense of Takeuchi [14].

In this context, an allowable range An for step n is a subset of X associated with
the procedure. Then, in theory, the sequence {xn} which consists of xn ∈ An is
required to converge strongly to some x∗ ∈ X satisfying x∗ ∈ Tx∗. In general, we
cannot get {An} in advance, because usually An+1 depends on xn and An. Suppose
we cannot get xn0+1 ∈ An0+1 by actual restrictions. Then, the procedure will be
stopped. For example, the procedure has to be stopped if the size of An0+1 is smaller
than the size of error caused by our equipment. Nevertheless, since {d(xn, x∗)}
converges to 0 in theory, we can assume that we are on the right track until step
n0. So, for the procedure, we may consider that xn0 is a best approximate point of
x∗ ∈ F (T ) even if d(xn0 , x∗) is unknown.

Finally, we show the following well–known lemmas without proofs.

Lemma 1.3. Let (X, d) be a metric space and let T be a mapping from X into 2X .
Suppose z ∈ X satisfy Tz ̸= ø. Then, the following holds:

|d(u, Tz)− d(v, Tz)| ≤ d(u, v) for any u, v ∈ X.

Lemma 1.4. Let (X, d) be a metric space. Then, so is (CB(X),H).

2. Some fixed point theorems for set–valued mappings

Let a be a function from [0,∞) into [0, 1) satisfying lim sups→t+0 a(s) < 1 for all
t ∈ [0,∞). The expression lim sups→t+0 a(s) < 1 is a little difficult to make sense
of, so it might be better to use limε→0 sups∈(t,t+ε] a(s) < 1. Of course, ε > 0. Let

c ∈ (0, 1) and define a function bc from [0,∞) into (0, 1) by bc(t) = c×1+(1−c)a(t)
for each t ∈ [0,∞). Then the following are immediate:

◦ a(t) < bc(t) for all t ∈ [0,∞).
◦ lim sups→t+0 a(s) ≤ lim sups→t+0 bc(s) < 1 for all t ∈ [0,∞).

For simplicity, we use b = b 1
2
, that is, b(t) = 1

2(1 + a(t)) for each t ∈ [0,∞).
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We show a version of the Mizoguchi–Takahashi’s theorem. We note that the
following proof is essentially due to Suzuki [10].

Theorem 2.1. Let (X, d) be a complete metric space and T be a mapping from X
into CB(X). Let a be a function from [0,∞) into [0, 1) satisfying lim sups→t+0 a(s) <
1 for all t ∈ [0,∞). Assume

H(Tx, Ty) ≤ a(d(x, y))d(x, y) for all x, y ∈ X.(MT)

Let b be the function as mentioned above. Let x1 ∈ X = A1 and A2 = Tx1. For
each n ∈ N , generate xn+1 and An+2 by the following procedure:

(i) xn+1 ∈ An+1.
(ii) This procedure will be stopped if xn+1 = xn.
(iii) An+2 is the set which consists of y ∈ Txn+1 satisfying

d(xn+1, Txn+1) ≤ d(xn+1, y) ≤ b(d(xn, xn+1))d(xn, xn+1).

Then the following hold:

(a) There is l ∈ N satisfying xl ∈ F (T ), if the procedure stops.
(b) There is u ∈ F (T ) such that {xn} converges strongly to u, if the procedure

does not stop.

Proof. We know A2 = Tx1 ̸= ø. Then, we can choose an x2 ∈ A2 ⊂ Tx1. Suppose
x2 ̸= x1. Then, by x2 ∈ Tx1, (MT) and the definition of H, we see

d(x2, Tx2) ≤ sup{d(z, Tx2) : z ∈ Tx1} ≤ H(Tx1, Tx2)

≤ a(d(x1, x2))d(x1, x2) < b(d(x1, x2))d(x1, x2) < d(x1, x2).

This is summarized as below:

d(x2, Tx2) < b(d(x1, x2))d(x1, x2) < d(x1, x2).

By d(x2, Tx2) = infy∈Tx2 d(x2, y), this implies A3 ̸= ø. That is, we can choose an
x3 ∈ A3 ⊂ Tx2. Then, in this way, xn+1, Txn+1 and An+2 can be generated until
l ∈ N satisfying xl+1 = xl appears.

We show (b). Suppose xn+1 ̸= xn for all n ∈ N . Then, by the argument so far,
we have {xn}, {Txn} and {An}. Also, we know the following:

xn+1 ∈ An+1 ⊂ Txn, xn+1 ̸= xn, d(xn+1, Txn+1) ≤ d(xn+1, xn+2),(1)

d(xn+1, xn+2) ≤ b(d(xn, xn+1))d(xn, xn+1) < d(xn, xn+1) for all n ∈ N.

Then, {d(xn, xn+1)} is a monotonically decreasing sequence in [0,∞). So, {d(xn, xn+1)}
converges to some τ ∈ [0,∞). Since lim sups→τ+0 b(s) < 1 and b(τ) ∈ (0, 1), there
are r ∈ (0, 1) and ε ∈ (0,∞) such that b(t) < r for all t ∈ [τ, τ + ε]. Further-
more, there is n0 ∈ N such that d(xn, xn+1) ∈ [τ, τ + ε] for all n ≥ n0. Then,
b(d(xn, xn+1)) < r for all n ≥ n0. So, for all n ≥ n0,

d(xn+1, xn+2) ≤ b(d(xn, xn+1))d(xn, xn+1) < rd(xn, xn+1).

By r ∈ [0, 1), we know limm
rm

1−r = 0. Also, for all m, k ∈ N , we see

d(xn0+m, xn0+m+k) ≤
∑m+k−1

j=m d(xn0+j , xn0+j+1)
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<
∑m+k−1

j=m rjd(xn0 , xn0+1) <
rm

1−rd(xn0 , xn0+1).

These imply that {xn} is a Cauchy sequence. Then, since X is complete, {xn}
converges to some u ∈ X. To complete the proof of (b), we show u ∈ Tu.

By Lemma 1.3, |d(u, Tu)− d(xn, Tu)| ≤ d(xn, u). Then, by limn d(xn, u) = 0, we
see d(u, Tu) = limn d(xn, Tu). By xn+1 ∈ Txn, (MT), and the definition of H,

d(u, Tu) = limn d(xn+1, Tu) ≤ limnH(Txn, Tu)

≤ limn b(d(xn, u))d(xn, u) ≤ limn d(xn, u) = 0.

Thus, since Tu is closed, we see u ∈ Tu.
We show (a). Suppose Al+1 was generated and xl+1 = xl. Then, we immediately

see that xl = xl+1 ∈ Al+1 ⊂ Txl. □

Remark 2.2. Refer to Theorem 2.1. Suppose we can easily confirm whether xn ∈
Txn or not. In this case, we may stop the procedure when l ∈ N satisfying xl ∈ Txl
appears. Of course, xn+1 = xn implies xn ∈ Txn. It may not be easy to check
whether xn ∈ Txn if xn is close to the boundary of Txn.

In Mizoguchi–Takahashi’s original theorem, the domain of a is (0,∞), and (MT)
holds for all x, y ∈ X with x ̸= y. However, we may consider the domain of a as
[0,∞) by setting a(0) = t0 ∈ [0, 1), and then (MT) holds for all x, y ∈ X because
d(x, y) = 0 implies H(Tx, Ty) = 0. Also, they assumed lim sups→t+0 a(s) < 1 for
all t ∈ [0,∞) replacing (0,∞) in Problem 9 by [0,∞). Therefore, their theorem is a
partial answer of Problem 9 in Reich [9], however, it is an almost complete answer.
The original proof of Mizoguchi–Takahashi’s theorem is not simple. Another proof
due to Duffer–Kaneko [2] is not yet simple. Then, Suzuki replaced a by b and
regarded (MT) as the following:

H(Tx, Ty) < b(d(x, y))d(x, y) for all x, y ∈ X with x ̸= y.(MT′)

The simple idea of using b to create the small gap is main point of his proof.
A typical example of a in Theorem 2.1 is a monotonically non-decreasing (non-

increasing) function from [0,∞) to [0, 1). Let r ∈ [0, 1) and a be the mapping
from [0,∞) to [0, 1) such that a(s) = r for all s ∈ [0,∞). Choose such an a in
Theorem 2.1. Then, we have Theorem 1.1 due to Nadler.

Also, we show a version of Kannan’s theorem [5] for a set–valued mapping.

Theorem 2.3. Let (X, d) be a complete metric space and T be a mapping from X
into CB(X). Suppose there are r, s ∈ [0, 1) satisfying r + s ∈ [0, 1) and

H(Tx, Ty) ≤ rd(x, Tx) + sd(y, Ty) for all x, y ∈ X.(Ks)

Set δ = 1
2(1 +

r
1−s) ∈ ( r

1−s , 1). Let x1 ∈ X = A1 and A2 = Tx1. For each n ∈ N ,
generate xn+1 and An+2 by the following procedure:

(i) xn+1 ∈ An+1.
(ii) This procedure will be stopped if xn+1 = xn.
(iii) An+2 = {y ∈ Txn+1 : d(xn+1, Txn+1) ≤ d(xn+1, y) ≤ δd(xn, xn+1)}.

Then the following hold:
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(a) There is l ∈ N satisfying xl ∈ F (T ), if the procedure stops.
(b) There is u ∈ F (T ) such that {xn} converges strongly to u, if the procedure

does not stop.

Proof. Note the following: By r + s ∈ [0, 1), we know 1 = r
r > r

1−s ≥ 0, that is,
r

1−s ∈ [0, 1). From this, we immediately see δ = 1
2(1 +

r
1−s) ∈ ( r

1−s , 1).
We know A2 = Tx1 ̸= ø. Then, we can choose an x2 ∈ A2 ⊂ Tx1. Suppose

x2 ̸= x1. Then, by x2 ∈ Tx1, (Ks) and the definition of H, we see

d(x2, Tx2) ≤ sup{d(z, Tx2) : z ∈ Tx1}
≤ H(Tx1, Tx2) ≤ rd(x1, Tx1) + sd(x2, Tx2).

So, by δ ∈ ( r
1−s , 1), x2 ∈ Tx1 and x2 ̸= x1, it follows that

d(x2, Tx2) ≤ r
1−sd(x1, Tx1) < δd(x1, x2) < d(x1, x2).

By d(x2, Tx2) = infy∈Tx2 d(x2, y), this implies A3 ̸= ø. That is, we can choose an
x3 ∈ A3 ⊂ Tx2. Then, in this way, xn+1, Txn+1 and An+2 can be generated until
l ∈ N satisfying xl+1 = xl appears.

We show (b). Suppose xn+1 ̸= xn for all n ∈ N . Then, by the argument so far,
we have {xn}, {Txn} and {An}. Also, we know the following:

xn+1 ∈ An+1 ⊂ Txn, xn+1 ̸= xn, d(xn+1, Txn+1) ≤ d(xn+1, xn+2),(2)

d(xn+1, xn+2) ≤ δd(xn, xn+1) < d(xn, xn+1) for all n ∈ N.

So, we see d(xm+1, xm+2) ≤ δmd(x1, x2). Also, by δ ∈ ( r
1−s , 1), limm

δm

1−δ = 0. Then,

by (2), we see that, for all m, k ∈ N ,

d(xm+1, xm+k+1) ≤
∑k

j=1 d(xm+j , xm+j+1)

<
∑m+k−1

j=m δjd(x1, x2) <
δm

1−δd(x1, x2).

These imply that {xn} is a Cauchy sequence. Then, since X is complete, {xn}
converges to some u ∈ X. To complete the proof of (b), we show u ∈ Tu.

By Lemma 1.3, we know |d(u, Tu)−d(xn, Tu)| ≤ d(xn, u). Then, by limn d(xn, u) =
0, we see d(u, Tu) = limn d(xn, Tu). So, by xn+1 ∈ Txn, (2), (Ks), and the definition
of H, we see

d(u, Tu) = limn d(xn+1, Tu) ≤ limn sup{d(z, Tu) : z ∈ Txn}
≤ limnH(Txn, Tu) ≤ limn(rd(xn, Txn) + sd(u, Tu))

≤ r limn d(xn, xn+1) + sd(u, Tu) = sd(u, Tu).

So, by s ∈ [0, 1), d(u, Tu) = 0. Thus, since Tu is closed, we see u ∈ Tu.
We show (a). Suppose Al+1 was generated and xl+1 = xl. Then, we immediately

see that xl = xl+1 ∈ Al+1 ⊂ Txl. □
We present a version of Berinde’s theorem; see Berinde–Berinde [1].

Theorem 2.4. Let (X, d) be a complete metric space and T be a mapping from X
into CB(X). Suppose there are r ∈ [0, 1) and s ∈ [0,∞) satisfying

H(Tx, Ty) ≤ rd(x, y) + sd(y, Tx) for all x, y ∈ X.(Bs)
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Set δ = 1
2(1 + r) ∈ (r, 1). Let x1 ∈ X = A1 and A2 = Tx1. For each n ∈ N ,

generate xn+1 and An+2 by the following procedure:

(i) xn+1 ∈ An+1.
(ii) This procedure will be stopped if xn+1 = xn.
(iii) An+2 = {y ∈ Txn+1 : d(xn+1, Txn+1) ≤ d(xn+1, y) ≤ δd(xn, xn+1)}.

Then the following hold:

(a) There is l ∈ N satisfying xl ∈ F (T ), if the procedure stops.
(b) There is u ∈ F (T ) such that {xn} converges strongly to u, if the procedure

does not stop.

Proof. We know A2 = Tx1 ̸= ø. Then, we can choose an x2 ∈ A2 ⊂ Tx1. Suppose
x2 ̸= x1. Then, by x2 ∈ Tx1, (Bs) and the definition of H, we see

d(x2, Tx2) ≤ sup{d(z, Tx2) : z ∈ Tx1} ≤ H(Tx1, Tx2)

≤ rd(x1, x2) + sd(x2, Tx1) = rd(x1, x2) < δd(x1, x2) < d(x1, x2).

By d(x2, Tx2) = infy∈Tx2 d(x2, y), this implies A3 ̸= ø. That is, we can choose an
x3 ∈ A3 ⊂ Tx2. Then, in this way, xn+1, Txn+1 and An+2 can be generated until
l ∈ N satisfying xl+1 = xl appears.

We show (b). Suppose xn+1 ̸= xn for all n ∈ N . Then, by the argument so far,
we have {xn}, {Txn} and {An}. Also, we know the following:

xn+1 ∈ An+1 ⊂ Txn, xn+1 ̸= xn, d(xn+1, Txn+1) ≤ d(xn+1, xn+2),(3)

d(xn+1, xn+2) ≤ δd(xn, xn+1) < d(xn, xn+1) for all n ∈ N.

By δ ∈ (r, 1), limm
δm

1−δ = 0 holds. Then, the rest of the proof is similar to as in the
proof of Theorem 2.3. So, we have the following:

◦ {xn} is a Cauchy sequence and then {xn} converges to some u ∈ X,
◦ d(u, Tu) = 0.

Thus, since Tu is closed, we see u ∈ Tu.
We show (a). Suppose Al+1 was generated and xl+1 = xl. Then, we immediately

see that xl = xl+1 ∈ Al+1 ⊂ Txl. □

3. An intrinsic fixed point theorem and applications

The contents of this section is closely related to what is discussed in Takahashi
and Takeuchi [13]. In advance, we prepare some concepts and basic facts as it is
needed in our study. Then, we use them without notice.

For simplicity, let (X, d) be a complete metric space. Let f be a function from
X into (−∞,∞]. Then, the set D(f) = {x ∈ X : f(x) < ∞} is called the domain
of f . For each a ∈ R, L≤a(f) denotes a level set of f such that L≤a(f) = {x ∈
D(f) : f(x) ≤ a}. f is called proper if D(f) ̸= ø. f is called lower semi–continuous
if L≤a(f) is closed for all a ∈ R. γl(X) denotes the set of all proper lower semi–
continuous functions from X into (−∞,∞]. In subsequent argument, K always
denotes a non–empty closed subset of X.
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Let f ∈ γl(X) and b ∈ (0,∞). For each x ∈ X, define gx by gx(y) = f(y)+bd(x, y)
for each y ∈ X. Then, gx ∈ γl(X). DK(f) denotes D(f) ∩K. Define a mapping T
from K into 2X by

(ET) Tx = {y ∈ K : f(y) + bd(x, y) ≤ f(x)} for each x ∈ K.

Recall gx ∈ γl(X) and note f(x) + bd(x, x) = f(x) for all x ∈ X. Then, by (ET)
and properties of infimum, the following basic facts are immediate.

◦ Suppose infy∈K f(y) ∈ R. Then, infy∈K f(y) = infy∈DK(f) f(y) andDK(f) ̸=
ø hold. Furthermore, let K ′ be a non–empty subset of DK(f). Then,
infy∈K f(y) ≤ infy∈K′ f(y) and infy∈K′ f(y) ∈ R hold.

◦ x ∈ Tx for all x ∈ K.
◦ Tx ⊂ DK(f) ⊂ K for all x ∈ DK(f) and Tx = K for all x ∈ K\D(f).
◦ Tx is non–empty and closed for all x ∈ K.
◦ Suppose z ∈ DK(f) and w ∈ Tz. Then, w ∈ Tw ⊂ Tz.
Suppose further w ̸= z. Then, f(w) < f(z).

Here we confirm only the last assertion. We already know w ∈ Tw. By w ∈ Tz,
bd(z, w) ≤ f(z)− f(w). Also, for any y ∈ Tw, f(y) + bd(w, y) ≤ f(w). Then,

f(y) + bd(z, y) ≤ f(y) + bd(w, y) + bd(z, w)

≤ f(w) + (f(z)− f(w)) = f(z) for all y ∈ Tw.

Thus, we see Tw ⊂ Tz. In the case of w ̸= z, obviously bd(z, w) > 0. By f(w) +
bd(z, w) ≤ f(z), we have f(w) < f(z).

We present an intrinsic fixed point theorem.

Theorem 3.1. Let (X, d) be a complete metric space and b ∈ (0,∞). Let K be
a non–empty closed subset of X. Let f ∈ γl(X) satisfy infy∈K f(y) ∈ R. Let

x1 ∈ DK(f) = A1. Let T be the mapping from K into 2X defined by (ET):

Tx = {y ∈ K : f(y) + bd(x, y) ≤ f(x)} for each x ∈ K.

For each n ∈ N , generate An+1 and xn+1 by the following procedure:

(i) This procedure will be stopped, if Txn = {xn}s (Txn\{xn}s = ø).
(ii) An+1 = {y ∈ Txn : f(y) ≤ 1

2f(xn) +
1
2 infz∈Txn f(z)}.

(iii) xn+1 ∈ An+1.

Then the following hold:

(a) There is l ∈ N satisfying xl ∈ FI(T ), if the procedure stops.
(b) There is v̂ ∈ FI(T ) such that {xn} converges strongly to v̂, if the procedure

does not stop.

Proof. By infy∈K f(y) ∈ R, we know DK(f) ̸= ø. Then, we can choose an x1 ∈
A1 = DK(f). We know that x1 ∈ Tx1 ⊂ DK(f) and Tx1 is a non–empty closed
set. Since X is complete, so is Tx1. By infy∈K f(y) ∈ R and Tx1 ⊂ DK(f), we see
infy∈K f(y) ≤ infy∈Tx1 f(y) and infy∈Tx1 f(y) ∈ R.
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Suppose Tx1 ̸= {x1}s. Then, there is w ∈ Tx1 satisfying w ̸= x1. So, infy∈Tx1 f(y) ≤
f(w) < f(x1). By infy∈Tx1 f(y) ∈ R, the following holds:

infy∈Tx1 f(y) <
1
2 infy∈Tx1 f(y) +

1
2f(x1) < f(x1).(4)

This implies A2 ̸= ø. Then, we can choose an x2 ∈ A2 ⊂ Tx1. So, we know that
x2 ∈ Tx2 ⊂ Tx1 ⊂ DK(f) and

◦ Tx2 is complete, infy∈Tx1 f(y) ≤ infy∈Tx2 f(y), and infy∈Tx2 f(y) ∈ R.

Then, in this way, An+1, xn+1 and Txn+1 can be generated until l ∈ N satisfying
Txl = {xl}s appears.

We show (b). Suppose Txn ̸= {xn}s for all n ∈ N . By the argument so far, we
have {xn}, {Txn} and {An}. Also, we know the following: For all n ∈ N ,

(A) xn+1 ∈ Txn+1 ⊂ Txn ⊂ DK(f) and Txn is complete,
(B) infy∈Txn f(y) ≤ f(xn+1) ≤ 1

2f(xn) +
1
2 infy∈Txn f(y) < f(xn).

Note x1 ∈ Tx1. Then, by (A), {xn} is a sequence in Tx1. By (B), {f(xn)} is
monotonically decreasing. Of course, infy∈K f(y) is a lower bound of {f(xn)}.
Then {f(xn)} converges to some c ∈ R. By (A) and (ET), for all n,m ∈ N ,

bd(xn+m, xn) ≤
∑m−1

j=0 bd(xn+j+1, xn+j)

≤
∑m−1

j=0 (f(xn+j)− f(xn+j+1)) = f(xn)− f(xn+m).

So, since {f(xn)} converges, by b > 0, {xn} is a Cauchy sequence in Tx1. Then,
since Tx1 is complete, {xn} converges strongly to some v̂ ∈ Tx1 ⊂ DK(f).

By (A), for any j ∈ N , {xn}n≥j is a sequence in the complete set Txj . Then,
v̂ ∈ ∩n∈NTxn ⊂ DK(f), that is, v̂ ∈ T v̂ ⊂ ∩n∈NTxn ⊂ DK(f). Furthermore, by
f ∈ γl(X), we know f(v̂) ≤ lim infn f(xn) = limn f(xn).

To complete the proof of (b), we may show T v̂ = {v̂}s. Arguing by contradiction,
assume T v̂ ̸= {v̂}s. Then, there is ŵ ∈ T v̂ satisfying ŵ ̸= v̂. So, ŵ ∈ T v̂ ⊂ ∩n∈NTxn
and f(ŵ) < f(v̂). By ŵ ∈ ∩n∈NTxn and (B), we see

2f(xn+1)− f(xn) ≤ inf{f(y) : y ∈ Txn} ≤ f(ŵ) for all n ∈ N.

So, limn f(xn) ≤ f(ŵ). We already know f(v̂) ≤ limn f(xn) and f(ŵ) < f(v̂).
Thus, we meet a contradiction: f(v̂) ≤ limn f(xn) ≤ f(ŵ) < f(v̂).

Suppose xl was generated and Txl = {xl}s. Then, obviously (a) holds. □

We apply Theorem 3.1 to prove two theorems. The following is referred to as
Takahashi’s minimization theorem; see Takahashi [11, 12].

Theorem 3.2. Let (X, d) be a complete metric space and b ∈ (0,∞). Let K be a
non–empty closed subset of X. Let f ∈ γl(X) satisfy infy∈K f(y) ∈ R. Suppose, for
each x ∈ K, either f(x) = infy∈K f(y) or Ax ̸= {x}s holds, where Ax = {y ∈ K :
f(y) + bd(x, y) ≤ f(x)}. Then, there is v̂ ∈ K satisfying f(v̂) = infy∈K f(y).

Proof. Let T be as in Theorem 3.1. Then, there is v̂ ∈ DK(f) ⊂ K satisfying
Av̂ = T v̂ = {v̂}s. That is, f(v̂) = infy∈K f(y). □

The following is the Ekeland variational principle; see Ekeland [4].
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Theorem 3.3. Let (X, d) be a complete metric space and b ∈ (0,∞). Let f ∈ γl(X)
satisfy infy∈X f(y) ∈ R. Let u ∈ X and Au = {y ∈ X : f(y) + bd(u, y) ≤ f(u)}.
Then, there is v̂ ∈ Au satisfying the following:

f(v̂) < f(y) + bd(v̂, y) for all y ∈ X with y ̸= v̂.(E)

f(v̂) = infy∈E{f(y) + bd(v̂, y)}.
f(v̂) ≤ f(u)− bd(v̂, u) ( f(v̂) ≤ f(u), f(v̂) < f(u) if u ̸= v̂ ).

Proof. By infy∈X f(y) ∈ R, D(f) ̸= ø. Let S be the mapping from X into 2X

defined by (ET): Sx = {y ∈ E : f(y) + bd(x, y) ≤ f(x)} for each x ∈ X.
We consider the case of u ∈ D(f). Obviously Su = Au. Then, we know that Au

is non–empty and closed. We also know that infy∈Au f(y) ∈ R and Au ⊂ DX(f) =

D(f). Let T be a mapping from Au into 2X defined by (ET):

Tx = {y ∈ Au : f(y) + bd(x, y) ≤ f(x)} for each x ∈ Au.

We know DAu(f) = Au by Au ⊂ D(f). By Theorem 3.1, we also know that there
is v̂ ∈ DAu(f) = Au satisfying T v̂ = {v̂}s. Note that v̂ ∈ Au implies f(v̂) ≤
f(u)− bd(v̂, u). Of course, f(v̂) = f(v̂) + bd(v̂, v̂).

Suppose y ̸∈ Au. Then, f(u) < f(y) + bd(u, y). So,

f(y) + bd(v̂, y) ≥ f(y) + bd(u, y)− bd(v̂, u) > f(u)− bd(v̂, u) ≥ f(v̂).

Suppose y ∈ Au and y ̸= v̂. Then, by T v̂ = {v}s, we immediately see y ̸∈ T v̂, that
is, f(v̂) < f(y) + bd(v̂, y). Thus, we confirmed that v̂ ∈ Au satisfies (E).

We consider the case of u ̸∈ D(f). In this case, Au = X and f(u) = ∞. Fix
any u′ ∈ D(f). We already know that there is v̂ ∈ Au′ ⊂ Au which satisfies (E) as
u = u′. By f(u) = ∞, it is trivial that v̂ ∈ Au satisfies (E). □

Remark 3.4. We note that there are some representations of the Ekeland varia-
tional principle; for example, refer to Phelps [8]. By the argument in this section,
the Ekeland variational principle can be regarded as one of useful interpretations of
the intrinsic fixed point theorem (Theorem 3.1).

Let b ∈ (0,∞), u ∈ X and f ∈ γl(X) satisfy infy∈X f(y) ∈ R. Then, by
Theorem 3.3, there is v̂ ∈ Au satisfying (E). Note that we do not know whether
f has a minimum point. By considering the perturbation caused by v̂, define a
mapping gv̂ ∈ γl(X) by gv̂(y) = f(y) + bd(v̂, y) for each y ∈ X. Then, gv̂ has the
unique minimum point v̂ even if f has no minimum point.
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