ON A NONLINEAR INTEGRAL EQUATION

TORU MARUYAMA

Abstract. The existence of a solution for a nonlinear integral equation of the form (P) is proved based upon the Mazur-Hukuhara fixed point theory in locally convex spaces.

1. Introduction

Given a triple of functions $h:[0, \infty) \rightarrow \mathbb{R}, K:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ and $f:$ $[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$, we consider a nonlinear integral equation of the form

$$
\begin{equation*}
x(t)=h(t)+\int_{0}^{t} K(t, s) f(s, x(s)) d s \tag{P}
\end{equation*}
$$

The purpose of this note is to provide a set of conditions which guarantees the existence of a unique solution of the equation (P) in a certain class of continuous functions.

The proof depends upon the Mazur-Hukuhara fixed point theorem (Mazur[4]. Hukuhara[2]) :

Let \mathfrak{X} be a locally convex Hausdorff topological vector space (LCHTVS) and M a convex bounded subset of \mathfrak{X}. Then any compact mapping $f: M \rightarrow M$ has a fixed point.

Remark 1.1. In Goldman, Kato and Mui [1], Tosio Kato gave a constructive existence proof for a similar problem :

$$
x(t)=h(t)+\int_{0}^{t} K(t-s) f(x(s)) d s
$$

where f is defined on $[0, \infty)$ instead of $[0, \infty)^{2}$. Kato also examined the uniqueness as well as some asymptotic property of the solution. However Kato's proof was "too lengthy to be included here", i.e. in [1]. As far as I know, this is the only work on mathematical economics achieved by Kato.

2. Function space $\mathfrak{C}(X, \mathbb{R})$

We begin by specifying a function space in which we look for a solution for the equation (P).

Let X be a Hausdorff topological space. $\mathfrak{C}(X, \mathbb{R})$ denotes the space of all the realvalued continuous functions, endowed with the topology of the uniform convergence

2020 Mathematics Subject Classification. 45G05, 47H10, 91B62.
Key words and phrases. Nonlinear renewal equation, Mazur-Hukuhara fixed point theorem .
on compacta. Then $\mathfrak{C}(X, \mathbb{R})$ is a LCHTVS, the topology of which is generated by the family $\left\{p_{K}: K \subset X\right.$ is compact $\}$ of semi-norms defined by

$$
\begin{equation*}
p_{K}(u)=\sup _{x \in K}|u(x)| \quad, \quad u \in \mathfrak{C}(X, \mathbb{R}) \tag{2.1}
\end{equation*}
$$

Fixing a positive number $\mu>0$, we define $\|u\|_{\mu}$ for each $u \in \mathfrak{C}(X, \mathbb{R})$ by

$$
\|u\|_{\mu}=\sup _{x \in X}|u(x)| e^{-\mu x}
$$

$\left(\|u\|_{\mu}\right.$ may be infinite. I owe this idea to Krasnosel'skiǐ and Zabreǐko [3]p.229). Then

$$
\mathfrak{C}_{\mu}(X, \mathbb{R})=\left\{u \in \mathfrak{C}(X, \mathbb{R}) \mid\|u\|_{\mu}<\infty\right\}
$$

is a subspace of $\mathfrak{C}(X, \mathbb{R})$.
Remark 2.1. It is not hard to show that $\|\cdot\|_{\mu}$ is a norm on $\mathfrak{C}_{\mu}(X, \mathbb{R})$ and $\mathfrak{C}_{\mu}(X, \mathbb{R})$ is complete with respect to this norm. This observation actually enables us to rewrite the succeeding discussion in the framework of a Banach space instead of a LCHTVS.

I would like to remind the readers' of the generalized Ascoli-Arzelà theorem :

A subset $H \subset \mathfrak{C}(X, \mathbb{R})$ is relatively compact (with respect to the topology of the uniform convergence on compacta) if
(i) H is equi-continuous, and
(ii) $\quad\{u(x) \mid u \in H\}$ is bounded for each $x \in X$.
(cf. Schwartz [5]pp.78-80.)

In the remaining part of this note, we specify X as $[0, \infty)$ and assume $h \in$ $\mathfrak{C}_{\mu}([0, \infty), \mathbb{R})$.

3. Lemmata

We shall find out a solution for the equation (P) in $\mathfrak{C}_{\mu}(X, \mathbb{R})$ by choosing $\mu>0$ suitably.

Let S_{r} be the closed ball in $\mathfrak{C}_{\mu}([0, \infty), \mathbb{R})$ with the center 0 and the radius $r>0$.
Lemma 3.1. S_{r} is bounded in $\mathfrak{C}([0, \infty), \mathbb{R})$.
Proof. Let p_{K} be a seminorm on $\mathfrak{C}([0, \infty), \mathbb{R})$ defined by (2.1). For any $u \in S_{r}$, $p_{K}(u)$ is evaluated as

$$
\begin{aligned}
p_{K}(u) & =\sup _{x \in K}|u(x)|=\sup _{x \in K}\left|u(x) e^{-\mu x}\right| e^{\mu x} \\
& \leq\|u\|_{\mu} \cdot \sup _{x \in K} e^{\mu x} \leq r \cdot \sup _{x \in K} e^{\mu x}
\end{aligned}
$$

Consequently, we obtain

$$
\sup _{u \in S_{r}} p_{K}(u)<\infty
$$

We need a couple of assumptions imposed on K and f.

Assumption 3.2. $K:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ is continuous and satisfies

$$
\sup _{(t, s) \in[0, \infty)^{2}}|K(t, s)| \equiv \kappa<\infty .
$$

Assumption 3.3. $f:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and satisfies

$$
|f(s, x)| \leq a+b|x| \quad, \quad s \in[0, \infty) \quad, \quad x \in \mathbb{R}
$$

for some positive constants a and b.

Remark 3.4. The constants a and b can be replaced by some positive integrable functions $a(t), b(t) \in \mathfrak{L}^{1}([0, \infty), \mathbb{R})$. This generalization is almost trivial, and so we skip the details.

Let $T: \mathfrak{C}_{\mu}([0, \infty), \mathbb{R}) \rightarrow \mathfrak{C}_{\mu}([0, \infty), \mathbb{R})$ be a nonlinear integral operator defined by the righ-hand side of (P) :

$$
T: x(\cdot) \mapsto h(t)+\int_{0}^{t} K(t, s) f(s, x(s)) d s
$$

We first evaluate the magnitude $\|T x(t)\|_{\mu}$ for $x(\cdot) \in \mathfrak{C}_{\mu}([0, \infty), \mathbb{R})$.

$$
\begin{aligned}
& \left|e^{-\mu t} T x(t)\right| \\
& =\left|e^{-\mu t} h(t)+e^{-\mu t} \int_{0}^{t} K(t, s) f(s, x(s)) d s\right| \\
& \leq e^{-\mu t}|h(t)|+\left|e^{-\mu t} \int_{0}^{t}\right| K(t, s)(a+b|x(s)|)|d s| \\
& \leq\|h\|_{\mu}+e^{-\mu t} a \kappa t+e^{-\mu t} b \kappa \int_{0}^{t}|x(s)| d s
\end{aligned}
$$

It is easily shown that $0 \leq e^{-\mu t} t \leq 1 / \mu e$ for all $t \in[0, \infty)$. Hence, continuing the above evaluation, we obtain

$$
\begin{align*}
&\left|e^{-\mu t} T x(t)\right| \leq\|h\|_{\mu}+\frac{a}{\mu e} \kappa+e^{-\mu t} b \kappa \int_{0}^{t}|x(s)| e^{-\mu s} \cdot e^{\mu s} d s \\
&= \gamma+e^{-\mu t} b \kappa \int_{0}^{t}|x(s)| e^{-\mu s} e^{\mu s} d s \\
& \quad\left(\text { where } \gamma=\|h\|_{\mu}+a \kappa / \mu e\right) \\
& \leq \gamma+b \kappa \int_{0}^{t}\|x\|_{\mu} e^{-\mu(t-s)} d s \tag{3.1}\\
&=\gamma+b \kappa\|x\|_{\mu} \int_{0}^{t} e^{-\mu \eta} d \eta \\
& \quad(\text { by changing variables }) \\
&=\gamma+b \kappa \frac{1}{\mu}\left(1-e^{-\mu t}\right)\|x\|_{\mu} \\
&=\gamma+b \kappa \frac{1}{\mu}\|x\|_{\mu}
\end{align*}
$$

Here we choose $\mu>0$ sufficiently large so that

$$
\begin{equation*}
\frac{b \kappa}{\mu} \in(0,1) . \tag{3.2}
\end{equation*}
$$

Defining $\theta \in(0,1)$ by $1-\theta=b \kappa / \mu$, we choose $r>0$ so large as to fulfill

$$
\begin{equation*}
\theta r>\gamma \quad(\gamma \text { is defined above }) \tag{3.3}
\end{equation*}
$$

If μ and r satisfy (3.2) and (3.3), we can show that $T x \in S_{r}$ for any $x \in S_{r}$. In fact, it follows from the evaluation :

$$
\begin{aligned}
& \left|e^{-\mu t} T x(t)\right| \leq \gamma+(1-\theta)\|x\|_{\mu} \quad(\operatorname{by}(3.1)) \\
& \leq \gamma+(1-\theta) r=r-(\theta r-\gamma)<r . \quad(\operatorname{by}(3.3))
\end{aligned}
$$

Lemma 3.5. Under Assumptions 3.2, 3.3, we obtain $T\left(S_{r}\right) \subset S_{r}$ if μ and r satisfy (3.2) and (3.3).

4. Fixed point Argument

We now proceed to show the relative compactness of $T\left(S_{r}\right)$ in $\mathfrak{C}([0, \infty), \mathbb{R})$. According to (3.1), we have

$$
\begin{gathered}
|T x(t)| \leq\left[\gamma+b \kappa \frac{1}{\mu}\|x\|_{\mu}\right] e^{\mu t} \leq\left[\gamma+b \kappa r \frac{1}{\mu}\right] e^{\mu t} \\
\text { for any } x \in S_{r} .
\end{gathered}
$$

Hence $\left\{T x(t) \mid x \in S_{r}\right\}$ is bounded for each $t \in[0, \infty)$.

Moreover $T\left(S_{r}\right)$ is equi-continuous. Evaluating $\left|T x(t)-T x\left(t^{\prime}\right)\right|$ (say, $t^{\prime}<t$) for $x \in S_{r}$. we obtain

$$
\begin{align*}
& \left|T x(t)-T x\left(t^{\prime}\right)\right| \\
& \leq\left|h(t)-h\left(t^{\prime}\right)\right|+\mid \int_{0}^{t} K(t, s) f(s, x(s)) d s \\
& \quad-\int_{0}^{t^{\prime}} K\left(t^{\prime}, s\right) f(s, x(s)) d s \mid \tag{4.1}\\
& =\left|h(t)-h\left(t^{\prime}\right)\right|+\left|\int_{t^{\prime}}^{t} K(t, s) f(s, x(s)) d s\right| \\
& \quad+\int_{0}^{t^{\prime}}\left|K(t, s)-K\left(t^{\prime} s\right)\right| \cdot|f(s, x(s))| d s
\end{align*}
$$

We evaluate the second and the third terms, respectively.

$$
\begin{align*}
2 \text { nd term } & \leq a \kappa\left(t-t^{\prime}\right)+b \kappa\|x\|_{\mu} \int_{t^{\prime}}^{t} e^{\mu s} d s \\
& \leq a \kappa\left(t-t^{\prime}\right)+b \kappa r \frac{1}{\mu}\left(e^{\mu t}-e^{\mu t^{\prime}}\right) \tag{4.2}
\end{align*}
$$

We now turn to the third term. Let A be a positive number less than t. Then $[t-A, t+A] \subset[0, \infty)$, obviously. f is uniformly continuous on $[t-A, t+A] \times[0, t]$. Hence there exists some $\delta(t) \in(0, A)$, for each $\varepsilon>0$, such that

$$
\left|K(t, s)-K\left(t^{\prime}, s\right)\right|<\varepsilon \quad \text { if } \quad\left|t-t^{\prime}\right|<\delta(t) \quad \text { and } \quad s \in\left[0, t^{\prime}\right]
$$

It follows that

$$
\begin{align*}
\operatorname{3rd} \text { term } & \leq \varepsilon \int_{0}^{t^{\prime}}\left(a+b\|x\|_{\mu} e^{\mu s}\right) d s \\
& \leq a \varepsilon t^{\prime}+b \varepsilon r \frac{1}{\mu}\left(e^{\mu t^{\prime}}-1\right) \tag{4.3}\\
& \leq a \varepsilon A+b \varepsilon r \frac{1}{\mu}\left(e^{\mu(t+A)}-1\right) \\
& \text { provided that } \quad\left|t^{\prime}-t\right|<\delta(t) .
\end{align*}
$$

This proves the equi-continuity of $T\left(S_{r}\right)$ since the right-hand sides of (4.2) and (4.3) do not depend upon $x \in S_{r}$.

The next lemma follows from the Ascoli-Arzelà theorem stated above.
Lemma 4.1. $T\left(S_{r}\right)$ is relatively compact in $\mathfrak{C}([0, \infty), \mathbb{R})$.
We confirmed that the operator T restricted to the bounded and convex set S_{r} is a compact mapping into S_{r}. Thus we conclude that T has a fixed point in S_{r} by the Mazur-Hukuhara theorem.

Theorem 4.2. The equation (P) has a solution in S_{r} under the Assumptions 3.2, 3.3 for a suitable combination of r and μ.

5. Uniqueness

Finally, we show that there exists only one solution of the equation (P) under the additional assumption.

Assumption 5.1. There exists some constant $L>0$ which satisfies

$$
\begin{align*}
& |f(t, x)-f(t, y)| \leq L|x-y| \\
& \quad \text { for any } \quad t \in[0, \infty) \quad \text { and } \quad x, y \in \mathbb{R} \tag{5.1}
\end{align*}
$$

Let x and y be any elements of S_{r}. Taking account of the definition of the operator T,

$$
\begin{aligned}
& \mid e^{-\mu t}(T x(t)-T y(t))\left|=\left|e^{-\mu t} \int_{0}^{t} K(t, s)[f(t, x(s))-f(t, y(s))] d s\right|\right. \\
& \leq e^{-\mu t} \kappa \int_{0}^{t}|f(t, x(s))-f(t, y(s))| d s \quad(\text { by Assumption 3.3) } \\
& \leq e^{-\mu t} \kappa \int_{0}^{t} L|x(s)-y(s)| d s \quad(\text { by Assumption 5.1) } \\
& \leq e^{-\mu t} \kappa L\|x-y\|_{\mu} \int_{0}^{t} e^{\mu s} d s \leq \kappa L e^{-\mu t} \cdot \frac{1}{\mu}\left(e^{\mu t}-1\right)\|x-y\|_{\mu} \\
& \quad=\frac{1}{\mu} \kappa L\left(1-e^{-\mu t}\right) \cdot\|x-y\|_{\mu} \leq \frac{1}{\mu} \kappa L\|x-y\|_{\mu}
\end{aligned}
$$

Consequently, it follows that

$$
\|T x-T y\|_{\mu} \leq \frac{1}{\mu} \kappa L\|x-y\|_{\mu}
$$

If μ is sufficiently large, the operation T is a contraction of S_{r} into S_{r}. This implies that T has a unique fixed point of T in S_{r} since S_{r} is complete with respect to $\|\cdot\|_{\mu}$. Subtle locally convex space arguments are not necessary in the framework of section 5 .

References

[1] S. M. Goldman, T. Kato and V.-L. Mui, Economic growth and generalized depreciation, J. Development Economics 34 (1991), 397-400.
[2] M. Hukuhara, Sur l'existence des points invariants d'une transformation dans l'espace fonctionnel, Japan. J. Math., 20 (1950), 1-4.
[3] M. A. Krasnosel'skiǐ and P. P. Zabreǐko, Geometrical Methods of Nonlinear Analysis, SpringerVerlag, Berlin/ Heidelberg/ New York/Tokyo, 1984.
[4] S. Mazur, Un théorème sur les points invariants, Ann. Soc. Polon. Math. 17 (1938): 110.
[5] L. Schwartz, Functional Analysis, (Courant Institute, New York),1964.

T. Maruyama

Keio University 2-15-45 Mita, Minato-ku Tokyo 108-8345, Japan E-mail address: maruyama@econ.keio.ac.jp

