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2. Preliminaries

Let (X, d) be a metric space. Given distinct points x, y ∈ X, a metric midpoint

of x and y is a point m(x, y) ∈ X if d
(
x,m(x, y)

)
= d
(
y,m(x, y)

)
= (1/2)d(x, y). A

path in X is a continuous map γ : [α, β] ⊂ R → X. Given a pair of points x, y ∈ X,

we say that a path γ : [α, β] → X joins x and y if γ(α) = x and γ(β) = y. A

geodesic path in X is an isometry γ : [α, β] → X such that d(γ(s), γ(t)) = |s− t| for
every s, t ∈ [α, β]. A geodesic segment γ([α, β]) ⊂ X from x to y is the image of a

geodesic path γ : [α, β] → X joining x and y. Note that a geodesic segment from x

to y is not necessarily unique in general. If no confusion arises, then [x, y] denotes a

unique geodesic segment from x to y. A (uniquely) geodesic space is a metric space

X such that every two points in X can be joined by a (unique) geodesic path. If X

is a complete metric space, then X is a geodesic space if and only if every pair of

points in X has a metric midpoint [2, p. 2, Prop. 1.1.3].

Proposition 2.1 ([21, p. 62, Prop. 2.2.14]). Let X be a geodesic space and x, y, z ∈
X three pairwise distinct points. Then d(x, y) = d(x, z)+d(z, y) if and only if there

exists a geodesic segment from x to y containing z.

The points on a geodesic segment are naturally parametrized by [0, 1] ⊂ R. For

two distinct points x, y ∈ X and a point z ∈ [x, y], we use the notation z =

(1− t)x⊕ ty, where t = d(x, z)/d(x, y).

Lemma 2.2. Let (X, d) be a complete uniquely geodesic space and x, y ∈ X two

distinct points. If p = (1 − t)x ⊕ ty and q = tx ⊕ (1 − t)y for t ∈ [0, 1/2], then

(1− s)p⊕ sq =
(
1− (t+ (1− 2t)s)

)
x⊕ (t+ (1− 2t)s)y for every s ∈ [0, 1].

Proof. By assumption, [p, q] ⊂ [x, y]. By Proposition 2.1 we have

d(x, y) = d(x, p) + d(p, q) + d(q, y)

= td(x, y) +
1

s
d(p, (1− s)p⊕ sq) + td(x, y)

for every s ∈ [0, 1]. This implies s(1 − 2t)d(x, y) = d(p, (1 − s)p ⊕ sq). Note that

p ∈ [x, (1− s)p⊕ sq]. Thus

d(x, (1− s)p⊕ sq) = d(x, p) + d(p, (1− s)p⊕ sq)

= td(x, y) + s(1− 2t)d(x, y) = (t+ (1− 2t)s)d(x, y).

Hence (1− s)p⊕ sq =
(
1− (t+ (1− 2t)s)

)
x⊕ (t+ (1− 2t)s)y. □

A Busemann space is a geodesic space (X, d) such that for every two geodesic

paths γ1 : [α1, β1] ⊂ R → X and γ2 : [α2, β2] ⊂ R → X, the map Dγ1,γ2 :

[α1, β1]× [α2, β2] → R defined by

Dγ1,γ2(t1, t2) = d
(
γ1(t1), γ2(t2)

)
is convex [4, pp. 576–577][21, pp. 203–204]. The definition of a Busemann space

gives the following elementary facts:

(1) [21, p. 210, Prop. 8.1.4] Every Busemann space is a uniquely geodesic space.
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(2) [2, p. 4, Prop. 1.1.5] Every Busemann space X has a convex metric, that is,

for every x, y, z ∈ X and t ∈ [0, 1],

(2.1) d(x, (1− t)y ⊕ tz) ≤ (1− t)d(x, y) + td(x, z).

(3) [16, p. 40, Def. 6.5] In a Busemann space X, for every x, y ∈ X and t, s ∈ [0, 1],

(2.2) d
(
(1− t)x⊕ ty, (1− s)x⊕ sy

)
= |t− s|d(x, y).

Basic examples of Busemann spaces are Euclidean spaces, strictly convex normed

vector spaces, R-trees [24], classical hyperbolic spaces [2], and Riemannian manifolds

of global nonpositive sectional curvature [5].

Let (X, d) be a metric space. A geodesic line in X is a distance-preserving map

γ : R → X. A local geodesic is a map γ : [α, β] ⊂ R → X with the property that

for every t ∈ [α, β] there exists ϵ > 0 such that d
(
γ(s1), γ(s2)

)
= |s1 − s2| for all

s1, s2 ∈ [α, β] with |t − s1| + |t − s2| ≤ ϵ. A geodesic space X is said to have the

geodesic extension property if for every local geodesic γ : [α, β] → X with α ̸= β,

there exist ϵ > 0 and a local geodesic γ′ : [α, β+ ϵ] → X such that γ′|[α,β] = γ [5, p.

208, Def. 5.7].

Lemma 2.3 ([21, p. 212, Cor. 8.2.3]). In a Busemann space, every local geodesic

is a geodesic path.

Lemma 2.4. If X is a Busemann space, then X has the geodesic extension property

if and only if every non-constant geodesic path can be extended to a geodesic line.

Proof. This assertion is an immediate consequence of Lemma 2.3. □

The notion of uniform convexity in Banach spaces was introduced by Clarkson

[8], whereas the modulus of convexity in hyperbolic spaces was coined by Goebel

and Reich [17]. Similarly, the notion of uniform convexity exists in metric spaces

[13], and a modulus of convexity can be defined in geodesic spaces [20, pp. 468–469]:

A geodesic space (X, d) is said to be weakly uniformly convex if for every a ∈ X,

r > 0, and ϵ ∈ (0, 2] there exists a mapping δ(a, r, ϵ) : X × (0,∞) × (0, 2] → (0, 1]

such that for every x, y ∈ X,

d(a, x) ≤ r

d(a, y) ≤ r

d(x, y) ≥ ϵr

 ⇒ d
(
a,m(x, y)

)
≤
(
1− δ(a, r, ϵ)

)
r.

Such a mapping δ is called a modulus of convexity of X and defined by

δ(a, r, ϵ) := inf

{
1− 1

r
d
(
a,m(x, y)

)
: x, y ∈ X, d(a, x) ≤ r, d(a, y) ≤ r, d(x, y) ≥ ϵr

}
.

See [20] for an example of a weakly uniformly convex geodesic space. Every weakly

uniformly convex geodesic space X is strictly convex, that is, for all a, x, y ∈ X with

x ̸= y and all metric midpointsm(x, y) we have d
(
a,m(x, y)

)
< max{d(a, x), d(a, y)}.

It follows that X is uniquely geodesic [12]. If δ = δ(r, ϵ) does not depend on a, we

say that X is uniformly convex. While in Banach spaces, there exists a natural

modulus of convexity for each space that depends only on ϵ, in geodesic spaces, we
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need to assume that the modulus depends on three variables: a, r, ϵ. Complete and

weakly uniformly convex Busemann spaces satisfy the following properties.

Proposition 2.5. Let (X, d) be a complete and weakly uniformly convex Busemann

space. Fix a ∈ X and r > 0. Then a modulus of convexity δ(a, r, ϵ) : (0, 2] → (0, 1]

is a non-decreasing function of ϵ.

Proof. Let 0 < ϵ1 ≤ ϵ2 ≤ 2. Set x, y ∈ X satisfying d(a, x) ≤ r, d(a, y) ≤ r,

d(x, y) ≥ ϵ2r, and d
(
a, (1/2)x ⊕ (1/2)y

)
=
(
1 − δ(a, r, ϵ2)

)
r. Let t = (ϵ2 − ϵ1)/2ϵ2,

p = (1− t)x⊕ ty, and q = tx⊕(1− t)y. By (2.1) we have d(a, p) ≤ r and d(a, q) ≤ r.

By (2.2) we get

d(p, q) = |(1− t)− t|d(x, y) ≥ |1− 2t|ϵ2r =

∣∣∣∣1− ϵ2 − ϵ1
ϵ2

∣∣∣∣ ϵ2r = ϵ1r.

By the definition of a modulus of convexity, we have δ(a, r, ϵ1) ≤ 1−(1/r)d
(
a, (1/2)p⊕

(1/2)q
)
. Note that (1/2)p⊕ (1/2)q = (1/2)x⊕ (1/2)y by Lemma 2.2. Therefore

δ(a, r, ϵ1) ≤ 1− 1

r
d
(
a,

p

2
⊕ q

2

)
= 1− 1

r
d
(
a,

x

2
⊕ y

2

)
= δ(a, r, ϵ2).

□

Theorem 2.6 ([25, p. 157, Thm. 3.2]). Let (X, d) be a complete Busemann space.

Let a, x, y ∈ X be three distinct points such that d(a, x) = d(a, y) = r. Set ϵr =

d(x, y). If X is weakly uniformly convex, then for every t ∈ [0, 1],

d

(
a,

1− t

2
a⊕ 1 + t

2

(
1

1 + t
x⊕ t

1 + t
y

))
≤ r

(
1 + t

2
− tδ(a, r, ϵ)

)
.

3. a characterization of weak uniform convexity

In this section, as the main result, we prove a characterization of weak uniform

convexity of Busemann spaces. This extends the characterization of uniform con-

vexity of Banach spaces.

Theorem 3.1. Let (X, d) be a complete Busemann space having the geodesic ex-

tension property and 1 < p < ∞. The weak uniform convexity of X is equivalent to

the following property: for every a ∈ X, r > 0, and ϵ ∈ (0, 2], there exists a number

ηp(a, r, ϵ) > 0 such that, for every t ∈ [0, 1] and three distinct points a, x, y ∈ X, the

conditions d(a, x) ≤ r, d(a, y) ≤ r, and d(x, y) ≥ ϵr imply

d

(
a,

1− t

2
a⊕ 1 + t

2

(
1

1 + t
x⊕ t

1 + t
ỹ

))p

(3.1)

≤
(
1− ηp(a, r, ϵ)

)d(a, x)p + d(a, y)p

2
,

where ỹ ∈ X satisfies d(a, ỹ) = r and y = (1− t)a⊕ tỹ.
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Proof. First, we show the sufficient condition. If t = 1 in (3.1), then

d

(
a,

1

2
x⊕ 1

2
y

)
= d

(
a,

1

2
x⊕ 1

2
ỹ

)
≤ r
(
1− ηp(a, r, ϵ)

) 1
p .

Therefore X is weakly uniformly convex with δ(a, r, ϵ) = 1− p
√

1− ηp(a, r, ϵ).

Next, we show the necessary condition. It suffices to prove the case d(a, x) = r

for x. Since X has the geodesic extension property, there exists ỹ ∈ X such that

d(a, ỹ) = r and y = (1− t)a⊕ tỹ. Set ϵ̃ := d(x, ỹ)/r. By Theorem 2.6 we have

d

(
a, 1−t

2 a⊕ 1+t
2

(
1

1+tx⊕ t
1+t ỹ

))p

1
2

(
d(a, x)p + d(a, y)p

) ≤
rp
(

1+t
2 − tδ(a, r, ϵ̃)

)p

1
2

(
rp +

(
td(a, ỹ)

)p)

≤
2

(
1+t
2 − tδ(a, r, ϵ̃)

)p

1 + tp
=: φ(t).

Now, we have to consider two cases for ϵ:

(Case 1) If ϵ̃ ≤ ϵ/2, by the triangle inequality, then

(1− t)r = d(ỹ, y) ≥ d(x, y)− d(x, ỹ) ≥ ϵr − ϵ̃r ≥
(
ϵ− ϵ

2

)
r =

ϵr

2
.

Thus t ≤ 1− ϵ/2. Moreover, we have

φ(t) <
2
(
1+t
2

)p
1 + tp

=: φ1(t).

The real function φ1(t) is strictly increasing for t ∈ [0, 1] and attains its maximum

at t = 1 [3, p. 193, Lem. 3]. We have

φ(t) < φ1(t) ≤ φ1

(
1− ϵ

2

)
=

2(1− ϵ
4)

p(
1 +

(
1− ϵ

2

)p) =: C1(ϵ) < 1.

Hence 1− φ(t) > 1− C1(ϵ) > 0.

(Case 2) If ϵ̃ > ϵ/2, then δ(a, r, ϵ̃) ≥ δ(a, r, ϵ/2) by Proposition 2.5. We have

φ(t) ≤
2

(
1+t
2 − tδ(a, r, ϵ/2)

)p

1 + tp
=: φ2(t).

The maximum of φ2(t) is attained at t =
(
1 − 2δ(a, r, ϵ/2)

) 1
p−1 . For the sake of

simplicity, we write δ := δ(a, r, ϵ/2). Since δ > 0, we have

φ2(t) ≤ φ2

(
(1− 2δ)

1
p−1
)
=

2

(
1+(1−2δ)

1
p−1

2 − (1− 2δ)
1

p−1 δ

)p

1 +
(
(1− 2δ)

1
p−1

)p =: C2(δ) < 1.

Hence 1− φ(t) ≥ 1− φ2(t) ≥ 1− C2(δ) > 0.
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In all cases, we can get a number ηp(a, r, ϵ) such that 0 < ηp(a, r, ϵ) ≤ min{1 −
C1(ϵ), 1− C2(δ)}. Hence

1−
d

(
a, 1−t

2 a⊕ 1+t
2

(
1

1+tx⊕ t
1+t ỹ

))p

1
2

(
d(a, x)p + d(a, y)p

)
≥ 1− φ(t) ≥ min{1− C1(ϵ), 1− C2(δ)} ≥ ηp(a, r, ϵ).

Therefore

d

(
a,

1− t

2
a⊕ 1 + t

2

(
1

1 + t
x⊕ t

1 + t
ỹ

))p

≤
(
1− ηp(a, r, ϵ)

)d(a, x)p + d(a, y)p

2
.

□

Given any two distinct points x and y in a Busemann space having the geodesic

extension property, there exists a unique metric line passing through x and y. For

r ≥ 0, (1 + r)x ⊖ ry denotes the unique point z on this metric line satisfying

d(z, x) = rd(x, y) and d(z, y) = (1 + r)d(x, y). From this, we can rewrite Theorem

3.1 in the following form.

Theorem 3.2. Let (X, d) be a complete Busemann space having the geodesic ex-

tension property and 1 < p < ∞. The weak uniform convexity of X is equivalent to

the following property: for every a ∈ X, r > 0, and ϵ ∈ (0, 2], there exists a number

ηp(a, r, ϵ) > 0 such that, for every t ∈ [0, 1] and three distinct points a, x, y ∈ X, the

conditions d(a, x) ≤ r, d(a, y) ≤ r, and d(x, y) ≥ ϵr imply

d

(
a,

1− t

2
a⊕ 1 + t

2

(
1

1 + t
x⊕ t

1 + t

(
1

t
y ⊖ 1− t

t
a

)))p

(3.2)

≤
(
1− ηp(a, r, ϵ)

)d(a, x)p + d(a, y)p

2
.

Theorem 3.1 is a generalization of the characterization of uniform convexity of

Banach spaces. Since a Banach space (E, ∥·∥) is complete and has the geodesic

extension property, the conditions of Theorem 3.2 can be rewritten in the following

form: d(a, x) = ∥x∥ ≤ r = 1, d(a, y) = ∥y∥ ≤ 1, and d(x, y) = ∥x− y∥ ≥ ϵ for

x,y ∈ E. We set ỹ = y/∥y∥ and t = ∥y∥. Hence

d

(
a,

1− t

2
a⊕ 1 + t

2

(
1

1 + t
x⊕ t

1 + t
ỹ

))
=

∥∥∥∥1 + t

2

(
1

1 + t
x+

t

1 + t
ỹ

)∥∥∥∥
=

∥∥∥∥1 + t

2

(
1

1 + t
x+

t

1 + t

(y
t

))∥∥∥∥ =

∥∥∥∥12x+
1

2
y

∥∥∥∥.
Therefore we obtain the following theorem.

Theorem 3.3 ([3, p. 190, Prop. 1]). Let (E, ∥·∥) be a Banach space and 1 < p < ∞.

The uniform convexity of E is equivalent to the following property: for every ϵ ∈
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(0, 2], there exists a number ηp(ϵ) > 0 such that, for every distinct vectors x,y ∈ E,

the conditions ∥x∥ ≤ 1, ∥y∥ ≤ 1, and ∥x− y∥ ≥ ϵ imply∥∥∥∥x+ y

2

∥∥∥∥p ≤ (1− ηp(ϵ)
)∥x∥p + ∥y∥p

2
.

Question 1. Theorem 3.3 provides important properties in the geometry of Banach

spaces [14, 23]. Similarly, can Theorem 3.1 provide new geometric properties in

Busemann spaces?
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Publ. Math. de l’I.H.É.S. 41 (1972), 5–251.

[7] H. Busemann, Spaces with non-positive curvature, Acta Math. 80 (1948), 259–310.

[8] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.

[9] S. Dhompongsa and B. Panyanak, On △-convergence theorems in CAT (0) spaces, Comput.

Math. Appl. 56 (2008), 2572–2579.
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[19] L. Leuştean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl.

325 (2007), 386–399.
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