s,
Y Livear and Wonliear \)@aﬁeﬁ& S’ oeN2ieaaler CoPyriant 2025

Volume 11, Number 3, 2025, 145-152

A CHARACTERIZATION OF WEAK UNIFORM CONVEXITY OF
COMPLETE BUSEMANN SPACES

YUKINO TOMIZAWA

ABSTRACT. This paper aims to characterize the weak uniform convexity of com-
plete Busemann spaces. The properties of convex combinations differ between
Banach spaces and more general metric spaces. Using suitable convex combina-
tions, we prove an equivalence condition for weak uniform convexity in metric
spaces that are more general than Banach spaces.

1. INTRODUCTION

The study of metric spaces without linear structures has played a vital role in var-
ious branches of pure and applied sciences. H. Busemann [7] developed a theory of
non-positive curvature for path-metric spaces, based on a simple axiom of convexity
of distance functions. Building on this theory, B. H. Bowditch [4] introduced Buse-
mann spaces, which are a type of non-positively curved metric space. Busemann
spaces satisfy many fundamental metric, geometric, and topological properties [21].
They have found numerous applications in optimization problems and geometric
group theory [2, 5]. Against this background, it is worth exploring the properties
of non-positively curved metric spaces.

Characterizations of convexity are important properties in metric spaces. In
Banach spaces, a characterization of uniform convexity follows from properties of
convex combinations of three points [3]. This characterization provides important
properties in the geometry of Banach spaces [14, 23]. On the other hand, the
convexity properties of Busemann spaces are not necessarily the same as those of
Banach spaces. Since convex combinations in non-positively curved metric spaces
may depend on the order of combining the points, characterizations of convexity in
Busemann spaces require a new theoretical approach.

In this paper, we study a characterization of convexity of complete Busemann
spaces. To ensure the existence of convex combinations, we consider Busemann
spaces to be complete. Furthermore, since weak uniform convexity, which is a
weaker condition than uniform convexity, exists in Busemann spaces, we primarily
deal with this property. In Section 2, we present several preliminary definitions and
results about convex combinations and weak uniform convexity. In Section 3, we
prove a characterization of weak uniform convexity of complete Busemann spaces.
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2. PRELIMINARIES

Let (X,d) be a metric space. Given distinct points z,y € X, a metric midpoint
of z and y is a point m(z,y) € X if d(z,m(z,y)) = d(y, m(z,y)) = (1/2)d(z,y). A
path in X is a continuous map 7 : [a, 5] C R — X. Given a pair of points z,y € X,
we say that a path v : [a, f] = X joins z and y if v(a) = z and v(8) = y. A
geodesic path in X is an isometry v : [a, f] — X such that d(v(s),~(t)) = |s —t| for
every s,t € [a, B]. A geodesic segment y([a, f]) C X from x to y is the image of a
geodesic path 7 : [a, f] — X joining = and y. Note that a geodesic segment from x
to y is not necessarily unique in general. If no confusion arises, then [z, y] denotes a
unique geodesic segment from x to y. A (uniquely) geodesic space is a metric space
X such that every two points in X can be joined by a (unique) geodesic path. If X
is a complete metric space, then X is a geodesic space if and only if every pair of
points in X has a metric midpoint [2, p. 2, Prop. 1.1.3].

Proposition 2.1 (21, p. 62, Prop. 2.2.14]). Let X be a geodesic space and z,y,z €
X three pairwise distinct points. Then d(z,y) = d(z, z) +d(z,y) if and only if there
exists a geodesic segment from x to y containing z.

The points on a geodesic segment are naturally parametrized by [0,1] C R. For
two distinct points xz,y € X and a point z € [z,y], we use the notation z =
(1 —t)x @ ty, where t = d(x, z)/d(z,y).

Lemma 2.2. Let (X,d) be a complete uniquely geodesic space and x,y € X two
distinct points. If p = (1 —t)x @ty and q = tx & (1 — t)y for t € [0,1/2], then
(1—s)p®sqg=(1—(t+(1—2t)s))zd (t+ (1 —2t)s)y for every s € [0, 1].

Proof. By assumption, [p,q| C [z, y]. By Proposition 2.1 we have
d(z,y) = d(z,p) + d(p,q) + d(q,y)
1
= td(z,y) + _d(p, (1 = s)p ® sq) + td(,y)

for every s € [0,1]. This implies s(1 — 2t)d(z,y) = d(p, (1 — s)p ® sq). Note that
p € [z, (1 — s)p® sq|. Thus
d(z, (1 = s)p @ sq) = d(z,p) +d(p, (1 — s)p & sq)

Hence (1 —s)p®sq= (1 — (t+ (1 —2¢t)s))z ® (¢ + (1 — 2t)s)y. O

A Busemann space is a geodesic space (X, d) such that for every two geodesic
paths 71 : [a1,81] C R — X and 72 : [a2,82] € R — X, the map D, 5, :
[a1, B1] X [, B2] — R defined by

Dryy s (b1, t2) = d(71(t1), 72(t2))

is convex [4, pp. 576-577][21, pp. 203-204]. The definition of a Busemann space
gives the following elementary facts:
(1) [21, p. 210, Prop. 8.1.4] Every Busemann space is a uniquely geodesic space.
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(2) [2, p. 4, Prop. 1.1.5] Every Busemann space X has a convex metric, that is,
for every z,y,2 € X and ¢t € [0, 1],

(2.1) dlz,1 -ty dtz) < (1 —t)d(z,y) + td(zx, 2).
(3) [16, p. 40, Def. 6.5] In a Busemann space X, for every z,y € X and ¢, s € [0, 1],
(2.2) d((1 -tz ®ty, (1 —s)z® sy) = [t — sld(z,y).

Basic examples of Busemann spaces are Euclidean spaces, strictly convex normed
vector spaces, R-trees [24], classical hyperbolic spaces [2], and Riemannian manifolds
of global nonpositive sectional curvature [5].

Let (X,d) be a metric space. A geodesic line in X is a distance-preserving map
v:R = X. A local geodesic is a map v : [a, f] C R — X with the property that
for every ¢ € [, B8] there exists € > 0 such that d(v(s1),7(s2)) = |s1 — s2| for all
$1,82 € [, B8] with |t — s1] + |t — s2| < €. A geodesic space X is said to have the
geodesic extension property if for every local geodesic v : [, 5] — X with a # £,
there exist ¢ > 0 and a local geodesic 7' : [a, 8+ €] — X such that 7|, 5 = 7 [5, p-
208, Def. 5.7].

Lemma 2.3 ([21, p. 212, Cor. 8.2.3]). In a Busemann space, every local geodesic
s a geodesic path.

Lemma 2.4. If X is a Busemann space, then X has the geodesic extension property
if and only if every non-constant geodesic path can be extended to a geodesic line.

Proof. This assertion is an immediate consequence of Lemma 2.3. O

The notion of uniform convexity in Banach spaces was introduced by Clarkson
[8], whereas the modulus of convexity in hyperbolic spaces was coined by Goebel
and Reich [17]. Similarly, the notion of uniform convexity exists in metric spaces
[13], and a modulus of convexity can be defined in geodesic spaces [20, pp. 468-469]:
A geodesic space (X, d) is said to be weakly uniformly convez if for every a € X,
r > 0, and € € (0,2] there exists a mapping d(a,r,€) : X x (0,00) x (0,2] — (0,1]
such that for every x,y € X,

dla,z) <r
d(a,y) <r = d(a,m(:n,y)) < (1 —d(a,r, e))r.
d(z,y) > er

Such a mapping 4 is called a modulus of converity of X and defined by
6(a,r,€) := inf {1 - %d(a,m(x,y)) cx,y € X,d(a,x) < r,d(a,y) <r,d(z,y) > er} .

See [20] for an example of a weakly uniformly convex geodesic space. Every weakly
uniformly convex geodesic space X is strictly convez, that is, for all a, z,y € X with
z # y and all metric midpoints m(z, y) we have d(a, m(z,y)) < max{d(a,z),d(a,y)}.
It follows that X is uniquely geodesic [12]. If § = §(r, €) does not depend on a, we
say that X is uniformly convex. While in Banach spaces, there exists a natural
modulus of convexity for each space that depends only on €, in geodesic spaces, we
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need to assume that the modulus depends on three variables: a,r,e. Complete and
weakly uniformly convex Busemann spaces satisfy the following properties.

Proposition 2.5. Let (X,d) be a complete and weakly uniformly convex Busemann
space. Fix a € X and r > 0. Then a modulus of convezity d(a,r,€) : (0,2] — (0,1]
is a nmon-decreasing function of e.

Proof. Let 0 < €1 < €3 < 2. Set z,y € X satisfying d(a,z) < r,d(a,y) < r,
d(z,y) > eor, and d(a, (1/2)x ® (1/2)y) = (1 — 6(a,r,e2))r. Let t = (e2 — €1)/2e,
p=(1—-t)xPty, and ¢ = tx® (1 —t)y. By (2.1) we have d(a,p) < r and d(a,q) < r.
By (2.2) we get

€2 — €1

d(p,q) = |(1 —t) — t|ld(z,y) > [1 — 2t|ear = ‘1 B €T = €17

€2

By the definition of a modulus of convexity, we have 6(a, r,€1) < 1—(1/r)d(a, (1/2)p®
(1/2)q). Note that (1/2)p® (1/2)q = (1/2)z & (1/2)y by Lemma 2.2. Therefore

1 p_q 1 r Y
5 20 <—1 d(? )_ (? >_ » 0 *
(a,r,e1) " a2692 1 rda2@2 o(a,r, €a)

g

Theorem 2.6 (25, p. 157, Thm. 3.2]). Let (X,d) be a complete Busemann space.
Let a,x,y € X be three distinct points such that d(a,z) = d(a,y) = r. Set er =
d(z,y). If X is weakly uniformly convez, then for every t € [0, 1],

1—-1¢ 141¢ 1 t 141¢
d <rl——m— - .
(a, 5 a® 5 <1+tx@ 1+ty>> _r( 5 té(a,r,e))

3. A CHARACTERIZATION OF WEAK UNIFORM CONVEXITY

In this section, as the main result, we prove a characterization of weak uniform
convexity of Busemann spaces. This extends the characterization of uniform con-
vexity of Banach spaces.

Theorem 3.1. Let (X,d) be a complete Busemann space having the geodesic ex-
tension property and 1 < p < co. The weak uniform convexity of X is equivalent to
the following property: for every a € X, r > 0, and € € (0, 2], there exists a number
np(a,r,€) > 0 such that, for every t € [0,1] and three distinct points a,x,y € X, the
conditions d(a,z) < r, d(a,y) <r, and d(z,y) > er imply

1—t 14t/ 1 t 8
3.1 d j
(3:-1) (“’ 7 49 <1+tx@1+ty>>

< (1= nyla,r, ) N L ABIE

where § € X satisfies d(a,y) =1 and y = (1 — t)a & ty.
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Proof. First, we show the sufficient condition. If ¢ =1 in (3.1), then
1 1 1 1.
d <a, 5% & 2y) =d (a, 5% @ 2y> < T‘(l —np(a,r, 6)) )

Therefore X is weakly uniformly convex with d(a,r,€) =1 — /1 —n,(a,r,€).
Next, we show the necessary condition. It suffices to prove the case d(a,z) =r

for . Since X has the geodesic extension property, there exists § € X such that

d(a,y) =rand y = (1 —t)a @ ty. Set € := d(x,y)/r. By Theorem 2.6 we have

P

d(a, %a@ % (%H:CGS 1’@;&)) 7"7’(15“ —td(a,r, 6))
1 (d(a )P +d(a y)P) =
2 ’ ' i <'rp + (td(a, g]))p>

P
2 <12+t —td(a,r, €)>

1+

S =

p

=: p(t).

Now, we have to consider two cases for e:
(Case 1) If € < €/2, by the triangle inequality, then

(1=t = d(Gy) = de,y) — d@,5) = er —er > (e~ =) r ="
Thus t < 1 — ¢/2. Moreover, we have
14t\P
2(%)
1+

The real function 1 (t) is strictly increasing for ¢ € [0, 1] and attains its maximum
at t =1 [3, p. 193, Lem. 3]. We have

p(t) < =: p1(t).

p(t) < pi1(t) < s01<1 - 5) = (1 .

Hence 1 — ¢(t) > 1 — Ci(e) > 0.
(Case 2) If € > €/2, then §(a,r,€) > d(a,r,€/2) by Proposition 2.5. We have

p
2<1‘2H —tdé(a,r, e/2)>
1+tP

p(t) < =: pa(t).

1
The maximum of ¢2(t) is attained at ¢ = (1 — 28(a,r,€/2))7~. For the sake of
simplicity, we write § := d(a,r,€/2). Since § > 0, we have

1 2(W - (125)1)55)1)
©a(t) < @a((1—26)7T) = 7 =: 05(8) < 1.
1+ (1= 20)77)

Hence 1 — ¢(t) > 1 — ¢a(t) > 1 — Cy(6) > 0.
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In all cases, we can get a number 7,(a,r, €) such that 0 < n,(a,r,€) < min{l —
Ci(€),1 — Co(d)}. Hence

1—t 14t (1 e )
d(a,;a@ér (meBth))
3(d(a, )P + d(a, y)?)
>1—p(t) > min{l — Ci(e),1 — C2(6)} > np(a,r,€).

1—

Therefore

p
1—t 14t/ 1 t d(a,z)? + d(a,y)?
< — .
d(m S — <1+tx@1+#0> < (1 =mnpla,r,e)) 5

O

Given any two distinct points x and y in a Busemann space having the geodesic
extension property, there exists a unique metric line passing through = and y. For
r > 0, (1 + r)x © ry denotes the unique point z on this metric line satisfying
d(z,z) = rd(z,y) and d(z,y) = (1 + r)d(z,y). From this, we can rewrite Theorem
3.1 in the following form.

Theorem 3.2. Let (X,d) be a complete Busemann space having the geodesic ex-
tension property and 1 < p < co. The weak uniform convexity of X is equivalent to
the following property: for every a € X, r > 0, and € € (0, 2], there exists a number
np(a,r,€) > 0 such that, for everyt € [0, 1] and three distinct points a,x,y € X, the
conditions d(a,x) <r, d(a,y) <r, and d(x,y) > er imply

p
1—t 1+t( 1 £/l 1t
3.2 d h
(3:2) (“ y 95 <1+tx@1+t<ty@ t a)))

d(a, z)? + d(a, y)?
5 :

< (1 - np(aa Ty 6))

Theorem 3.1 is a generalization of the characterization of uniform convexity of
Banach spaces. Since a Banach space (E, ||-||) is complete and has the geodesic
extension property, the conditions of Theorem 3.2 can be rewritten in the following
form: d(a,z) = ||z|| < r =1, d(a,y) = |ly|| < 1, and d(z,y) = ||z — y|| > € for
x,y € E. Weset g =y/||y|| and ¢t = ||y||. Hence

gla Lot it (1 et 1t
a a €T —

) 2 \1+e %14 2 \1xe 1Y
RIETYa! ¢ y) 1

-1 (e o ()] = e )

Therefore we obtain the following theorem.

Theorem 3.3 ([3, p. 190, Prop. 1]). Let (E, ||-||) be a Banach space and 1 < p < oco.
The uniform convexity of E is equivalent to the following property: for every e €
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(0,2], there ezists a number n,(€) > 0 such that, for every distinct vectors x,y € E,
the conditions ||z|| < 1, ||y|| <1, and ||z — y|| > € imply

’ ) + )

2 < (1)

Question 1. Theorem 3.3 provides important properties in the geometry of Banach
spaces [14, 23]. Similarly, can Theorem 3.1 provide new geometric properties in
Busemann spaces?
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