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has a fixed point. We denote the set of all fixed points of T by FixT . Then, for
x ∈ H and y ∈ FixT , we know that

〈Tx− y, x− Tx〉 ≥ 0.

We call such a mapping a cutter mapping [2, 5, 9]. It is called a directed operator
[6, 7] or a firmly quasinonexpansive mapping [40] as well.

In a general metric space (X, d), we can also define such classes of mappings.
That is, we say that a mapping T on X is firmly nonexpansive if

2d(Tx, Ty)2 ≤ d(Tx, y)2 + d(Ty, x)2 − d(Tx, x)2 − d(Ty, y)2

for x, y ∈ X; it is nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for x, y ∈ X; it is metrically nonspreading [28] if

2d(Tx, Ty)2 ≤ d(Tx, y)2 + d(Ty, x)2

for x, y ∈ X. However, to define cutter mappings, we need to use inner products,
namely, the underlying spaces must be linear spaces at least.

Recently, the classifications such as the above have been discussed in the setting
of geodesic spaces. Particularly, Hadamard spaces are famous as complete geodesic
spaces which have some reasonable structure that Hilbert spaces have. In general, a
geodesic space is defined as a metric space which has geodesics connecting each two
points. We know that geodesics enable us to define convex combinations, and hence
we can define the convexity of subsets and functions. Moreover, if a geodesic space
has upper-bounded curvature κ ∈ R, then we call such a space a CAT(κ) space; a
Hadamard space is defined as a complete CAT(0) space. In Hadamard spaces, we
have fixed point existence theorems for nonexpansive mappings and nonspreading
mappings; see [1, 26, 28]. In a Hadamard space H, Jost [13] and Mayer [32] proposed
the proximal mapping Jf for a lower semicontinuous proper convex function f on
H, which is defined by

Jfx = Argmin
y∈H

(
f(y) +

1

2
d(y, x)2

)
for x ∈ H. In this setting, Jf is firmly nonexpansive, and hence it is nonexpansive
and metrically nonspreading; see [20]. However, in general, CAT(κ) spaces do not
behave like Hilbert spaces since spherical and hyperbolical surfaces are also categor-
ised as CAT(κ) spaces. For example, the unit sphere of a Hilbert space is a CAT(1)
space, and then we need to consider another technique than the Hilbert space setting.
Suppose f is lower semicontinuous, proper and convex on an admissible complete
CAT(1) space X. Then, we define a mapping Rf related to the proximal mapping
by

Rfx = Argmin
y∈X

(f(y)− log cos d(y, x))
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for x ∈ X. Then, we do not know if the mapping Rf is firmly nonexpansive, non-
expansive or metrically nonspreading. Nevertheless, we know that Rf is spherically
nonspreading [15], that is,

2 cos d(Rfx,Rfy) ≥ cos d(Rfx, y) + cos d(Rfy, x)

for x, y ∈ X. Such types of mapping are effective for fixed point theory in the
spherical setting. Similarly, some hyperbolic models, such as hyperboloids and disk
models, are categorised to CAT(−1) space. Suppose f is lower semicontinuous,
proper and convex on a complete CAT(−1) space X. Then, we define a mapping
Rf related to the proximal mapping by

Rfx = Argmin
y∈X

(f(y) + tanh d(y, x) sinh d(y, x))

for x ∈ X. Such as the case of CAT(1) spaces, the mapping Rf is hyperbolically
nonspreading [16], that is,

2 cosh d(Rfx,Rfy) ≤ cosh d(Rfx, y) + cosh d(Rfy, x)

for x, y ∈ X. Consequently, in the theory of CAT(κ) spaces, we should adopt
functions matching the parameter κ.

On the other hand, focusing on the Alexandrov angle of CAT(κ) spaces, we can
define tangent spaces and a metric corresponding to Riemannian manifolds. Using
these notions, we introduce a function, such as inner products. Chaipunya, Kohsaka
and Kumam [8] studied the proximal mapping on a Hadamard space via the notion
of tangent spaces, and they show that tangent spaces are effective for the study of
geodesic spaces. Motivated by this study, Kimura and Sudo [24] introduced related
notions to them.

In this work, we propose some classes mappings on a CAT(κ) space for a general
real number κ. These classes have a high affinity with firmly nonexpansive mappings
and cutter mappings if the underlying space is a Hilbert space; they match the
parameter κ. To this end, we show modified first variation formulae; see [3] or
Theorem 3.1 for the original first variation formula.

2. Preliminaries

Let M2
κ be the two-dimensional model space and Dκ the space diameter. That is,

M2
κ =



1√
κ
S2 (κ > 0);

E2 (κ = 0);

1√
−κ

H2 (κ < 0),

and

Dκ = diamM2
κ =


∞ (κ ≤ 0);

π√
κ

(κ > 0).
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For κ ∈ R, a CAT(κ) space is defined as a uniquely Dκ-geodesic space satisfying
the CAT(κ) inequality with the two-dimensional model space M2

κ. Namely, any two
points x and y in a CAT(κ) space (M,d) with d(x, y) < Dκ can be connected with
a unique isometric mapping γxy from [0, d(x, y)] to M such that γxy(0) = x and
γxy(d(x, y)) = y, and for any x, y, z ∈M with

d(y, z) + d(z, x) + d(x, y) < 2Dκ,

two points p, q on the triangle 4(x, y, z) and their comparison points p and q on
4(x, y, z) of M2

κ satisfy
d(p, q) ≤ dM2

κ
(p, q).

In a CAT(κ) space M , for x, y ∈ M with d(x, y) < Dκ, there exists a unique
mapping γxy mentioned above. We call it a geodesic from x to y, and then we define
convex combination of x and y with a ratio t ∈ [0, 1] by

tx⊕ (1− t)y = γxy((1− t)d(x, y)).

In this paper, we suppose that a CAT(κ) space M is admissible [21]. Namely,

d(x, y) <
Dκ

2

for any x, y ∈ M . From the definition of Dκ, for κ ≤ 0, every CAT(κ) space is
always admissible.

Bridson and Haefliger [3] introduced the following function to characterise Rieman-
nian metrics on the finite-dimensional model spaces:

f(κ, a) = a+
∞∑
n=2

(−κ)n−1a2n−1

(2n− 1)!
=



1√
κ
sin
(√
κa
)

(κ > 0);

a (κ = 0);

1√
−κ

sinh
(√

−κa
)

(κ < 0)

for κ, a ∈ R. In this paper, for fixed κ ∈ R, we denote this function by sκ, that is,

sκ(a) =



1√
κ
sin
(√
κa
)

(κ > 0);

a (κ = 0);

1√
−κ

sinh
(√

−κa
)

(κ < 0)

for a ∈ R. Then, for a ∈ R, we know that

s′κ(a) =


cos
(√
κa
)

(κ > 0);

1 (κ = 0);

cosh
(√

−κa
)

(κ < 0).

We notice that the following formulae hold: For a ∈ R,

s′κ(a)
2 + κsκ(a)

2 = 1.
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For a, b ∈ R,

sκ(a+ b) = sκ(a)s
′
κ(b) + sκ(b)s

′
κ(a);

sκ(a− b) = sκ(a)s
′
κ(b)− sκ(b)s

′
κ(a);

s′κ(a+ b) = s′κ(a)s
′
κ(b)− κsκ(a)sκ(b);

s′κ(a− b) = s′κ(a)s
′
κ(b) + κsκ(a)sκ(b).

These identities imply that for a, b ∈ R,

sκ(a) + sκ(b) = 2sκ

(
a+ b

2

)
s′κ

(
a− b

2

)
;

sκ(a)− sκ(b) = 2s′κ

(
a+ b

2

)
sκ

(
a− b

2

)
;

s′κ(a) + s′κ(b) = 2s′κ

(
a+ b

2

)
s′κ

(
a− b

2

)
;

s′κ(a)− s′κ(b) = −2κsκ

(
a+ b

2

)
sκ

(
a− b

2

)
,

and

sκ(a)s
′
κ(b) =

1

2
(sκ(a+ b) + sκ(a− b));

s′κ(a)sκ(b) =
1

2
(sκ(a+ b)− sκ(a− b));

−κsκ(a)sκ(b) =
1

2

(
s′κ(a+ b)− s′κ(a− b)

)
;

s′κ(a)s
′
κ(b) =

1

2

(
s′κ(a+ b) + s′κ(a− b)

)
.

On the other hand, Kajimura and Kimura [17] define a function cκ by

cκ(a) =



1− cos (
√
κa)

κ
(κ > 0);

1

2
a2 (κ = 0);

cosh
(√

−κa
)
− 1

−κ
(κ < 0)

for a ∈ R; we notice that

cκ(a) =

∫ a

0
sκ(r) dr.

Let (M,d) be an admissible CAT(κ) space. We define a function ϕκ on M2 by

ϕκ(x, y) =

∫ d(x,y)

0
sκ(r) dr =



1− cos (
√
κd(x, y))

κ
(κ > 0);

1

2
d(x, y)2 (κ = 0);

cosh
(√

−κd(x, y)
)
− 1

−κ
(κ < 0)
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for x, y ∈M . Then, we know the following:

• For x, y ∈M , ϕκ(x, y) ≥ 0;
• for x, y ∈M , ϕκ(x, y) = 0 if and only if x = y;
• for x, y ∈M , ϕκ(x, y) = ϕκ(y, x).

For more details about the function ϕκ, see [23].

3. Tangent spaces and logarithmic mappings

We next define tangent spaces on CAT(κ) spaces. We first recall the notion of the
Alexandrov angle. Let M be an admissible CAT(κ) space and p ∈ M . Then, the
Alexandrov angle Ap at p is defined by

Ap(x, y) = lim sup
t→0+

arccos

(
1− d(γpx(t), γpy(t))

2

2t2

)
∈ [0, π]

if p 6= x and p 6= y; Ap(x, p) = Ap(p, x) = π/2 if p 6= x; Ap(p, p) = 0. Then, we have
the following formula, which is called the first variation formula:

Theorem 3.1 (Bridson–Haefliger [3, Corollary 3.5 in Chapter II.3]). Let M be an
admissible CAT(κ) space. Then,

lim
t→0+

d(p, y)− d(tx⊕ (1− t)p, y)

t
= d(p, x) cosAp(x, y)

for p, x, y ∈M with p 6= y.

Let M be an admissible CAT(κ) space and p ∈M . For x ∈M , let

[x]p = {y ∈M | Ap(x, y) = 0},

and let
DpM = {[x]p | x ∈M}.

We call DpM the direction space from p. We next define an equivalence relation on
the Cartesian product

[0,∞[×DpM.

Let ip be a function from DpM to {0, 1} defined by

ip([x]p) =

{
1 ([x]p 6= [p]p);

0 ([x]p = [p]p)

for [x]p ∈ DpM . We define a binary relation 'p on [0,∞[×DpM by

(r, [x]p) 'p (s, [y]p)

if one of the following holds:

• r · ip([x]p) = s · ip([y]p) = 0;
• r · ip([x]p) = s · ip([y]p) > 0 and [x]p = [y]p.
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Then, this relation 'p is an equivalence one. We define a quotient set TpM by

TpM = ([0,∞[×DpM)/'p.

For simplicity, we denote an element [(r, [x]p)]≃p of TpM by r[x]p. In particular, we
denote 0[p]p by 0p. For vp = r[v]p ∈ TpM and t ≥ 0, we define tvp by

tvp = (tr)[v]p ∈ TpM.

Particularly, for vp = r[v]p ∈ TpM and t > 0, we define vp/t by
vp
t

=
(r
t

)
[v]p ∈ TpM.

Furthermore, for r[x]p ∈ TpM , we denote the value r · ip([x]p) by ‖r[x]p‖. Then, we
define a distance function dp on TpM by

dp(r[x]p, s[y]p) =

√
‖r[x]p‖2 + ‖s[y]p‖2 − 2‖r[x]p‖‖s[y]p‖ cosAp(x, y)

for r[x]p, s[y]p ∈ TpM . We call this metric space (TpM,dp) the tangent space of M
at p.

Let M be an admissible CAT(κ) space and p ∈ M . We define a logarithmic
mapping logp from M to TpM by

logp x = d(p, x)[x]p

for x ∈M . Then, ∥∥logp x∥∥ = d(p, x).

This mapping is an analogous notion to the inverse mapping of the exponential
mapping on Riemannian manifolds. We define a bifunction gp on TpM by

gp(up, vp) =
‖up‖2 + ‖vp‖2 − dp(up, vp)

2

2

for up, vp ∈ TpM . Then, the following hold:

• For vp ∈ TpM , gp(vp, vp) = ‖vp‖2 ≥ 0;
• for up, vp ∈ TpM , gp(up, vp) = gp(vp, up);
• for up, vp ∈ TpM and t ≥ 0, gp(tup, vp) = tgp(up, vp);
• for x, y ∈M , d(x, y)2 = gx(logx y, logx y) = gy(logy x, logy x).

Further, we define another logarithmic mapping logκ,p by

logκ,p x = sκ(d(p, x))[x]p

for x ∈M . Then, we know the following:

Theorem 3.2 (Kimura–Sudo [24]). Let M be an admissible CAT(κ) space. Then,

gp(logκ,p x, logκ,p y) ≥ ϕκ(p, x) + s′κ(d(p, x))ϕκ(p, y)− ϕκ(x, y)

for p, x, y ∈M .
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Let M be an admissible CAT(κ) space and T a mapping on M . We call a point
x ∈M a fixed point of T if

Tx = x,

and we denote the set of all fixed points of T by FixT . We say that T is directed
[34] if it has a fixed point, and

gTx(logTx y, logTx x) ≤ 0

for x ∈M and y ∈ FixT . We know that if T is directed, then it is quasinonexpansive,
namely,

d(Tx, y) ≤ d(x, y)

for x ∈ M and y ∈ FixT . Therefore, if T is directed, then FixT is a closed convex
set. For more details, see [34].

Let H be a Hilbert space and T a directed operator in the sense of geodesic spaces.
Then, for x ∈ H and y ∈ FixT , we have

0 ≥ gTx(logTx y, logTx x) = 〈y − Tx, x− Tx〉,

and hence
〈Tx− y, x− Tx〉 ≥ 0.

It means that directed operators in the sense of geodesic spaces are a natural gen-
eralisation of cutter mappings.

4. Perturbations of resolvent operators

In general, we cannot determine whether a minimiser of the considered convex func-
tion is unique. However, for a lower semicontinuous proper convex function f on a
Hilbert space H and x ∈ H, a function defined by

(4.1) f(y) + ‖y − x‖2

for y ∈ H has a unique minimiser. We call the term ‘‖y − x‖2’ a perturbation.
In an admissible complete CAT(κ) space M , we say that a function f from M to

]−∞,∞] is convex if

f(tx⊕ (1− t)y) ≤ tf(x) + (1− t)f(y)

for x, y ∈M and t ∈ ]0, 1[. For a lower semicontinuous proper convex function f on
M and x ∈M , we consider a function fx defined by

fx(y) = f(y) + P (d(y, x))

for y ∈ M . Namely, we add a perturbation with a function P . On the other hand,
in Hilbert spaces, we typically use quadratic functions, such as (4.1). However,
unlike the setting of Hilbert spaces, different types of perturbations, rather than
(4.1), are introduced in CAT(κ) spaces. For instance, we have known the following
perturbations in a CAT(1) space:

(i) 1− cos d(y, x),
(ii) − log cos d(y, x),
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(iii) tan d(y, x) · sin d(y, x),
(iv) 1− cos d(y, x)− log cos d(y, x).

We notice that ∫ a

0
sin r dr = 1− cos a;∫ a

0
tan r dr = − log |cos a|;∫ a

0

(
sin r +

tan r

cos r

)
dr = tan a · sin a;∫ a

0
(sin r + tan r) dr = 1− cos a− log |cos a|.

We also know the following perturbations in a CAT(−1) space:

(v) cosh d(y, x)− 1,
(vi) log cosh d(y, x),
(vii) tanh d(y, x) · sinh d(y, x),
(viii) cosh d(y, x)− 1 + log cosh d(y, x).

We notice that ∫ a

0
sinh r dr = cosh a− 1;∫ a

0
tanh r dr = log cosh a;∫ a

0

(
sinh r +

tanh r

cosh r

)
dr = tanh a · sinh a;∫ a

0
(sinh r + tanh r) dr = cosh a− 1 + log cosh a.

The cases (i) and (v) are investigated by Sudo [34]. The cases (ii) and (vii) are
introduced by Kajimura and Kimura [15, 16]. The case (iii) is done by Kimura and
Kohsaka [19]. In the case (vi), Kimura and Nakadai [22] adapted the perturbation
for a convex function bounded below. The cases (iv) and (viii) are investigated by
Kajimura, Kimura and Kohsaka [18].

To integrate those perturbations, we use a function tκ as follows: For κ ∈ R and
a ∈ R with s′κ(a) 6= 0,

tκ(a) =
sκ(a)

s′κ(a)
=



tan(
√
κa)√
κ

(κ > 0);

a (κ = 0);

tanh(
√
−κa)√

−κ
(κ < 0).
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Then, we know that

∫ a

0
sκ(r) dr = cκ(a) =


1

2
a2 (κ = 0);

1− s′κ(a)

κ
(κ 6= 0);

∫ a

0
tκ(r) dr =


1

2
a2 (κ = 0);

− log |s′κ(a)|
κ

(κ 6= 0);∫ a

0

(
sκ(r) +

tκ(r)

s′κ(r)

)
dr = tκ(a)sκ(a);

∫ a

0
(sκ(r) + tκ(r)) dr =


a2 (κ = 0);

1− s′κ(a)− log |s′κ(a)|
κ

(κ 6= 0).

We focus on their integrands:
(1) η0 = sκ;
(2) η1 = tκ;
(3) η2 = sκ + tκ/s

′
κ;

(4) η3 = sκ + tκ.
We notice that

η0(a) = sκ(a) = sκ(a)× 1;

η1(a) = tκ(a) = sκ(a)×
1

s′κ(a)
;

η2(a) = sκ(a) +
tκ(a)

s′κ(a)
= sκ(a)×

(
1 +

1

s′κ(a)
2

)
;

η3(a) = sκ(a) + tκ(a) = sκ(a)×
(
1 +

1

s′κ(a)

)
for a ∈ R with s′κ(a) 6= 0.

Let η be a function from [0, Dκ/2[ to [0,∞[. We suppose the following conditions:
(P1) η(a) = 0 if and only if a = 0;
(P2) η is continuous.

Clearly, η0, η1, η2 and η3 satisfy both of the two conditions. On the other hand, the
identity function

η00 : a 7→ a

on [0, Dκ/2[ also satisfies the two conditions.
Let M be an admissible CAT(κ) space and η a function from [0, Dκ/2[ to [0,∞[

satisfying the condition (P1). Fix p ∈ M . We define a mapping logη,p from M to
TpM by

logη,p x = η(d(p, x))[x]p

for x ∈M . From the condition (P1), we obtain the following:
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• For p, x ∈M ,
∥∥logη,p x∥∥ = η(d(p, x));

• for p, x ∈M , logη,p x = 0p if and only if x = p;
• for p, x, y ∈M , gp(logη,p x, logp y) = η(d(p, x))d(p, y) cosAp(x, y).

We further obtain the following modified first variation formula:

Theorem 4.1. Let M be an admissible CAT(κ) space and η a function on [0, Dκ/2[

satisfying the condition (P1) and (P2). Then, for p, x, y ∈M ,

lim
t→0+

∫ d(p,y)

d(tx⊕(1−t)p,y)

η(r)

t
dr = gp(logp x, logη,p y).

Proof. For p, x, y ∈M and t ∈ ]0, 1[, let

l = d(p, y) and lt = d(tx⊕ (1− t)p, y).

Notice that lt → l as t → 0+. We first consider the case where p 6= y. Then, from
Theorem 3.1, we have

(4.2) lim
t→0+

l − lt
t

= lim
t→0+

d(p, y)− d(tx⊕ (1− t)p, y)

t
= d(p, x) cosAp(x, y).

Fix t ∈ ]0, 1[ arbitrarily. We denote the antiderivative of η by E. Then,∫ l

lt

η(r)

t
dr =

E(l)− E(lt)

t
=
E(l)− E(lt)

l − lt
· l − lt

t
.

Putting ht = lt − l, we have

(4.3)
∫ l

lt

η(r)

t
dr =

E(l + ht)− E(l)

ht
· l − lt

t
.

Since ht → 0 as t→ 0+, we have

lim
t→0+

E(l + ht)− E(l)

ht
= E′(l) = η(l).

Letting t→ 0+ for (4.3), we obtain from (4.2) that

lim
t→0+

∫ l

lt

η(r)

t
dr = η(l)d(p, x) cosAp(x, y) = gp(logp x, logη,p y).

We next show the case where p = y. Since logη,p y = 0p, we have

gp(logp x, logη,p y) = 0.

Further, for fixed t ∈ ]0, 1[, we get∫ l

lt

η(r)

t
dr =

E(l)− E(lt)

t
=
E(0)− E(d(tx⊕ (1− t)p, y))

t

=
E(0)− E(td(x, y))

t
.

From l’Hôpital’s rule, and the conditions (P1) and (P2), we have

lim
t→0+

∫ l

lt

η(r)

t
dr = lim

t→0+

E(0)− E(td(x, y))

t
= −d(x, y) lim

t→0+
η(td(x, y)) = 0,
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and hence

lim
t→0+

∫ l

lt

η(r)

t
dr = 0 = gp(logp x, logη,p y).

This completes the proof. □

We next show the following:

Theorem 4.2. Let M be an admissible CAT(κ) space and η a function on [0, Dκ/2[

satisfying the two conditions (P1) and (P2). For a lower semicontinuous proper
convex function f on M , assume that a single-valued mapping Rη

f on M can be
defined by

Rη
fx = Argmin

y∈M

(
f(y) +

∫ d(y,x)

0
η(r) dr

)
for x ∈M . Then, the following hold:

(i) For x ∈M ,

f(Rη
fx) ≤ inf

w∈M

(
f(w)− gRη

fx
(logRη

fx
w, logη,Rη

fx
x)
)
;

(ii) Min f = FixRη
f ;

(iii) if f has a minimiser, then Rη
f is directed.

Proof. Fix w, x ∈M and t ∈ ]0, 1[ arbitrarily. Let wt = tw ⊕ (1− t)Rη
fx. Then,

f(Rη
fx) +

∫ d(Rη
fx,x)

0
η(r) dr ≤ f(wt) +

∫ d(wt,x)

0
η(r) dr

≤ tf(w) + (1− t)f(Rη
fx) +

∫ d(wt,x)

0
η(r) dr,

and thus

tf(Rη
fx) ≤ tf(w)−

∫ d(Rη
fx,x)

d(tw⊕(1−t)Rη
fx,x)

η(r) dr.

Dividing both sides by t and letting t→ 0+, we have

f(Rη
fx) ≤ f(w)− gRη

fx
(logRη

fx
w, logη,Rη

fx
x)

from Theorem 4.1. Since w ∈M is arbitrary,

f(Rη
fx) ≤ inf

w∈M

(
f(w)− gRη

fx
(logRη

fx
w, logη,Rη

fx
x)
)
.

We next show (ii). Fix x ∈ FixRη
f . Then,

f(x) = f(Rη
fx) ≤ inf

w∈M

(
f(w)− gRη

fx
(logRη

fx
w, logη,Rη

fx
x)
)
= inf

w∈M
f(w),

and hence x ∈ Min f . Inversely, fix x ∈ Min f . Then, from the definition of Rη
f ,

f(Rη
fx) +

∫ d(Rη
fx,x)

0
η(r) dr ≤ f(x) +

∫ d(x,x)

0
η(r) dr = f(x),
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and thus for the antiderivative E of η, we have

E(d(Rη
fx, x))− E(0) =

∫ d(Rη
fx,x)

0
η(r) dr ≤ f(x)− f(Rη

fx) ≤ 0,

which implies that
E(d(Rη

fx, x)) ≤ E(0).

By (P1), we notice that η is positive on ]0, Dκ/2[, and thus E is strictly increasing.
Using this fact, we have

d(Rη
fx, x) ≤ 0,

and hence x ∈ FixRη
f . Therefore,

Min f = FixRη
f .

We show (iii). Assume that f has a minimiser, and then Rη
f has a fixed point.

From (i), for fixed x ∈M and y ∈ FixRη
f = Min f , we have

f(Rη
fx) ≤ f(y)− gRη

fx
(logRη

fx
y, logη,Rη

fx
x),

and thus
gRη

fx
(logRη

fx
y, logη,Rη

fx
x) ≤ f(y)− f(Rη

fx) ≤ 0.

If Rη
fx 6= x, then

gRη
fx
(logRη

fx
y, logRη

fx
x) =

d(Rη
fx, x)

η(d(Rη
fx, x))

gRη
fx
(logRη

fx
y, logη,Rη

fx
x) ≤ 0.

If Rη
fx = x, then we immediately obtain

gRη
fx
(logRη

fx
y, logRη

fx
x) = 0.

Therefore, Rη
f is a directed operator. It completes the proof. □

We next consider an equilibrium problem on CAT(κ) spaces. Let M be an ad-
missible CAT(κ) space and K a nonempty closed convex subset of M . For a given
function F on K2, we call x ∈ K an equilibrium point of F if

inf
y∈K

F (x, y) ≥ 0.

We denote the set of all equilibrium points of F by EquilF . Further, we assume the
following conditions:

(E1) For x ∈ K, F (x, x) = 0;
(E2) for x, y ∈ K, F (x, y) + F (y, x) ≤ 0;
(E3) for x ∈ K, a function F (x, ·) on K is lower semicontinuous and convex.

In a similar way to Theorem 4.2, we prove the following result about equilibrium
problems:
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Theorem 4.3. Let M be an admissible CAT(κ) space and η a function on [0, Dκ/2[

satisfying the two conditions (P1) and (P2). Let K be a nonempty closed convex
subset of M . For a function F on K2 satisfying the three conditions (E1)–(E3),
assume that a single-valued mapping Rη

F on M can be defined by

Rη
Fx =

{
z ∈ K

∣∣∣∣∣ infy∈K

(
F (z, y) +

∫ d(y,x)

d(z,x)
η(r) dr

)
≥ 0

}
for x ∈M . Then, the following hold:

(i) For x ∈M ,

0 ≤ inf
w∈M

(
F (Rη

Fx,w)− gRη
F x(logRη

F xw, logη,Rη
F x x)

)
;

(ii) EquilF = FixRη
F ;

(iii) if F has an equilibrium point, then Rη
F is directed.

Proof. Fix w ∈ K, x ∈M and t ∈ ]0, 1[ arbitrarily. Let wt = tw ⊕ (1− t)Rη
Fx ∈ K.

Then, from the conditions (E1) and (E3),

0 ≤ inf
y∈K

(
F (Rη

Fx, y) +

∫ d(y,x)

d(Rη
F x,x)

η(r) dr

)

≤ F (Rη
Fx,wt) +

∫ d(wt,x)

d(Rη
F x,x)

η(r) dr

≤ tF (Rη
Fx,w) +

∫ d(wt,x)

d(Rη
F x,x)

η(r) dr,

and thus

0 ≤ tF (Rη
Fx,w)−

∫ d(Rη
F x,x)

d(tw⊕(1−t)Rη
F x,x)

η(r) dr

Dividing both sides by t and letting t→ 0+, we have

0 ≤ F (Rη
Fx,w)− gRη

F x(logRη
F xw, logη,Rη

F x x)

from Theorem 4.1. Since w ∈M is arbitrary,

0 ≤ inf
w∈M

(
F (Rη

Fx,w)− gRη
F x(logRη

F xw, logη,Rη
F x x)

)
.

We next show (ii). Fix x ∈ FixRη
F . Then,

0 ≤ inf
w∈M

(
F (Rη

Fx,w)− gRη
F x(logRη

F xw, logη,Rη
F x x)

)
= inf

w∈M
F (x,w),

and hence x ∈ EquilF . Inversely, fix x ∈ EquilF . Then, from the definition of Rη
F ,

0 ≤ F (Rη
Fx, x) +

∫ d(x,x)

d(Rη
F x,x)

η(r) dr = F (Rη
Fx, x)−

∫ d(Rη
F x,x)

0
η(r) dr,

and thus for the antiderivative E of η, we have

E(d(Rη
Fx, x))− E(0) =

∫ d(Rη
F x,x)

0
η(r) dr ≤ F (Rη

Fx, x).
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Since F (x,Rη
Fx) ≥ 0, from the condition (E2),

E(d(Rη
Fx, x))− E(0) ≤ F (Rη

Fx, x) ≤ −F (x,Rη
Fx) ≤ 0,

which implies that
E(d(Rη

Fx, x)) ≤ E(0).

Recall that η is positive on ]0, Dκ/2[, and thus E is strictly increasing. Therefore,
we have

d(Rη
Fx, x) ≤ 0,

and hence x ∈ FixRη
F . Thus,

EquilF = FixRη
F .

We show (iii). Assume that F has an equilibrium point, and then Rη
F has a fixed

point. From (i), for fixed x ∈M and y ∈ FixRη
F = EquilF , we have

0 ≤ F (Rη
Fx, y)− gRη

F x(logRη
F x y, logη,Rη

F x x),

and thus

gRη
F x(logRη

F x y, logη,Rη
F x x) ≤ F (Rη

Fx, y) ≤ −F (y,Rη
Fx) ≤ 0.

If Rη
Fx 6= x, then

gRη
F x(logRη

F x y, logRη
F x x) =

d(Rη
Fx, x)

η(d(Rη
Fx, x))

gRη
F x(logRη

F x y, logη,Rη
F x x) ≤ 0.

If Rη
Fx = x, then we immediately obtain

gRη
F x(logRη

F x y, logRη
F x x) = 0.

Therefore, Rη
F is a directed operator. It completes the proof. □

5. Geodesically monotone mapping

Let M be an admissible CAT(κ) space and ψ a real function on [0, Dκ/2[. We say
a mapping T on M is vicinal with ψ if

(ψ(d(Ty, y)) + ψ(d(Tx, x)))ϕκ(Tx, Ty)

≤ ψ(d(Ty, y))ϕκ(Tx, y) + ψ(d(Tx, x))ϕκ(Ty, x)

for x, y ∈ M . Kohsaka [27] first introduces the vicinality of a mapping on CAT(1)
spaces. After that, Kajimura and Kimura [17] have introduced them to general
CAT(κ) spaces. Such mappings have some good properties for fixed point theory if
a given function ψ satisfies additional conditions, such as continuity; refer to [17].
We introduce a new class of mappings. Let M be an admissible CAT(κ) space and
η a function on [0, Dκ/2[ satisfying the condition (P1). We say that a mapping T
on M is geodesically monotone with η if

gTx(logTx Ty, logη,Tx x) + gTy(logTy Tx, logη,Ty y) ≤ 0
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for x, y ∈M . In the setting of Theorems 4.2 and 4.3, the mappings Rη
f and Rη

F are
geodesically monotone with η, respectively. For the sake of completeness, we give
proofs.

Proposition 5.1. In the setting of Theorem 4.2, the mapping Rη
f is geodesically

monotone with η.

Proof. Let x, y ∈M . From Theorem 4.2, we have

f(Rη
fx) ≤ f(Rη

fy)− gRη
fx
(logRη

fx
Rη

fy, logη,Rη
fx
x)

and
f(Rη

fy) ≤ f(Rη
fx)− gRη

fy
(logRη

fy
Rη

fx, logη,Rη
fy
y).

Adding their both sides and rearranging that equation, we obtain

gRη
fx
(logRη

fx
Rη

fy, logη,Rη
fx
x) + gRη

fy
(logRη

fy
Rη

fx, logη,Rη
fy
y) ≤ 0.

It means that Rη
f is geodesically monotone with η. □

Proposition 5.2. In the setting of Theorem 4.3, the mapping Rη
F is geodesically

monotone with η.

Proof. Let x, y ∈M . From Theorem 4.3, we have

0 ≤ F (Rη
Fx,R

η
F y)− gRη

F x(logRη
F xR

η
F y, logη,Rη

F x x)

and
0 ≤ F (Rη

F y,R
η
Fx)− gRη

F y(logRη
F y R

η
Fx, logη,Rη

F y y).

Adding their both sides and rearranging that equation, we obtain from (E2) that

gRη
F x(logRη

F xR
η
F y, logη,Rη

F x x) + gRη
F y(logRη

F y R
η
Fx, logη,Rη

F y y) ≤ 0.

It means that Rη
F is geodesically monotone with η. □

Let H be a Hilbert space, and suppose that T is a geodesically monotone mapping
with the identity function. Then, for x, y ∈ H, we have

0 ≥ gTx(logTx Ty, logη,Tx x) + gTy(logTy Tx, logη,Ty y)

= 〈Ty − Tx, x− Tx〉+ 〈Tx− Ty, y − Ty〉
= −〈Tx− Ty, x− y〉+ 〈Tx− Ty, Tx− Ty〉,

and hence
‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉.

It means that in Hilbert spaces, a mapping is geodesically monotone if and only if
it is firmly nonexpansive, or equivalently, inversely strongly monotone.

For a general geodesically monotone mapping, we obtain the following result:

Theorem 5.3. Let M be an admissible CAT(κ) space and T a geodesically monotone
mapping on M with a function η on [0, Dκ/2[ satisfying the condition (P1). Then,
the following hold:

(i) If T has a fixed point, then it is directed;
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(ii) its fixed point set FixT is closed and convex;
(iii) if there exists a limit

lim
t→0+

η(t)

sκ(t)

as a nonnegative real number, then T is vicinal with η/sκ.

Proof. We first show (i) and (ii). We assume that T has a fixed point. Let x ∈ M

and y ∈ FixT . Since logη,Ty y = 0Ty, we have

0 ≥ gTx(logTx Ty, logη,Tx x) + gTy(logTy Tx, logη,Ty y)

= gTx(logTx y, logη,Tx x),

and therefore
gTx(logTx y, logTx x) ≤ 0.

Hence, T is directed. In this case, T is quasinonexpansive, and hence FixT is closed
and convex even if it is nonempty.

We next show (iii). From the assumption, we define the value of η/sκ at 0 by

η(0)

sκ(0)
= lim

t→0+

η(t)

sκ(t)
≥ 0.

Let x, y ∈M , and set

ψx =
η(d(Tx, x))

sκ(d(Tx, x))
and ψy =

η(d(Ty, y))

sκ(d(Ty, y))
.

If Tx = x, then since T is quasinonexpansive,

(ψy + ψx)ϕκ(Tx, Ty) = ψyϕκ(Tx, Ty) + ψxϕκ(Ty, Tx)

= ψyϕκ(x, Ty) + ψxϕκ(Ty, x)

≤ ψyϕκ(x, y) + ψxϕκ(Ty, x)

= ψyϕκ(Tx, y) + ψxϕκ(Ty, x).

In the same way, we obtain

(ψy + ψx)ϕκ(Tx, Ty) ≤ ψyϕκ(Tx, y) + ψxϕκ(Ty, x)

if Ty = y. Suppose that Tx 6= x and Ty 6= y. Then, from (P1), we have ψx and
ψy are positive. The inequality required by the vicinality is satisfied if Tx = Ty.
Thus, we further suppose that Tx 6= Ty. Since T is geodesically monotone with η,
we have

(5.1) gTx(logTx Ty, logη,Tx x) + gTy(logTy Tx, logη,Ty y) ≤ 0.

Note that

(5.2)
sκ(d(Tx, Ty))

ψx · d(Tx, Ty)
gTx(logTx Ty, logη,Tx x) = gTx(logκ,Tx Ty, logκ,Tx x)

and

(5.3)
sκ(d(Tx, Ty))

ψy · d(Tx, Ty)
gTy(logTy Tx, logη,Ty y) = gTy(logκ,Ty Tx, logκ,Ty y).
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Hence, from the equations (5.1), (5.2) and (5.3),

ψxgTx(logκ,Tx Ty, logκ,Tx x) + ψygTy(logκ,Ty Tx, logκ,Ty y) ≤ 0.

From Theorem 3.2, we have

0 ≥ ψxgTx(logκ,Tx Ty, logκ,Tx x) + ψygTy(logκ,Ty Tx, logκ,Ty y)

≥ ψx

(
s′κ(d(Tx, Ty))ϕκ(Tx, x) + ϕκ(Ty, Tx)− ϕκ(Ty, x)

)
+ ψy

(
s′κ(d(Ty, Tx))ϕκ(Ty, y) + ϕκ(Tx, Ty)− ϕκ(Tx, y)

)
≥ ψxϕκ(Ty, Tx)− ψxϕκ(Ty, x) + ψyϕκ(Tx, Ty)− ψyϕκ(Tx, y),

and therefore

(ψy + ψx)ϕκ(Tx, Ty) ≤ ψyϕκ(Tx, y) + ψxϕκ(Ty, x).

Thus, the inequality required by the vicinality is satisfied. Hence, T is vicinal with
η/sκ. □

Recall that

η0(a)

sκ(a)
= 1;

η1(a)

sκ(a)
=

1

s′κ(a)
;
η2(a)

sκ(a)
= 1 +

1

s′κ(a)
2
;
η3(a)

sκ(a)
= 1 +

1

s′κ(a)

for a ∈ R. Therefore,

lim
t→0+

η0(t)

sκ(t)
= 1; lim

t→0+

η1(t)

sκ(t)
= 1; lim

t→0+

η2(t)

sκ(t)
= 2; lim

t→0+

η3(t)

sκ(t)
= 2.

Let M be an admissible CAT(κ) space and T a geodesically monotone mapping
with sκ. Then, T is vicinal with a constant function which is identically equal to 1.
Such a mapping is said to be geodesically nonspreading [35], that is,

2ϕκ(Tx, Ty) ≤ ϕκ(Tx, y) + ϕκ(Ty, x)

for x, y ∈M . Furthermore, suppose κ = 0. Then, since T is geodesically monotone
with the identity function, for x, y ∈M , we obtain from Theorem 3.2 that

0 ≥ gTx(logTx Ty, logTx x) + gTy(logTy Tx, logTy y)

≥ 2d(Tx, Ty)2 − d(Tx, y)2 − d(Ty, x)2 + d(Tx, x)2 + d(Ty, y)2

2
,

and hence

2d(Tx, Ty)2 ≤ d(Tx, y)2 + d(Ty, x)2 − d(Tx, x)2 − d(Ty, y)2.

Thus, T is firmly nonexpansive, and therefore it is nonexpansive and metrically
nonspreading.
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