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MODIFIED FIRST VARIATION FORMULAE AND
GEODESICALLY MONOTONE MAPPINGS

YASUNORI KIMURA AND SHUTA SUDO

ABSTRACT. In this paper, we propose a class of proximal-type mappings on
geodesic spaces having upper-bounded curvature. We first show modified first
variation formulae using tangent spaces on a geodesic space and modified logar-
ithmic mappings.

1. INTRODUCTION

Fixed point theory is one of the most crucial topics in nonlinear analysis. In par-
ticular, the existence of fixed points of nonlinear mappings and their approximation
techniques have been studied by many researchers. We have many variations of con-
sidered mappings that we investigate. Let H be a Hilbert space and T" a mapping.
We say that T is firmly nonexpansive [4, 10, 11, 14] if for z,y € H,

|ITx — Ty||* < (Tw — Ty, x —y),
or equivalently
2 2 2 2 2
2T = Ty|” < [Tz —y[I” + Ty — 2| — [Tz — 2| — | Ty — y|".

Such a mapping is also said to be inversely strongly monotone [30, 36, 38]. It is
well known that the proximal mapping Jy for a lower semicontinuous proper convex
function f on H is firmly nonexpansive, which is defined by

- 1
Jpr = Argmin (f(y) +5lly = xH2>
yeH

for x € H. If T is firmly nonexpansive, then it is nonexpansive and nonspreading
[29]. That is, for x,y € H, we have

[Tz =Tyl < [l —yll

and

2Tz — Ty|* < Tz —y|* + [Ty —=|*.
These mappings behave very well in fixed point theory. For instance, in some ap-
propriate settings, they have a fixed point; see [25, 29] and the references therein.
Furthermore, we have some fixed point approximation schemes for such mappings;
see [12, 31, 33, 37, 39|, for instance. If considered mappings have a fixed point, they
have more useful properties. Assume that a firmly nonexpansive mapping 7" on H
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has a fixed point. We denote the set of all fixed points of T by FixT. Then, for
x € H and y € FixT, we know that

(Tx —y,x —Txz) > 0.

We call such a mapping a cutter mapping [2, 5, 9]. It is called a directed operator
[6, 7] or a firmly quasinonexpansive mapping [40] as well.

In a general metric space (X,d), we can also define such classes of mappings.
That is, we say that a mapping T on X is firmly nonexpansive if

2d(Tx, Ty)? < d(Tx,y)* + d(Ty,z)* — d(Tx,x)* — d(Ty,y)*
for z,y € X; it is nonexpansive if
d(Tz,Ty) < d(x,y)
for z,y € X; it is metrically nonspreading 28] if
2d(Tz, Ty)? < d(Tz,y)* + d(Ty, z)?

for z,y € X. However, to define cutter mappings, we need to use inner products,
namely, the underlying spaces must be linear spaces at least.

Recently, the classifications such as the above have been discussed in the setting
of geodesic spaces. Particularly, Hadamard spaces are famous as complete geodesic
spaces which have some reasonable structure that Hilbert spaces have. In general, a
geodesic space is defined as a metric space which has geodesics connecting each two
points. We know that geodesics enable us to define convex combinations, and hence
we can define the convexity of subsets and functions. Moreover, if a geodesic space
has upper-bounded curvature x € R, then we call such a space a CAT (k) space; a
Hadamard space is defined as a complete CAT(0) space. In Hadamard spaces, we
have fixed point existence theorems for nonexpansive mappings and nonspreading
mappings; see [1, 26, 28]. In a Hadamard space H, Jost [13] and Mayer [32] proposed
the proximal mapping Jy for a lower semicontinuous proper convex function f on
H, which is defined by

Jpx = Argmin <f(y) +2d(y, :v)2>

yeH 2
for v € H. In this setting, Jy is firmly nonexpansive, and hence it is nonexpansive
and metrically nonspreading; see [20]. However, in general, CAT (k) spaces do not
behave like Hilbert spaces since spherical and hyperbolical surfaces are also categor-
ised as CAT(k) spaces. For example, the unit sphere of a Hilbert space is a CAT(1)
space, and then we need to consider another technique than the Hilbert space setting.
Suppose f is lower semicontinuous, proper and convex on an admissible complete
CAT(1) space X. Then, we define a mapping Ry related to the proximal mapping
by

R;x = Argmin (f(y) — logcosd(y, x))
yeX
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for x € X. Then, we do not know if the mapping R; is firmly nonexpansive, non-
expansive or metrically nonspreading. Nevertheless, we know that Ry is spherically
nonspreading [15], that is,

2cosd(Rysx, Rry) > cosd(Ryx,y) + cosd(Ryy, x)

for z,y € X. Such types of mapping are effective for fixed point theory in the
spherical setting. Similarly, some hyperbolic models, such as hyperboloids and disk
models, are categorised to CAT(—1) space. Suppose f is lower semicontinuous,
proper and convex on a complete CAT(—1) space X. Then, we define a mapping
Ry related to the proximal mapping by

Ryx = Argmin (f(y) + tanh d(y, x) sinh d(y, x))
yeX

for x € X. Such as the case of CAT(1) spaces, the mapping Ry is hyperbolically
nonspreading [16], that is,

2coshd(Ryx, Ryy) < coshd(Rysx,y) + coshd(Ryy, z)

for z,y € X. Consequently, in the theory of CAT(k) spaces, we should adopt
functions matching the parameter k.

On the other hand, focusing on the Alexandrov angle of CAT (k) spaces, we can
define tangent spaces and a metric corresponding to Riemannian manifolds. Using
these notions, we introduce a function, such as inner products. Chaipunya, Kohsaka
and Kumam [8| studied the proximal mapping on a Hadamard space via the notion
of tangent spaces, and they show that tangent spaces are effective for the study of
geodesic spaces. Motivated by this study, Kimura and Sudo [24] introduced related
notions to them.

In this work, we propose some classes mappings on a CAT(k) space for a general
real number x. These classes have a high affinity with firmly nonexpansive mappings
and cutter mappings if the underlying space is a Hilbert space; they match the
parameter . To this end, we show modified first variation formulae; see [3] or
Theorem 3.1 for the original first variation formula.

2. PRELIMINARIES

Let M2 be the two-dimensional model space and D,; the space diameter. That is,

1
—S? 0);
N (k> 0);
M = { E? (k= 0);
1
H? <0),
=H (n<0)
and
oo (k<0);
D, =diamM? =¢{ 7
k> 0)
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For k € R, a CAT(k) space is defined as a uniquely D,-geodesic space satisfying
the CAT (k) inequality with the two-dimensional model space M2. Namely, any two
points x and y in a CAT(k) space (M, d) with d(z,y) < D, can be connected with
a unique isometric mapping 7., from [0,d(z,y)] to M such that v,,(0) = = and
Yey(d(z,y)) =y, and for any z,y, 2z € M with

d(y,z) + d(z,x) + d(z,y) < 2Dy,
two points p, ¢ on the triangle A(z,y, z) and their comparison points p and g on
N(T,7, %) of M2 satisfy
In a CAT(k) space M, for x,y € M with d(z,y) < D,, there exists a unique

mapping 7., mentioned above. We call it a geodesic from z to y, and then we define
convex combination of z and y with a ratio ¢t € [0, 1] by

tr® (1— )y = 1y (1 — (. 9)).

In this paper, we suppose that a CAT(k) space M is admissible [21|. Namely,

Dy,

for any z,y € M. From the definition of Dy, for k < 0, every CAT(k) space is
always admissible.

Bridson and Haefliger [3] introduced the following function to characterise Rieman-
nian metrics on the finite-dimensional model spaces:

1
—sin (vVka Kk > 0);
n12n1 \/E ( ) ( g )

\/17 sinh (vV—ka) (k< 0)
for k,a € R. In this paper, for fixed k € R, we denote this function by s, that is,
\}E sin (v/ka) (k> 0);
sgla) =4 a (k= 0);
1
VK

for @ € R. Then, for a € R, we know that

cos (v/ka) (k>

sinh (vV—rka) (k< 0)

cosh (vV—ka) (k <0).
We notice that the following formulae hold: For a € R,
s'(a)* + kse(a)? = 1.
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For a,b € R,
sk(a+0b) = sk(a)sl(b) + sx(b)s.(a);
su(a —b) = s.(a)sy(b) — sx(b)sy(a);
si(a+0b)=s.(a)s.(b) — ks(a)sx(b);
si(a—0b) = s (a)s,.(b) + rs(a)ss (D).

and

5x(a)54(0) = = (sn(a + b) + s — B));

2
$5(0)5x(0) = §(sela+b) — sula —b);
—K5k(a)sk(b) = %(«%(CL +0b) — S;(a — b));

1
sl (a)sl.(b) = E(s;(a +b) + si(a—b)).
On the other hand, Kajimura and Kimura [17]| define a function ¢, by

(1 — cos (y/ka)

. (k> 0);
cula) = 3 50 (= 0);
cosh ( _—:a) -1 (5 < 0)

for a € R; we notice that
cx(a) = / sk(r)dr.
0
Let (M, d) be an admissible CAT(x) space. We define a function ¢,, on M? by
1 — cos (vVkd(z,y))

- (k > 0);

d(z,y)
Or(x,y) = /0 sk(r)dr = %d(:z:,y)2 (k = 0);
cosh (v/—=rd(z,y)) — 1 (k < 0)

K
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for z,y € M. Then, we know the following;:
e For x,y € M, ¢p(x,y) > 0;
o for z,y € M, ¢p(z,y) =0 if and only if z = y;
o for x,y € M, ¢u(x,y) = ¢u(y, x).

For more details about the function ¢, see [23].

3. TANGENT SPACES AND LOGARITHMIC MAPPINGS

We next define tangent spaces on CAT (k) spaces. We first recall the notion of the
Alexandrov angle. Let M be an admissible CAT (k) space and p € M. Then, the
Alexandrov angle A, at p is defined by

d (e (t t))?
Ap(x,y) = limsup arccos | 1 — O (8): 72 (1)) € [0, 7]
t—0+ 2t2

if p# o and p#y; Ap(x,p) = Ap(p,x) = /2 if p # x; Ap(p,p) = 0. Then, we have

the following formula, which is called the first variation formula:

Theorem 3.1 (Bridson—Haefliger [3, Corollary 3.5 in Chapter 11.3]). Let M be an
admissible CAT (k) space. Then,

lim d(p,y) —d(tz @ (1 —t)p,y)
t—0+ t

= d(p, ) cos Ap(z,y)

forp,x,y € M with p # y.
Let M be an admissible CAT (k) space and p € M. For € M, let

(2], ={y € M | Ay(x,y) =0},
and let
DM = {[a], | = € M},

We call D, M the direction space from p. We next define an equivalence relation on
the Cartesian product

[0, 00[ x D, M.
Let iy be a function from D, M to {0,1} defined by

for [z], € D,M. We define a binary relation ~, on [0, co[ x D,M by

(r, [zlp) ~p (s, [y]p)
if one of the following holds:

o 1 -iy([z]y) = s ip([ylp) =
o 7 -iy([z]p) =5 ip([y]p) >
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Then, this relation ~, is an equivalence one. We define a quotient set T,,M by
Tp,M = ([0, 00[ X DpM) /.

For simplicity, we denote an element [(r, [z],)]~, of T, M by r[z],. In particular, we

denote 0[p], by 0,. For v, = r[v], € T,M and t > 0, we define tv, by
tv, = (tr)[v], € TyM.

Particularly, for v, = r[v], € T,M and t > 0, we define v,/t by

U (;)[v]p € T,M.

Furthermore, for r[z], € T,M, we denote the value r -i,([z],) by ||r[z],||. Then, we
define a distance function d, on T, M by

dp(r[z \/H ol + Islylpll” = 217 (2pllIslylpl cos Ap(z, y)

for r(z],, s[y]p € T, M. We call this metric space (T,M, dy) the tangent space of M
at p.

Let M be an admissible CAT (k) space and p € M. We define a logarithmic
mapping log,, from M to T, M by

log, z = d(p, z)[x],
for x € M. Then,
Hlogpr =d(p, ).
This mapping is an analogous notion to the inverse mapping of the exponential

mapping on Riemannian manifolds. We define a bifunction g, on T),M by

2 2
HUpH + ||Up|| - dp(upavp)Q
2

Gp(tp, vp) =

for wp,v, € T,M. Then, the following hold:

For v, € T, M, gp(vp, vp) = HUPHQ 2 0;

for up, vy € T, M, gp(up, vp) = gp(vp, up);

for up,, v, € T,M and t > 0, gp,(tup, vy) = tgp(up, vp);

for x,y € M, d(z,y)? = g (log, y,log, y) = gy(log, x,log, ).
Further, we define another logarithmic mapping log,, ,, by

log,{’p T = Sn(d(pv l‘)) {l‘]p

for z € M. Then, we know the following;:
Theorem 3.2 (Kimura—Sudo [24]). Let M be an admissible CAT (k) space. Then,

gp(log,, , ,108, ,y) > ¢u(p, ) + 5, (d(p, ) s (P, y) — Prlz,y)

forp,x,ye M.
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Let M be an admissible CAT (k) space and T a mapping on M. We call a point
x € M a fixed point of T if
Tx =x,
and we denote the set of all fixed points of T" by FixT. We say that T is directed
[34] if it has a fixed point, and

9Tz (lOgT:r: Y, logTa: x) < 0

forz € M and y € FixT. We know that if T"is directed, then it is quasinonexpansive,
namely,
d(Tz,y) < d(z,y)
for x € M and y € FixT. Therefore, if T is directed, then FixT is a closed convex
set. For more details, see [34].
Let H be a Hilbert space and T" a directed operator in the sense of geodesic spaces.
Then, for x € H and y € FixT, we have

0> gre(logr, y,logr, ©) = (y — T,z — Tx),
and hence
(Tx —y,x —Txz) > 0.
It means that directed operators in the sense of geodesic spaces are a natural gen-
eralisation of cutter mappings.

4. PERTURBATIONS OF RESOLVENT OPERATORS

In general, we cannot determine whether a minimiser of the considered convex func-
tion is unique. However, for a lower semicontinuous proper convex function f on a
Hilbert space H and x € H, a function defined by

(4.1) F) + lly — |

for y € H has a unique minimiser. We call the term ‘||y — z||*’ a perturbation.
In an admissible complete CAT (k) space M, we say that a function f from M to
|—00, 00] is convex if

fltz® (1—t)y) <tf(z)+ (1 —1t)f(y)

for z,y € M and t € |0, 1[. For a lower semicontinuous proper convex function f on
M and z € M, we consider a function f, defined by

fr(y) = f(y) + P(d(y,x))

for y € M. Namely, we add a perturbation with a function P. On the other hand,
in Hilbert spaces, we typically use quadratic functions, such as (4.1). However,
unlike the setting of Hilbert spaces, different types of perturbations, rather than
(4.1), are introduced in CAT (k) spaces. For instance, we have known the following
perturbations in a CAT(1) space:

(i) 1 —cosd(y,x),

(ii) —logcosd(y,x),
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(iii) tand(y,x) - sind(y, x),
(iv) 1 — cosd(y,z) — logcosd(y, ).

We notice that
a
/ sinrdr =1 — cosa;
0
a
/ tanr dr = —log |cos al;
0

a /s tanr .
sinr + dr =tana - sina;
0 cosr

a
/ (sinr +tanr)dr = 1 — cosa — log |cos al.
0

We also know the following perturbations in a CAT(—1) space:

(v) coshd(y,z) — 1,
(vi) logcoshd(y,x),
(vii) tanhd(y,z) - sinhd(y, x),
(viii) coshd(y,z) — 1+ logcoshd(y,x).

We notice that
a
/ sinhr dr = cosha — 1;
0
a
/ tanh r dr = log cosh a;
0

@ h
/ (sinhr + tan T) dr = tanha - sinh a;
0 coshr

/ (sinhr + tanh ) dr = cosha — 1 + log cosh a.
0

The cases (i) and (v) are investigated by Sudo [34]. The cases (ii) and (vii) are
introduced by Kajimura and Kimura [15, 16]. The case (iii) is done by Kimura and
Kohsaka [19]. In the case (vi), Kimura and Nakadai [22] adapted the perturbation
for a convex function bounded below. The cases (iv) and (viii) are investigated by
Kajimura, Kimura and Kohsaka [18].

To integrate those perturbations, we use a function ¢, as follows: For k € R and
a € R with s/,(a) # 0,

tan(y/ka)

¥ N7 (k> 0);
te(a) = zj‘(Z) ~{a (k =0);
" tanh(v/—ka)

(k < 0)
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Then, we know that

L
a —a (k =0);
/ Sk(r)dr = cx(a) = ? s (a)
’ — (k#0)
Ly
a —a (k =0);
2
f o019 = 4 g o
’ be(r) = tx(a)sx(a);
[ (set4 210 ) ar = el
a a2 (’i = 0)7
/0 el AP =4 1= si(a) —loglse@) ()
We focus on their integrands:
(1) o = Sk;
(2) m = tk;
(3) M2 = sk + tu/s%;
(4) N3 = Sk + [
We notice that
no(a) = sk(a) = sk(a) x 1;
(@) = trla) = 54() X 5
= sx(a 210 = s.(a) x 1
n3(a) = sk(a) + tx(a) = sg(a) x <1 + 3’1@)>

for a € R with s/ .(a) # 0.

Let 1 be a function from [0, D, /2] to [0, co[. We suppose the following conditions:

(P1) n(a) =0 if and only if a = 0;

(P2) n is continuous.

Clearly, ng, 1, m2 and n3 satisfy both of the two conditions. On the other hand, the
identity function

Noo: a—a
on [0, D, /2[ also satisfies the two conditions.

Let M be an admissible CAT (k) space and 7 a function from [0, D, /2] to [0, c0]
satisfying the condition (P1). Fix p € M. We define a mapping log, ,, from M to
T,M by

logy, , « = n(d(p, x))[z]p
for x € M. From the condition (P1), we obtain the following:
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o For p,w € M, [[log, , 2] = n(d(p,2));
e for p,x € M, log, ,x = 0, if and only if z = p;
o for p,z,y € M, gy(log, , x,log,y) = n(d(p,z))d(p,y) cos Ap(x,y).
We further obtain the following modified first variation formula:

Theorem 4.1. Let M be an admissible CAT (k) space and n a function on [0, D, /2|
satisfying the condition (P1) and (P2). Then, for p,x,y € M,
d(p,y)
. n(r)
lim ——=dr = g,(log, x,log, , y).
=0+ Jata(1-0pg) remre

Proof. For p,x,y € M and t € ]0, 1], let
l=d(p,y) and l; = d(tx ® (1 — t)p,y).

Notice that I; — [ as t — 0+. We first consider the case where p # y. Then, from
Theorem 3.1, we have
-1 d —d(t 1—t
42)  lim Ll gy Ay &0 = p,y)
t—0+ ¢ t—0+ t
Fix ¢ € ]0, 1] arbitrarily. We denote the antiderivative of by E. Then,

/l n(r) o _ BEQ) -~ E() _ EQ) - E@l) 1-L
It

= d(p,x)cos Ap(x,y).

t t 1—1, t
Putting hy = I — [, we have
!
E(l+h)—FE(l) -1
Lt hy t

Since hy — 0 as t — 04, we have

. E(l+h)— E(l) /
tglgl-i- hi = £ =n).

Letting ¢t — 0+ for (4.3), we obtain from (4.2) that

l
. n(r)
Jm e dr = n(l)d(p, ) cos Ap(z,y) = gp(log, x,log, , v).

We next show the case where p = y. Since log, ,y = 0p, we have
gp(logp z,log, , y) = 0.
Further, for fixed ¢ € ]0, 1], we get
[10)4p = BB _ EO) - Blits 3 1~ )
It

t t t
B(0) - B(td(z,y))
; .
From I’Hopital’s rule, and the conditions (P1) and (P2), we have

l _
im0 g~y B0 — Bltd(z,y))
t—=0+ J;, t t—0+ t

= _d(x7y) tl_l)%l_ﬁ_?”](td(([’, y)) = 07
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and hence
!
: n(r)
tl_l)%l+ . 5 dr = 0 = gy(log, z,log, , y).
This completes the proof. O

We next show the following:

Theorem 4.2. Let M be an admissible CAT (k) space and n a function on [0, D, /2|
satisfying the two conditions (P1) and (P2). For a lower semicontinuous proper
convex function f on M, assume that a single-valued mapping R? on M can be

defined by
d(y,z)
Rz = Argmin | f(y) + / n(r)dr
yeM 0
for x € M. Then, the following hold:
(i) Forxz e M,

f(Ryz) < inf (f(w) — IRy (10g Ry, w,log, g, 17));

(i) Min f = Fix R;

(iii) if f has a minimiser, then R} is directed.

Proof. Fix w,x € M and ¢ € ]0, 1[ arbitrarily. Let w; = tw & (1 — t)R}z. Then,
d(R?m,x) d(we,z)
s+ [ < g+ [ ) ar
0 0

d(we,x)
<tfw)+ (= 0fER+ [ nr)ar

and thus

d(R;ﬁ:r,x)

tf(Rix) < tf(w) - / n(r)dr.

d(twd(1—t) R?m,x)

Dividing both sides by ¢ and letting t — 0+, we have
f(R?:E) < f(w) - gR?CC(logR?J? w, lOgn,R?:v SL’)
from Theorem 4.1. Since w € M is arbitrary,

’r] .
F(RJ2) < int (F(w) = gpra (108, w, 108, iy, 2)).

We next show (ii). Fix € Fix R}. Then,
— U : .
f(@) = F(R}x) < it (f(w) = gy, (logpm, w,log, gy, v)) = inf f(w),

and hence z € Min f. Inversely, fix € Min f. Then, from the definition of R,

d(R"z,x) d(x,z)
FE)+ [ i ar < @+ [ a0 = fa),
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and thus for the antiderivative E of n, we have

o)

d(R
B((Rja,a) = BO) = [ ) dr < f(w) = f(Rp) <0
which implies that
E(d(Rlz,x)) < E(0).

By (P1), we notice that 7 is positive on ]0, D, /2[, and thus E is strictly increasing.
Using this fact, we have

d(Rjz,z) <0,
and hence z € Fix R?. Therefore,
Min f = Fix R}.
We show (iii). Assume that f has a minimiser, and then R? has a fixed point.
From (i), for fixed x € M and y € Fix R"» = Min f, we have
f(Rr) < f(y) - QR;z(logR}z Y, lOgn,R?r ),
and thus
QR;x(IOgR}z ?/710&7,13% z) < f(y) — f(R}z) <0.
If R?m # x, then
d(R?m, x)
gR’}x(IOgR;x Y, logpn, z) = nggx(logRyx Y, logy, rua z) <0.
If R?m = x, then we immediately obtain
QR’}I(IOgR’}x Y logR?a: z) = 0.

Therefore, R? is a directed operator. It completes the proof. O

We next consider an equilibrium problem on CAT(k) spaces. Let M be an ad-
missible CAT (k) space and K a nonempty closed convex subset of M. For a given
function F on K?, we call x € K an equilibrium point of F' if

inf F > 0.
Jnf (z,y) >

We denote the set of all equilibrium points of F' by Equil F'. Further, we assume the
following conditions:

(E1) Forz € K, F(x,z) = 0;

(E2) for 2,y € K, Flz,y) + F(y,z) < 0;

(E3) for x € K, a function F'(z,-) on K is lower semicontinuous and convex.

In a similar way to Theorem 4.2, we prove the following result about equilibrium
problems:
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Theorem 4.3. Let M be an admissible CAT (k) space and n a function on [0, D, /2|
satisfying the two conditions (P1) and (P2). Let K be a nonempty closed convex
subset of M. For a function F on K? satisfying the three conditions (E1)-(E3),
assume that a single-valued mapping R}, on M can be defined by

; d(y,z)
inf | F(z,y) + / dr ] >0
Inf | Fz.y) o n(r)dr

for x € M. Then, the following hold:
(i) Forx € M,

R%x:{zeK

0< u}g]fw (F(RZ—(L’, w) - gR?x(logR}x w, IOgn,RT}x :U)) )

(ii) Equil F = Fix R7.;

(iil) ¢f F has an equilibrium point, then R, is directed.
Proof. Fix w € K, x € M and ¢ € ]0,1] arbitrarily. Let w; = tw ® (1 —t)R}x € K.
Then, from the conditions (E1) and (E3),

d(y,z)
0 < inf <F(RZSE,y) +/ )77(7") dr>

yek d(Rlz,x
d(wt,z)
< F(Rlz,w) + / n(r)dr
d(Rlx,x)
d(we,x)
<tF(Rpaw)+ [ n(ran
d(R}x,x)
and thus
d(R}x,x)
0 <tF(R}lz,w) — / n(r)dr
d(twd(1—-t)Rlz,x)

Dividing both sides by ¢ and letting ¢ — 0+, we have
0 < F(R}a,w) — gpn,(1og g, w,log, g1, 7)

from Theorem 4.1. Since w € M is arbitrary,
0< u}g}f\% (F(R}@x, w) = grn.(loggn . w,log, gn, :1:)) :
We next show (ii). Fix 2 € Fix R}.. Then,

0< u}g]f\% <F(RZ‘ZL" ’LU) - gR}a}(IOgRWFx w, 1Ogn,R”F:c l’)) = 11}2]{41:‘(1" ’LU),
and hence z € Equil F. Inversely, fix # € Equil F. Then, from the definition of R7,

d(z,x)

d(R’}z,x)
0< F(R%a:, x) + / n(r)dr = F(R%L x) — /0 " n(r)dr,

d(RT.z,x)

and thus for the antiderivative E of i, we have

d(Rlx,x)
E(d(R}z,z)) — E(0) = /0 n(r)dr < F(R}z,z).
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Since F(z, R%Lx) > 0, from the condition (E2),
E(d(R}x,z)) — E(0) < F(Rlz,z) < —F(z,R}z) <0,
which implies that
E(d(R}x,x)) < E(0).

Recall that 1 is positive on ]0, D, /2[, and thus E is strictly increasing. Therefore,
we have

d(R}z,x) <0,
and hence z € Fix R}.. Thus,
Equil F' = Fix RZ.

We show (iii). Assume that F' has an equilibrium point, and then R7. has a fixed
point. From (i), for fixed x € M and y € Fix R, = Equil F', we have

0 < F(Rpz,y) — gpno(logrn, y,10g, gn . ),

and thus

9rn2(10gRn .y, log, pn, @) < F(REx,y) < —F(y, Rpz) < 0.
If Rl.z # z, then

n
9rne(l0gRn . Y, logn , ) = mgggx(logzzgx y,1og, gn, x) < 0.
If R’z = x, then we immediately obtain
9rne(l0ggn . y,loggn , @) = 0.

Therefore, R% is a directed operator. It completes the proof. O

5. GEODESICALLY MONOTONE MAPPING

Let M be an admissible CAT (k) space and 1 a real function on [0, D, /2[. We say
a mapping T on M is vicinal with 1 if

(W (d(Ty,y)) + P(d(T, x))) b (T, Ty)
< P(d(Ty, y)ou(T2,y) + P(d(T2, 2))Pu(Ty, x)

for x,y € M. Kohsaka [27| first introduces the vicinality of a mapping on CAT(1)
spaces. After that, Kajimura and Kimura [17| have introduced them to general
CAT(k) spaces. Such mappings have some good properties for fixed point theory if
a given function 1 satisfies additional conditions, such as continuity; refer to [17].
We introduce a new class of mappings. Let M be an admissible CAT (k) space and
n a function on [0, D, /2[ satisfying the condition (P1). We say that a mapping T
on M is geodesically monotone with 7 if

9Tx (long Ty, logn,Ta: .Z') + 91y (IOgTy Tz, logn,Ty y) <0
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for x,y € M. In the setting of Theorems 4.2 and 4.3, the mappings R? and R7. are
geodesically monotone with 7, respectively. For the sake of completeness, we give
proofs.

Proposition 5.1. In the setting of Theorem 4.2, the mapping R? 15 geodesically
monotone with 1.

Proof. Let xz,y € M. From Theorem 4.2, we have
f(R?fU) < f(R?l/) - gR?m(IOgR?a: R?y, 10gn,R’}z x)
and
f(RYy) < [(Rjx) = ggn, (logpn, Rz, log, g, y)-
Adding their both sides and rearranging that equation, we obtain
gR?z(logR;x R;Zya IOgn,Ryzv z) + gR?y(logR;y R;Z‘T7 logn,R?y y) <0.
It means that R? is geodesically monotone with 7. O

Proposition 5.2. In the setting of Theorem 4.3, the mapping R} is geodesically
monotone with .

Proof. Let x,y € M. From Theorem 4.3, we have
0 < F(RZ{E, RZ{U) - gRZz(longx RZ’:% IOgn,Rgm 1’)
and
0 < F(RLy, REx) — ggn ,(loggn , Ribx,log, gn ., y).
Adding their both sides and rearranging that equation, we obtain from (E2) that
gR}x (logR}:p RZ":% IOgn,Rzﬂx ‘T) + gR;Qy(IOgR}Qy RZ"‘/E’ logn,R}y y) <0.
It means that R, is geodesically monotone with 7. O

Let H be a Hilbert space, and suppose that 7' is a geodesically monotone mapping
with the identity function. Then, for x,y € H, we have

0 > grs(logr, Ty, log, 1y ) + gry(logr, Tz, log, 1, y)
=Ty —Tzx,o—Tx)+ (Txe —Ty,y —Ty)
=—(Te —Ty,z —y)+ Tz — Ty, Tx — Ty),
and hence
1T — Ty||* < (Tw — Ty, z — y).
It means that in Hilbert spaces, a mapping is geodesically monotone if and only if

it is firmly nonexpansive, or equivalently, inversely strongly monotone.
For a general geodesically monotone mapping, we obtain the following result:

Theorem 5.3. Let M be an admissible CAT (k) space and T a geodesically monotone
mapping on M with a function n on [0, Dy /2] satisfying the condition (P1). Then,
the following hold:

(i) If T has a fized point, then it is directed;
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(i) ts fized point set Fix T is closed and convex;
(iii) if there exists a limit
0
t—0+ 5 (1)
as a nonnegative real number, then T is vicinal with n/sy.

Proof. We first show (i) and (ii). We assume that 7" has a fixed point. Let x € M
and y € FixT'. Since log, 1, y = Oy, we have
0> gr(logr, Ty, l0g, 1y ) + g1y (logry, T, log, 7, y)
= 9Tz (long Y, IOgn,Tx .7)),

and therefore

g1z (logr, y, logr, x) < 0.
Hence, T is directed. In this case, T is quasinonexpansive, and hence Fix T is closed
and convex even if it is nonempty.
We next show (iii). From the assumption, we define the value of n/s, at 0 by

n©) _ .. n()
5.(0) tg%l+ 5k (1) =0

Let z,y € M, and set
n(d(Tz, z))
sp(d(Tz, x))
If Tx = x, then since T is quasinonexpansive,
(Vy + ¥2) 0k (T, Ty) = Yydu (T2, Ty) + V20s(Ty, Tx)
= Vyu(2, Ty) + Y2 (Ty, x)
< Py, y) + Yud(Ty, )
= Yybu(Tx,y) + Yuds(Ty, ).

n(d(Ty,y))

Ve = sn(d(Ty, 1))

and 1, =

In the same way, we obtain

(Yy + ¥2)0u(T, Ty) < Yydu(Tx,y) + Padu(Ty, )

if Ty = y. Suppose that Tz # z and Ty # y. Then, from (P1), we have v, and
1, are positive. The inequality required by the vicinality is satisfied if To = T'y.
Thus, we further suppose that Tx # Ty. Since T is geodesically monotone with 7,

we have
(5.1) g1z (logr, Ty, 1og, 1, ) + g7y (logr, Tx,log, 1, y) < 0.
Note that
sp(d(Tx, Ty
(52) MgTw(long Tya IOgn,T:B .TL‘) = gTﬂJ(IOgH,Ta: Ty7 logn,Ta: SL’)
xr Y
and
Se(d(Tx, Ty
(53> K( ( )) gTy(logTy TI‘, logn,Ty y) = g1y (logn,Ty T.f, 1Og/'-i,Ty y) .
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Hence, from the equations (5.1), (5.2) and (5.3),

wngx (10g57Tm Ty7 10gn,T{z 1:) + wygTy(logn,Ty T:L‘a logn,Ty y) g 0.

From Theorem 3.2, we have

0 > Yrgre(log, 1y T, l0g, 1y @) + Py gry(log, 1, Tw,log, 1, y)
> (51,(d(Tx, Ty)) (T, 2) + 6s(Ty, Tx) — $(Ty, x))
+ ¢y (s.(d(Ty, T2))9s(Ty, y) + ¢u(T, Ty) — ¢u(Ta,y))
> (1Y, Tx) — Yudu(Ty, ) + Yydu (T, Ty) — thydu(Tz,y),

and therefore

(¢y +r)pk (T2, Ty) < 1/@(]5,.;(7’:6, Y) + Yadu(Ty, x).

Thus, the inequality required by the vicinality is satisfied. Hence, 7' is vicinal with
N/Sk- O

Recall that

m@) _ om@) _ 1 om@ 1 w1
si(a) ss(a)  si(a) sx(a) si(@)?” sx(a) sw(a)
for a € R. Therefore,
fim O g g MO, 2O g, O
t—0+ S(t) t—0+ S (t) t—0+ s(t) t—0+ s, (1)

Let M be an admissible CAT (k) space and T a geodesically monotone mapping
with s,. Then, T is vicinal with a constant function which is identically equal to 1.
Such a mapping is said to be geodesically nonspreading [35], that is,

205(Tx, Ty) < ¢u(Tx,y) + ¢u(Ty, )

for z,y € M. Furthermore, suppose x = 0. Then, since T is geodesically monotone
with the identity function, for x,y € M, we obtain from Theorem 3.2 that

0 > gru(logr, Ty, logr, ©) + gry(logp, T, logy, y)
L 2d(T,Ty)? — d(Tz,y)* — d(Ty,x)* + d(T'x, 2)* + d(Ty,y)*
-_ 2 )

and hence
2d(Tx, Ty)? < d(Tx,y)* + d(Ty, )* — d(Tz,x)* — d(Ty,y)*.

Thus, T is firmly nonexpansive, and therefore it is nonexpansive and metrically
nonspreading.
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