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WEAK EXTENSION OF THE HAM-SANDWICH THEOREM:
SOME RATIO NOT IN HALF

HIDEFUMI KAWASAKI

ABSTRACT. The ham-sandwich theorem is famous as an application of Borsuk’s
antipodal theorem. It states that given n measurable sets Aq,..., A, with pos-
itive Lebesgue measure in R", it is possible to divide each one of them in half
by a hyperplane. Recently the author applied Borsuk’s antipodal theorem to
optimization theory in [3]. In this paper we extend the ham-sandwich theorem
to some ratio not in half by using the technique of [3].

1. INTRODUCTION

Borsuk’s antipodal theorem [1] is an important theorem of algebraic topology. It
states that for any continuous mapping ¢ from the n-sphere S™ to the Euclidean
space R™, there exists a point w € S™ such that ¢(u) = p(—u). As for its appli-
cations, the ham-sandwich theorem, the necklace problem, and coloring of Kneser
graph by Lovéasz [5] are well-known, see e.g. Matousek [6].

The author [2, 3, 4] applied Borsuk’s antipodal theorem to an n-tuple of para-
metric optimization problems with parameter u € S™, and presented antipodal
theorems for them.

Now we explain our notations. For any w = (u1,...,unt1) € S™, we set u =
(u1,...,up) € R" and w = (u, up+1). Then u is an element of the n-disk D™. We
assign to w € S™ a hyperplane H,, = {z € R" | (u,2) = up4+1} and two closed
half-spaces:

Hy ={z € R" | (u,2) > uni1}, Hy = {2 € R" | (u,2) < uny1},

where (u,z) denotes the inner product ujxi + - -+ + upxy,.

Next, let us review the ham-sandwich theorem. Let A; C R™ (i = 1,...,n) be
measurable sets with positive Lebesgue measure. Define ¢;(u) = p(A; NH;'). Then
© = (¢1,...,%n) is a continuous mapping from S™ to R". By applying Borsuk’s
antipodal theorem to ¢, there exists u € S™ such that u(A; N HY) = p(A4; N HT,).
Since H*,, = H,, we have

(1.1) AN HY) = (AN H,) (i=1,...,n),
which is the ham-sandwich theorem. If we denote the ratio of the division by
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FI1GURE 1. Place Ai,..., A, on the hyperplane u,11 = —1 and di-
vide them in half by a hyperplane passing through the origin of R™*1
whose normal vector is w = (u,up+1) € S™. Then the intersection
of two hyperplanes is {(z,—1) | (u,z) = upy1}.

() (A VH)
(1.2) pi(u) == A

then (1.1) implies p;(w) = 1/2. In this paper we show that there exists u € S™ such
that

S <) == palu) <1

2. WEAK EXTENSION OF THE HAM-SANDWICH THEOREM

In this section, we will extend the ham-sandwich theorem. We start with a general
setting. Let fi(z,u) (i = 1,...,n) be real-valued continuous functions defined on
R™ x D"™. We assume that f;(z,u) = fi(x,—u) for any (z,u) € R" x D". For any
vi € R and u = (u, up4+1) € S™, we define

(2.1) vi(u) = /A-mH"’ fi(z,u)dr — ~iup41.

Then v := (v1,...,v,) : 8™ — R" is continuous. Taking fi(z,u) =1 and v =0
in (2.1), we see that v;(u) = pu(A; N HY). The term —~;u, 41 is important in this
paper. It comes from [3], where we used

ei(u) == max fi(x,u) — Yitnt1.
TEA;
By applying Borsuk’s antipodal theorem to v, we obtain the following.

Theorem 2.1. (a) For any v1,...,7 € R, there exists u = (u,upy1) € S™
such that

(2.2) /A-mH+ fi(x,u)dx — / fi(x,u)dr = 2viup1 (i =1,...,n).

A;NHy
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(b) There exists w € S™ such that /
AiﬂH;r

fi(z,u)dx = / fi(z,u)dx for
A;NHy
anyt=1,...,n.

(c) If there is no v = (v,0) € S™ such that

(2.3) /AMT filz,v)dz = / filww)dz (i=1,...,n),

A;NHy
then for any v1,...,7 € R, there exists u € S™ such that upy1 > 0 and
(2.4) / filx,u)dx —/ file,u)de (i =1,...,n)
A;NHE AiNHy
are proportionate to v; (i =1,...,n).

Proof. (a) By Borsuk’s antipodal theorem, there exists u € S™ such that v(u) =
v(—u). Hence

/A - fz‘(f’«"au)dl'—%unﬂ = /A . fi(x, —u)d:):—i—fyiunﬂ
iNHy iNHZ,,

= / fi(z,u)dz + ~iup41.
ANH

(b) is a direct consequence of (a) for v; = 0.
By the assumption of (c¢), we have u,4+1 # 0. Therefore (c) follows from (a).
When u,,1 is negative, it suffices to take —u instead of w. g

By taking fi(x,u) = 1/u(A;) in Theorem 2.1, we obtain the following. (b) is
nothing but the ham-sandwich theorem. (a) and (c) are new results.

Theorem 2.2. (a) For any v1,...,7 € R, there exists u = (u,up4+1) € S™
such that

1
(2.5) pi(u) — ) = Viln+1-

In particular when v; # —1/2, it holds that —1 < up4+1 < 1.

(b) There exists a hyperplane that divides each A; in half.

(¢c) If there is no hyperplane passing the origin of R™ that divides each A; in
half, then for any ~v; # —1/2, there exists u € S™ such that 0 < up+1 < 1

and
1 1
(2.6) Pl(u)—§ :---:pn(u)—§:71 N
In particular, for any v1 = -+ = v, = ¢ with 0 < ¢ < 1/2, there exists
u € S" such that 0 < up41 <1 and
1 1
(2.7) 5 <)== pulu) < He (1),

Proof. When f;(z,u) = 1/u(A;), (2.2) reduces to

pAinHy)  p(4NHy)
2 iUn = - =2 i\U) — 17
Jitntt 1(Aq) p(Ai) pilt)
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which implies (2.5). If u,41 = 1, then since A; N H} is empty, we have p;(u) = 0.
Hence, we see from (2.5) that v; = —1/2, which contradicts the assumption of (a).
If upt1 = —1, then since A; N HY = A;, we have p;(u) = 1. Hence, we see from
(2.5) that 7, = —1/2, which contradicts the assumption of (a). Therefore we have
—-1< Up+1 < 1.

(b) follows from (a) by taking v; = 0. (¢) If up4+1 = 0 in (2.5), then hyperplane
H,, passes through the origin, and p;(u) = --- = pp(u) = 1/2, which contradicts
the assumption of (¢). Therefore u, 1 # 0. So (2.5) implies (2.6). When w1 is
negative, it suffices to take —u instead of w. In particular, if we take v = --- =

T =c with 0 < ¢ <1/2, we get (2.7) from 0 < up41 < 1. O
Remark 2.3. We see from (2.5) that
1 1
itna] = |pi(u) — 5| < 5

for any i. Hence, if some |v;| is exceptionally large, |up41| becomes small. So p;(u)
(i # j) are approximately equal to 1/2.

When we take v; = -+ =, = 1/2, we see from (2.5) that
Up+1 + 1
pi(u) = %
Since up41 is unknown, p;(u) = --- = p,(u) are also unknown. This is the reason

why the title is considered ”weak extension”.

Example 2.4. This example indicates the possibility of extending the ham-sandwich
theorem. Given ratio 0 < p < 1, we compute ¢ : (u,x) = ug that divides two
triangles with pj(u) = p2(u) = p. Line ¢ passing through (—2,a) and (2,b) is

\‘ Sl

FIGURE 2. 2u(S1) = 2u(S2) = p.

(a —b)x1 +4x9 = 2(a +b). Let P and @ be the intersections of ¢ and hypotenuses
To = x1 4+ 2 and x9 = x1 — 1, respectively. Then their x;-coordinates are
4a 4 —4b
a—b+4 T a—b+4’
respectively. Hence the areas of triangle S; and Ss are given by

1 1 4a? 1 4—4b
p(S1) = 5 = B} <1 - a—b—|—4> , 1(S2) = 5(1 - b)m,

Xr1 =
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respectively. Therefore (1) = p(S2) if and only if 4a® + 4b> — a — 7b = 0, which

is equivalent to
1 2+ AN
‘78 §) " 32

1 5 7
a——-=——=cosf, b——-=——sinb.

8 42 8 42

Therefore, the equation of ¢ is as follows.

Hence, we may put

{ > (cosG—sinH)—g}J:1+4:z:2: (sinf + cos6) + 2.

5
44/2 4 2v/2

Normalizing the coefficients, we obtain w € S?. Since the area of the triangles is
1/2, the ratio of the division is

2
5 1
<fﬁ0059+§) _ 1 (5v/2cos @ + 1)2

u)=25=1- =1—-=. )
pi{n) ' 4—\5/5(0089—sin9)+% 8 5v/2(cosf —sinf) + 6
3. CONCLUDING REMARKS
In the ham-sandwich theorem, we placed Aj,..., A, on the hyperplane u,+; =

—1 and divided them by a hyperplane passing through the origin of R**! whose
normal vector is w = (u, up4+1) € S™ (Figure 3 Left). On the other hand, in Theorem
2.2, we place A; on the hyperplane u,+; = —v; — 1 (Figure 3 Right). This is why
Theorem 2.2 is richer than the ham-sandwich theorem.

Un+1 Un+1
gn
u
=\ u
Un —_/ n
Ty Tn

\
U1 Xg‘l; N U
—&y = 1 (A/g\‘(
Z1

-2 —1

FiGure 3. Left: v4 = v = 0. Right: 71 < ¥s.

4. ACKNOWLEDGEMENTS

The author would like to thank the referee for careful reading.



144 HIDEFUMI KAWASAKI

REFERENCES

[1] K. Borsuk, Drei Sitze tiver die n-dimensionale euklidische Sphdare, Fundamenta Mathematicae
20 (1933), 177-190.

[2] H. Kawasaki, An application of Borsuk-Ulam’s theorem to parametric optimization, Linear and
Nonlinear Analysis 9 (2023) 245-252.

[3] H. Kawasaki, An antipodal theorem for parametric optimization problems, Bulletin of infor-
matics and cybernetics 56 (2024) 1-8 (https://doi.org/10.5109/7178785).

[4] H. Kawasaki, An application of Borsuk-Ulam’s theorem to nonlinear programming, J. Opera-
tions Research Society of Japan 68 (2025) 21-29 (https://doi.org/10.15807/jorsj.68.21).

[6] L. Lovész, Kneser’s conjecture, chromatic number and homotopy, Journal of Combinatorial
Theory, Ser. A 25 (1978), 319-324.

[6] J. Matousek, Using the Borsuk-Ulam Theorem, Springer, Berlin Heidelberg, 2008.

Manuscript received 28 December 2024
revised 18 March 2025

H. KAWASAKI
Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
E-mail address: kawasaki.hidefumi.245@m.kyushu-u.ac. jp



